JPS59211567A - Metallic member provided with sprayed alloy layer - Google Patents

Metallic member provided with sprayed alloy layer

Info

Publication number
JPS59211567A
JPS59211567A JP8418983A JP8418983A JPS59211567A JP S59211567 A JPS59211567 A JP S59211567A JP 8418983 A JP8418983 A JP 8418983A JP 8418983 A JP8418983 A JP 8418983A JP S59211567 A JPS59211567 A JP S59211567A
Authority
JP
Japan
Prior art keywords
sprayed
erosion
resistance
alloy layer
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8418983A
Other languages
Japanese (ja)
Inventor
Yoshiaki Shida
志田 善明
Hisao Fujikawa
尚男 冨士川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8418983A priority Critical patent/JPS59211567A/en
Publication of JPS59211567A publication Critical patent/JPS59211567A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based

Abstract

PURPOSE:To improve the resistance to high temp. particle erosion of a boiler tube, etc. by forming a sprayed alloy layer contg. a specific metallic carbide on the surface of the boiler tube, etc. CONSTITUTION:A boiler tube of a boiler using coal as fuel is subjected to the high temp. erosion damage by clinker of coal ash or a solid matter such as flyash or the like. An Ni base alloy or Co base alloy contg. 15-50% by volume % hard metallic carbide such as Cr3C2 or WC is sprayed thereon to 0.1-0.5mm. thickness in order to prevent such damage. A hard carbide such as Mo, Si, B, V or the like may be otherwise used in combination as desired. The sprayed layer having high resistance to the high temp. particle erosion is formed and the life of the boiler tube is extended.

Description

【発明の詳細な説明】 本発明は、溶射合金層を備えた金属部材、特に石炭火力
ボイラにおいてみられる□ような高温粒子エロージョン
に対するすぐれた抵抗性を示す溶射合金層を備えた金属
部材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal component with a sprayed alloy layer, and in particular to a metal component with a thermal sprayed alloy layer that exhibits excellent resistance to hot particle erosion such as that found in coal-fired boilers.

燃料燃焼ボイラ、流動床反応器、石炭のガス化、液化装
置等に代表される高温エネルギー装置は、従来は、石油
利用が主体であったが、今日では代替エネルギー利用の
必要性が認識された結果、石炭利用が増大する傾向とな
っている。
High-temperature energy devices, such as fuel-fired boilers, fluidized bed reactors, coal gasification and liquefaction equipment, have traditionally relied primarily on petroleum, but today the need to use alternative energy has been recognized. As a result, coal use is on the rise.

しかし、装置設計は石油利用のときの設計思想により行
われており、石炭利用となったときの問題点は十分には
まだ解決されていない。たとえば、石炭火力ボイラーお
いても従来の石油火力ボイラと同様の材料構成にて製作
されている。ところが、石炭火力ボイラにおいては、石
油火力ボイラと異なり、ボイラ内部で固形のアッシュ分
がクリンカとなって落下したiフライアッシュとして浮
遊していたりするため、石炭火力ボイラを構成するボイ
ラチューブは、□ 高温で著しいエロージョン損傷を受ける。このような問
題点は当業者にもよ(認識されているが、高温粒子によ
るエロージョン挙動がまだ明らかでなく、材料的な対策
もほとんどなく、経験上設計的な対処、例えば流速の低
減、プロテクターの取付等の対策が行われているにすぎ
ない。しかし、このように設計的に対処しても、流速な
どを制限する場合には予想以上比流速の早い偏流部がで
きたり、また、プロテクターを用いる場合にはプロテク
ター自身の損傷が早く、実際上、役立たなかったりのケ
ースが報告されている。
However, the equipment design is based on the design concept when using oil, and the problems when using coal have not yet been fully resolved. For example, coal-fired boilers are manufactured using the same material composition as conventional oil-fired boilers. However, in coal-fired boilers, unlike oil-fired boilers, the solid ash inside the boiler becomes clinker and is suspended as i-fly ash, so the boiler tubes that make up the coal-fired boiler are Significant erosion damage occurs at high temperatures. Although these problems are recognized by those skilled in the art, the erosion behavior caused by high-temperature particles is not yet clear, and there are few material countermeasures. However, even with these design measures, when restricting the flow velocity etc., it is possible to create uneven flow areas where the specific flow velocity is higher than expected, or the need to install a protector. There have been reports of cases where the protector itself is damaged quickly and is rendered useless.

ところで、従来にあってもこすれ摩耗等の耐摩耗用にあ
るいは耐食用に、ニンケル基合金あるいはコバルト基合
金の溶射が実用的に用いられているが、上述のような□
耐高温粒子エロージョン用には用いられた例はない。な
お、こすれ摩耗等は、普通、物体−物体が往復あるいは
回転接触する際に起こるもので、一方、エロージョンと
は固体が高速で物体に衝突し減肉を起こすものであって
、両者は機構が本質的に異なる。したがって、耐こすれ
摩耗性と耐高温粒子エロージヨン性との間には現象的に
共通性あるいは関連性はな(、従来技術において耐高温
粒子エロージヨン性に対する知見は存在しない。
Incidentally, in the past, thermal spraying of nickel-based alloys or cobalt-based alloys has been practically used for wear resistance such as rubbing wear or corrosion resistance, but the above-mentioned □
There are no examples of it being used for high temperature particle erosion resistance. Note that rubbing wear usually occurs when objects make reciprocating or rotating contact, while erosion occurs when a solid collides with an object at high speed, causing thinning, and both mechanisms are Essentially different. Therefore, there is no phenomenological commonality or relationship between rubbing wear resistance and high-temperature particle erosion resistance (and there is no knowledge of high-temperature particle erosion resistance in the prior art).

すでに述べたように、高温粒子によるエロージョン損傷
を防止する材料的対策はほとんどないのが現状であるが
、利料的対策があれば、例えば上述のような石炭火力ボ
イラ製作上にも設計に余裕が生じ、またプロテクター材
質の適正判断ができるなどの効果が大きく、さらには、
そのような材料的対策があれば、平均流速の増大が可能
となり、装置の小型化、熱効率の向上なとの利益も期待
できる。
As already mentioned, there are currently almost no material measures to prevent erosion damage caused by high-temperature particles, but if there were cost-effective measures, it would be possible to create leeway in the design of coal-fired boilers, such as those mentioned above. This has great effects, such as making it possible to determine the appropriate protector material.
If such material measures are taken, it will be possible to increase the average flow velocity, and the benefits of miniaturization of the device and improvement of thermal efficiency can also be expected.

したがって、ここに、本発明の目的とするところは、石
炭火力ボイラにみられるような高温粒子によるエロージ
ョンに対するすぐれた抵抗性を示ず金属部利を提供する
ことである。
It is therefore an object of the present invention to provide metal parts that do not exhibit superior resistance to erosion by hot particles as found in coal-fired boilers.

また、前述の一般の高温エネルギー装置でのエロージョ
ンffi傷は流速が局部的に高くなる偏流部等でしばし
ば生じており、局部的な対策が要求される場合も多く、
したがって、本発明の別の目的はそのような観点からの
耐高温粒子によるエロージョンに対する局部的な抵抗性
を示す金属部材を提供することである。
In addition, the erosion ffi damage in general high-temperature energy equipment mentioned above often occurs in areas where the flow velocity is locally high, such as in drifting areas, and local countermeasures are often required.
Accordingly, another object of the present invention is to provide a metal member that exhibits localized resistance to erosion by high temperature resistant particles from such a point of view.

かくして、本発明の要旨とするところは、Crおよび/
またはWの炭化物を含む全炭化物を体積比で15〜50
%含有する溶射合金層を備えた、高温粒子エロージョン
に対するずくれた抵抗性を有する金属部材である。
Thus, the gist of the present invention is that Cr and/or
Or total carbide including W carbide in volume ratio of 15 to 50
A metal component with exceptional resistance to hot particle erosion with a thermally sprayed alloy layer containing %.

ここに、本発明に係る溶射合金層を備えた鋼板、鋼管等
の金属部材を使用することによりかかる部材に対する高
温エロージョン損傷を防止することができる。従来、こ
のような用途には溶射合金は使用されていなかった。な
お、本発明における溶射合金それ自体は特に制限されな
いが、多くの場合耐熱性および耐食性も併せて要求され
るため、一般にはコバルト基合金あるいはニッケル基合
金が使用されよう、また、かかる合金の溶射方法も特に
制限されず、大気中溶射でもよいが、低圧溶射法によれ
ばよりよい皮膜が得られる。また、合金の種類によって
は燃焼炎によってもよいがプラズマ炎による場合の方が
よい皮膜が得られる。炭化物粉末を原料に用い合金粉末
と混合し溶射してもよく、炭化物を含む合金粉末を原料
に用いてよい。炭化物粉末を用いる場合には粒度は細か
い方が望ましく、200メソシュ程度以下が望ましい。
Here, by using metal members such as steel plates and steel pipes provided with the sprayed alloy layer according to the present invention, it is possible to prevent high-temperature erosion damage to such members. Traditionally, thermal spray alloys have not been used for such applications. Although the thermal spray alloy itself in the present invention is not particularly limited, in many cases heat resistance and corrosion resistance are also required, so generally a cobalt-based alloy or a nickel-based alloy will be used. The method is not particularly limited either, and thermal spraying in the atmosphere may be used, but a better coating can be obtained by low-pressure thermal spraying. Further, depending on the type of alloy, combustion flame may be used, but a better film can be obtained by plasma flame. A carbide powder may be used as a raw material and mixed with an alloy powder for thermal spraying, or an alloy powder containing carbide may be used as a raw material. When using carbide powder, the particle size is preferably finer, preferably about 200 mesosh or less.

なお、本発明ではタングステンおよびクロムの炭化物に
つき限定しているが、所望により、他の炭化物(たとえ
はモリブデン、ケイ素、ボロン、バナジウムなどの各炭
化物)をさらに添加しても効果がある。
Although the present invention is limited to carbides of tungsten and chromium, it is also effective to add other carbides (for example, carbides of molybdenum, silicon, boron, vanadium, etc.) if desired.

l容射皮1模と部祠素地との密着性を向上せしめるため
、下地処理として通當シジソトブラストを行うが、必要
に応して、適宜合金(たとえばニッケルーアルミナイド
)を予め溶射しておくこともよい。また、必要に応して
後熱処理を行うことにより密着性を数色することもてき
る。
l In order to improve the adhesion between the sprayed skin model 1 and the base material of the part, the base treatment is generally silithoblasted, but if necessary, an appropriate alloy (for example, nickel-aluminide) may be thermally sprayed in advance. It is also good to leave it there. Further, the adhesion can be changed to several colors by performing a post-heat treatment if necessary.

本発明におりる溶射合金層の厚さは所要により適宜設定
できるが一般には0.1〜0.5+uで十分である。
The thickness of the sprayed alloy layer according to the present invention can be appropriately set as required, but generally 0.1 to 0.5+u is sufficient.

なお、金属部材の素材としては特に制限されず一般には
Ril管、鋼板類であって、例えば石炭火力ボイラのボ
イラチューブ等があげられる。
The material of the metal member is not particularly limited, and generally includes Ril pipes and steel plates, such as boiler tubes of coal-fired boilers.

本発明における溶射合金層には、すでに述べたように、
タングステンおよび/またはクロムの炭化物が体積率で
15〜50%含有されるが、その炭化物含有量が15体
積%未満では、十分な高温粒子エロージョン抵抗性が得
られず、一方、50体積%を超えると溶射皮膜の靭性が
低下し、かえってエロージョン抵抗性も低下する。した
がって、本発明にあっては溶射合金層の含有炭化物の量
を体積率で15〜50%に制限する。
As already mentioned, the sprayed alloy layer in the present invention includes:
Tungsten and/or chromium carbide is contained in a volume percentage of 15 to 50%, but if the carbide content is less than 15% by volume, sufficient high temperature particle erosion resistance cannot be obtained, whereas if it exceeds 50% by volume This decreases the toughness of the thermally sprayed coating and, on the contrary, decreases the erosion resistance. Therefore, in the present invention, the amount of carbides contained in the sprayed alloy layer is limited to 15 to 50% by volume.

なお、本発明にあっては前述のようにモリブデン、シリ
コン、ボロンおよびバナヂウムの各炭化物の少なくとも
一種を、所望により、添加してもよいが・その場合にお
いては、タングステンおよびクロムの炭化物を含む全炭
化物の量を体積率で15〜50%に制限する。溶射合金
がコバルト基合金である場合およびニッケル基合金であ
る場合、特に顕著な差異は認められないが、ニッケル基
合金と比較してコバルト基合金では全炭化物の体積率が
多少少なくても同様な効果をiMることかできる。
In the present invention, as described above, at least one of molybdenum, silicon, boron, and vanadium carbides may be added, if desired. Limit the amount of carbide to 15-50% by volume. There is no noticeable difference when the sprayed alloy is a cobalt-based alloy or a nickel-based alloy, but the same difference is observed even if the volume fraction of total carbides is slightly lower in the cobalt-based alloy than in the nickel-based alloy. You can also iM the effect.

次に実施例によって本発明をさらに説明するが、それら
は本発明の例示として示すもので、本発明を何ら制限す
るものではない。なお、本明細書において「%」は特に
ことわりがない限り「重量%」である。
Next, the present invention will be further explained with reference to Examples, but these are shown as illustrations of the present invention and are not intended to limit the present invention in any way. In this specification, "%" means "% by weight" unless otherwise specified.

凛」1舛 第1表に示す組成の合金の粉末を用し1プラズマ熔射に
より、JIS 5tlS304ステンレス鋼母材上Gこ
厚さ0゜5順の溶射皮膜を形成せしめた。その素板から
、片面に上記溶射皮膜を残した高温粒子エロージョン試
験片(3龍厚さX2Q+am幅X30mm長さ)を作成
し、下記要領の高温粒子エロージョン試験を行った。な
お、第1表における合金番号10の材料は比較用に用し
またJIS SUS 304ステンレス鋼裸材である。
A thermal spray coating with a thickness of 0°5 was formed on a JIS 5t1S304 stainless steel base material by plasma spraying using powder of an alloy having the composition shown in Table 1. A high-temperature particle erosion test piece (three dragons thickness x 2Q + am width x 30 mm length) with the above-mentioned thermal spray coating left on one side was prepared from the blank plate, and a high-temperature particle erosion test was conducted as described below. The material of alloy number 10 in Table 1 is used for comparison and is JIS SUS 304 stainless steel bare material.

上記高温粒子エロージョン試験は、プラスト式11」−
ジョン試験装置を用いて行った。すなわら、固体粒子(
本例は平均粒径的15μmの石炭燃焼灰を用いた)とA
rガスとを別々に650℃に加熱し、それらを内径4鮪
のノズルの入口で混合し、ノズル内で加速後、やはり6
50℃に保った試験片に衝突させた。試験片に衝突させ
るときのガス流速は50m/秒および100m/秒で、
それぞれの場合につも)で1時間にわたって600gの
固体粒子を上記試験表面に衝突させた。
The above high temperature particle erosion test is performed using the Plast method 11''-
The tests were carried out using John's test equipment. That is, solid particles (
In this example, coal combustion ash with an average particle size of 15 μm was used) and A
r gas and heated separately to 650℃, mixed them at the inlet of a tuna nozzle with an inner diameter of 4, and after accelerating in the nozzle, 650℃.
It was made to collide with a test piece kept at 50°C. The gas flow velocity when colliding with the test piece was 50 m/s and 100 m/s,
In each case) 600 g of solid particles were bombarded with the test surface over a period of 1 hour.

試験後、各試験片の中央に形成した減肉部分を表面粗さ
計により測定し最大の減肉量を測定し各供試材の高温粒
子エロージョンに対する抵抗性を評価した。結果を同じ
く第1表にまとめて示した。
After the test, the thinned area formed at the center of each test piece was measured using a surface roughness meter to determine the maximum amount of thinned metal, and the resistance of each sample material to high-temperature particle erosion was evaluated. The results are also summarized in Table 1.

第1表に示す結果からも明らかなごとく、比較例のよう
に全炭化物含有量が11%以下と少ない場合は、溶射法
を採用したにもかかわらず、コントロール用のJIS 
5US304裸材にくらべ大きな改善が認められない。
As is clear from the results shown in Table 1, when the total carbide content is as low as 11% or less, as in the comparative example, even though the thermal spraying method was adopted, the control JIS
No significant improvement was observed compared to 5US304 bare material.

しかしながら、それに対し本発明に係る溶射合金層を設
けた金属部材の場合には耐高温粒子エロージヨン性に顕
著な改善が認められる。
However, in contrast, in the case of a metal member provided with the thermal sprayed alloy layer according to the present invention, a remarkable improvement in high-temperature particle erosion resistance is observed.

このように、本発明によれば高温粒子エロージョンに対
するすぐれた抵抗性を有する金属部材が得られるのであ
って、近年注目されている高温エネルギー装置の実用化
および普及に寄与するところは大である。
Thus, according to the present invention, a metal member having excellent resistance to high-temperature particle erosion can be obtained, and the present invention greatly contributes to the practical application and spread of high-temperature energy devices, which have been attracting attention in recent years.

出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 −Applicant: Sumitomo Metal Industries, Ltd. Agent: Patent Attorney Akira Hirose -

Claims (1)

【特許請求の範囲】[Claims] クロムおよび/またはタングステンの炭化物を含む全炭
化物を体積比で15〜50%含有する溶射合金層を備え
た、高温粒子エロージョンに対するすぐれた抵抗性を有
する金属部材。
A metal component having excellent resistance to hot particle erosion, comprising a thermally sprayed alloy layer containing 15 to 50% by volume of total carbides, including carbides of chromium and/or tungsten.
JP8418983A 1983-05-16 1983-05-16 Metallic member provided with sprayed alloy layer Pending JPS59211567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8418983A JPS59211567A (en) 1983-05-16 1983-05-16 Metallic member provided with sprayed alloy layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8418983A JPS59211567A (en) 1983-05-16 1983-05-16 Metallic member provided with sprayed alloy layer

Publications (1)

Publication Number Publication Date
JPS59211567A true JPS59211567A (en) 1984-11-30

Family

ID=13823522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8418983A Pending JPS59211567A (en) 1983-05-16 1983-05-16 Metallic member provided with sprayed alloy layer

Country Status (1)

Country Link
JP (1) JPS59211567A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229850A (en) * 1989-11-27 1991-10-11 Union Carbide Coatings Service Technol Corp Tungsten chromium carbide-nickel coating for various articles
EP0684070A1 (en) * 1994-05-23 1995-11-29 Hemlock Semiconductor Corporation Fluidized-bed reactor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229850A (en) * 1989-11-27 1991-10-11 Union Carbide Coatings Service Technol Corp Tungsten chromium carbide-nickel coating for various articles
AU626777B2 (en) * 1989-11-27 1992-08-06 Union Carbide Coatings Service Technology Corp. Tungsten chromium carbide-nickel coatings for various articles
EP0684070A1 (en) * 1994-05-23 1995-11-29 Hemlock Semiconductor Corporation Fluidized-bed reactor

Similar Documents

Publication Publication Date Title
US7431566B2 (en) Erosion resistant coatings and methods thereof
Sidhu et al. Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications
Sidhu et al. Hot corrosion behaviour of HVOF-sprayed NiCrBSi coatings on Ni-and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 C
CA1255762A (en) Arc-spraying filler wire for producing a coating which is highly resistant to mechanical and/or chemical wear
Kaur et al. High-temperature behavior of a high-velocity oxy-fuel sprayed Cr 3 C 2-NiCr coating
CN107034427B (en) The alloy coat and preparation method thereof of boiler heating surface high-temperature corrosion resistance
EP0961017B1 (en) High temperature resistant coating
Prasanna et al. Studies on the role of HVOF coatings to combat erosion in turbine alloys
Verstak et al. Activated combustion HVAF coatings for protection against wear and high temperature corrosion
JP2007298035A (en) Coating for gas turbine engine component, seal assembly, and coating method
Wang Erosion-corrosion of coatings by biomass-fired boiler fly ash
Saini et al. Hot corrosion behaviour of nanostructured cermet based coatings deposited by different thermal spray techniques: a review
Singh et al. Studies of plasma spray coatings on a Fe‐base superalloy, their structure and high temperature oxidation behaviour
JPS59211546A (en) Cobalt alloy for thermal spraying
JPS59211567A (en) Metallic member provided with sprayed alloy layer
JP2011256462A (en) Composition and method for applying protective coating
JP5584161B2 (en) Thermal spray material
Magnee et al. Fe-AI Intermetallic Coating Applications to Thermal Energy Conversion Advanced Systems
JPS61170554A (en) Member for highly corrosion resistant boiler
Levy et al. Erosion of corrosion-resistant surface treatments on alloy steels
JPS6029459A (en) Steel product with resistance to erosion by particle at high temperature
JPH0261051A (en) Method for coating surface of material and thermal spraying material used in the same method
Wang et al. Intermetallic-ceramic coatings for metals protection against erosion-corrosion at high temperatures
JP3286770B2 (en) Manufacturing method of corrosion and wear resistant coating
Agnihotri et al. Study of burnishining effect on the thermal spray coatings