JPS59210414A - Polarization compensating device - Google Patents

Polarization compensating device

Info

Publication number
JPS59210414A
JPS59210414A JP8354083A JP8354083A JPS59210414A JP S59210414 A JPS59210414 A JP S59210414A JP 8354083 A JP8354083 A JP 8354083A JP 8354083 A JP8354083 A JP 8354083A JP S59210414 A JPS59210414 A JP S59210414A
Authority
JP
Japan
Prior art keywords
polarization
light
fiber
waveguide
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8354083A
Other languages
Japanese (ja)
Inventor
Yoshiro Komatsu
啓郎 小松
Mitsukazu Kondo
充和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8354083A priority Critical patent/JPS59210414A/en
Publication of JPS59210414A publication Critical patent/JPS59210414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Abstract

PURPOSE:To perform polarization compensation which is stable to the polarization state of single-mode fiber projection light by splitting incident light into two orthogonal linear polarized components, and rotating only one component and then multiplexing both components after passing them through optical paths differing in length. CONSTITUTION:A light wave projected from a single-mode fiber 1 is split into two mutually orthogonal linear polarized components by birefringent crystal 3, and they are coupled with polarization maintaining fibers 4 and 5 respectively. The polarization maintaining fibers 4 and 5 has some difference in fiber length so that two light waves do not interfere with each other when multiplexed by a light guide type Y-shaped multiplexer 6 while only one linear polarized component is rotated by 90 deg.. In this case, axes of polarization are so adjusted that both components propagating in the polarization maintaining fibers 4 and 5 are multiplexed efficiently on the incidence light guide 7 of the light guide type Y- shaped multiplexer 6.

Description

【発明の詳細な説明】 本発明は、任意の偏光の入射光を所望の方向出射面線偏
光光に変換することのできる偏光補償装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polarization compensator capable of converting incident light of arbitrary polarization into plane linearly polarized light emitted in a desired direction.

近年、光通信システムや光情報処理システムの実用化が
進められているが、それらのシステムにお−ては、さら
に情報量の増大やシステムの機能の拡大が計られている
。そこでこれら情報量の増大やシステムの機能拡大に対
処するために小形で旨速な導波形光素子の開発が進めら
れている。導波形光素子とは、光導波路構造を有する光
素子で、導波光がある特定の単一の偏光方向のときに効
率良く動作を行なう光素子もしくは出射光の1JIIi
光方向が単一であるような光素子を指し、導波形光スイ
ッチ、導波形光変調器、レーザダイオードなどが例とし
てあげられる。
In recent years, optical communication systems and optical information processing systems have been put into practical use, and efforts are being made to further increase the amount of information and expand the functions of these systems. Therefore, in order to deal with the increase in the amount of information and the expansion of system functions, progress is being made in the development of small, high-speed waveguide optical devices. A waveguide type optical element is an optical element having an optical waveguide structure, and is an optical element that operates efficiently when the guided light is in a specific single polarization direction, or a type of optical element that operates efficiently when the guided light has a single specific polarization direction.
It refers to an optical element with a single direction of light, and examples include waveguide optical switches, waveguide optical modulators, and laser diodes.

一方、情報量の増大に対処する光フアイバ伝送系として
は、モード分散が原理的に零でちゃ高速・広帯域の信号
全遠距離にわたって伝送することが可能な単一モードフ
ァイバ伝送系があり、今後この伝送系が支配的になるも
のと考えられる。
On the other hand, as an optical fiber transmission system that can cope with the increase in the amount of information, there is a single mode fiber transmission system that can transmit high-speed, wideband signals over long distances even though the modal dispersion is in principle zero. It is thought that this transmission system will become dominant.

前述のように導波形光素子においては通常導波光の偏光
方向によってその機能全発揮畑せるための効果の大きさ
が異なる。たとえば電気光学効果や音響光学効果を利用
した導波形光スイッチにおいては入射部ではTEモード
又はTMモードの一方のみを入射させてスイッチングを
行なわなければならない。しかしこれら導波形光≠さ子
間の信号伝送系に単一モードファイバを用いると単一モ
ードファイバの入射端で向勝偏ブL全入射しても出射端
では一般に直線偏光とはならないので、導波形光素子に
入射する前に偏光の調整が必要となる。
As mentioned above, in a waveguide type optical element, the magnitude of the effect to fully demonstrate its function usually differs depending on the polarization direction of the guided light. For example, in a waveguide optical switch that utilizes the electro-optic effect or the acousto-optic effect, switching must be performed by allowing only one of the TE mode and TM mode to enter the input section. However, when a single-mode fiber is used for the signal transmission system between these waveguides and the fiber, even if the entire polarization L is incident at the input end of the single-mode fiber, the output end generally does not become linearly polarized. Polarization adjustment is required before entering the waveguide optical element.

従来、導波形光素子間の接続に単一モードファイバを用
いる場合には、その単一モードファイバに曲げやねじジ
などの外的変形をほどこして偏光のr;A整を行なう方
法がとられているが、この方法を用いると単一モードフ
ァイバの周囲温度の変化や外力の変化によシ偏光状態が
変化し、そのたび毎に手動で調整をしiUす必要がある
。壕だ4波形光素子の入射側に偏光子を挿入し、一定の
偏光成分だけ奮迅〕jφさせ導波形光素子に入射する方
法もあるが、この方法を用いると不要な11111光成
分すべてが損失となってしまう。そればかりか単一モー
ドファイバ出射光の偏光状態は周囲温度や外力の影響に
より刻々と変わることが考えられるので導波形光素子へ
の入射光量が時間的に変化するおそれがある。
Conventionally, when using a single mode fiber to connect waveguide optical elements, a method has been used in which the single mode fiber is subjected to external deformation such as bending or screwing to adjust the r;A polarization. However, when this method is used, the polarization state changes due to changes in the ambient temperature of the single mode fiber or changes in external force, and it is necessary to manually adjust the polarization state each time. There is also a method of inserting a polarizer on the incident side of the four-waveform optical element and making only a certain polarized light component become active and input it to the waveguide optical element, but with this method, all unnecessary 11111 light components are lost. It becomes. Furthermore, since the polarization state of light emitted from a single mode fiber may change moment by moment due to the influence of ambient temperature or external force, there is a possibility that the amount of light incident on the waveguide optical element may change over time.

本発明の目的は、上述のような欠点を除去せしめて、牟
−モードファイバ出射光の偏光状態の変化に対して安定
な偏光補1負装置dを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a polarization compensator d that is stable against changes in the polarization state of light emitted from a cross-mode fiber.

本発明では入射光を互いに直交する2つの直線偏光成分
に分離し、その一方の直線偏光成分のみを回転させて他
方の偏光方向に一致さぜ、その後両名を再び合成するこ
とにより偏光++ii伯をイーテなう。
In the present invention, the incident light is separated into two linearly polarized components perpendicular to each other, one of the linearly polarized components is rotated to match the polarization direction of the other, and then both are combined again to obtain polarized light. Eat now.

ぞしてMj・J光を分離してから合成する一!、雪の2
つの直線偏光の光路長に麦をつけ合成した後の)1波が
干渉しないようにする。この構成を用いると2つの1イ
、線側光成分に分離した後の両光行路における損失を等
しくしておけば、入射光の偏光状態がどのように変化し
ようとも出射光−沿には変化は生じない。葦た一方の直
線偏光成分のみを回転させる手取としては、偏波保存フ
ァイバを用いる方法と半波長板を用いる方法の2つの方
法があるが、両名ともIA〕単な光回路構成で確実に偏
光回転をさせることが用油である。
Next, separate the Mj and J lights and then synthesize them! , snow 2
After combining the optical path lengths of the two linearly polarized lights, we make sure that the first wave (after combining them) does not interfere. Using this configuration, if the loss in both optical paths after separation into two line-side light components is made equal, no matter how the polarization state of the incident light changes, the output light will change along the line. does not occur. There are two ways to rotate only the linearly polarized component on one side: using a polarization-maintaining fiber and using a half-wave plate. The purpose of this oil is to rotate polarized light.

又、本発明の応用として入射側に上述のようなM−11
点を持つ偏光補償装置を取り付けた偏光補償装置付光ス
ィッチは入射光の偏光状態に依存せず安定なスイッチン
グができるので、単一モードファイバ伝送系への適用が
EJ能となる。
In addition, as an application of the present invention, the above-mentioned M-11 is placed on the incident side.
An optical switch equipped with a polarization compensator equipped with a polarization compensator having a dot can perform stable switching without depending on the polarization state of incident light, and therefore can be applied to a single mode fiber transmission system with EJ performance.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図に木発、明による偏光補償装置の一実施例を示す
。第1図において単一モードファイバ1より出射された
光波は2つの直線偏光成分に分前する手段である複ル(
折結晶3によって互いに直交する2つの直線偏光成分に
分離されそれぞれ偏波保存ファイバ4および偏波保存フ
ァイバ5に結合される。2本の偏波保存ファイバ4.5
は導波形Y字合成器6に接続されているか、導波形Y字
合成器60入射導波路端面においては2本の偏波保存フ
ァイバとも出射光の偏光方向が同一かつ、導波光が効率
良く合成される偏光方向となるように偏光軸調整がなさ
れている。導波形Y字合成器6の出射導波路端面には偏
波保存ファイバ8が偏光軸が導波光の偏光軸と同一とな
るように調整され接続されている。上記の3〜6により
本発明による偏光補償装置が構成される。
FIG. 1 shows an embodiment of a polarization compensator according to Kiwata and Akira. In Fig. 1, a light wave emitted from a single mode fiber 1 is divided into two linearly polarized components (
The light is separated into two mutually orthogonal linearly polarized components by the folding crystal 3 and coupled to a polarization maintaining fiber 4 and a polarization maintaining fiber 5, respectively. Two polarization maintaining fibers 4.5
is connected to the waveguide Y-combiner 6, or the two polarization-maintaining fibers have the same polarization direction of the output light at the input waveguide end face of the waveguide Y-combiner 60, and the guided light is efficiently combined. The polarization axis is adjusted so that the polarization direction is the same. A polarization maintaining fiber 8 is connected to the end face of the output waveguide of the waveguide type Y-combiner 6 and is adjusted so that its polarization axis is the same as the polarization axis of the guided light. The above 3 to 6 constitute the polarization compensation device according to the present invention.

この偏光補償装置においては単一モードファイバ1の出
射光の偏光状態がどのよう々ものであ°ろうとも複屈折
結晶3によシ互いに直交する2つの偏光成分子Eモード
およびTMモードに分離される。
In this polarization compensator, no matter what the polarization state of the light emitted from the single mode fiber 1 is, it is separated by the birefringent crystal 3 into two polarization components, E mode and TM mode, which are orthogonal to each other. Ru.

両側光成分はファイバ偏光軸の向きが調整された偏波保
存ファイバ4および5にそれぞれ入射され、偏波保存フ
ァイバの出射端まで面線偏光が保存されたまま到達する
。2本の偏波保存ファイバ4および5は導波形Y字合成
器6に接続されているが、導波形Y字合成器6の入射導
波路7の端面においては2本の偏波保存ファイバとも出
射光の偏光方向は同一でかつ導波形Y字合成器6中にお
いて導波光が効率良く合成される偏光方向となるように
ファイバの偏光軸調整がなされている。これによ92本
の偏波保存ファイバ4および5は一方の面線偏光成分の
みを90°回転させて他方の面線偏光成分に一致させる
手段として機能する。なお導波形Y字合成器6で合成を
行なう際2つの光波が干渉しないように、2本の偏波保
存ファイバのファイバ長に4cm程度の差をつけている
導波形Y字合成器6の出射4波路端1mKは合成された
直緋但光導波尤の偏光方向とファイバ偏光軸が同一とな
るように調整された偏波保存ファイバ8が接続されてお
シ、この偏波保存ファイバ8が次段の導波形光素子へと
接続されるが、(iri波保存ファイバ8の出射端にお
いてファイバをねじることによりその偏光軸を調整すれ
ば次段の導波形光素子全効率よく機能させることができ
る。本構成の偏光補イアλ装置においては、咀−モード
ファイバ出射光を一旦互いに旧交する2つの偏光成分に
分離し偏波保存ファイバを用いて両者の偏光方向を一致
させた後再び合成するという構成になっている。このた
め単一モードファイバ出射光中のTEモードとTMモー
ドの比率かいlなるものであろうとも偏光補償装置出射
光量は一定となる。したがってたとえ周囲温度変化や外
力の変化により単一モードファイバ出射光の偏光状態が
時間的に変化しようとも偏光補償装置出射光量として安
定なものが得られる。
The optical components on both sides are inputted into polarization-maintaining fibers 4 and 5, respectively, in which the directions of the fiber polarization axes are adjusted, and reach the output ends of the polarization-maintaining fibers with the plane polarization maintained. The two polarization-maintaining fibers 4 and 5 are connected to the waveguide Y-combiner 6, but at the end face of the input waveguide 7 of the waveguide Y-combiner 6, both polarization-maintaining fibers are output. The polarization axes of the fibers are adjusted so that the polarization directions of the emitted lights are the same and the guided lights are efficiently combined in the waveguide type Y-combiner 6. As a result, the 92 polarization maintaining fibers 4 and 5 function as means for rotating only one plane-polarized light component by 90 degrees to match the other plane-polarized light component. The output of the waveguide Y-combiner 6 is such that the fiber lengths of the two polarization-maintaining fibers have a difference of about 4 cm to prevent the two light waves from interfering when they are combined by the waveguide Y-combiner 6. A polarization maintaining fiber 8 which is adjusted so that the polarization direction of the synthesized straight optical waveguide and the fiber polarization axis are the same is connected to 1 mK of the four wavepath ends, and this polarization maintaining fiber 8 is connected to the next It is connected to the waveguide optical element in the next stage, but by adjusting the polarization axis by twisting the fiber at the output end of the IR wave storage fiber 8, the waveguide optical element in the next stage can function with full efficiency. In the polarization compensation λ device with this configuration, the light emitted from the masticatory mode fiber is once separated into two mutually old polarization components, and the polarization directions of the two are matched using a polarization-maintaining fiber, and then they are combined again. Therefore, even if the ratio of TE mode to TM mode in the single mode fiber output light is different, the amount of light output from the polarization compensator remains constant.Therefore, even if the ambient temperature or external force changes, Therefore, even if the polarization state of the light emitted from the single mode fiber changes over time, a stable amount of light emitted from the polarization compensator can be obtained.

以上述べたように、本実施例にお込ては互いに旧交する
2つの偏光成分に分離する複屈折結晶と両側光成分の偏
光方向全一致させる偏光保存ファイバおよび偏光方向の
一致した画!1M、線偏光を再゛度合成する導波形Y字
合成器を用いた簡単な構成で単一モードファイバ出射光
の偏光状態に依らず安定々偏光補償装置を得ることがで
きる。
As described above, in this embodiment, a birefringent crystal that separates the light into two mutually old polarization components, a polarization-maintaining fiber that matches the polarization directions of both light components, and an image whose polarization directions match! With a simple configuration using a waveguide Y-combiner that recombines 1M, linearly polarized light, a stable polarization compensator can be obtained regardless of the polarization state of the light emitted from a single mode fiber.

第2図は、本発明による・tliri元補角装置の他の
実施例を示す図である。第2図において11上−モード
ファイバ11より出射された光波は偏光ビームスプリッ
タ12によって互いに直交する2つの面線偏光成分に分
離されそれぞれ偏波保存ファイバ14および15に結合
される。2本の拓1阪保存ファイノ(の出射光は透過と
反対の比が1対1の7・−フミラー13で合成されるが
、この際両偏波保存ファイバは出射光の偏光軸が一致す
るように調整されているものとする。ハーフミラ−13
で合成する際に2つの光波が干渉することを防止するた
め、2本の偏波保存ファイバにおいてはそのファイバ長
に4σ程度の差をつけている。・・−フミラー13によ
って合成された偏光軸のそろった光波は偏波保存ファイ
バ16に結合され、直線偏光を保ったまま次段の導波形
元素へと伝送される。上^己の12〜15よ多本発明に
よる偏光補作・装置が構成される。
FIG. 2 is a diagram showing another embodiment of the tliri element supplementary angle device according to the present invention. In FIG. 2, a light wave emitted from an upper mode fiber 11 is separated by a polarization beam splitter 12 into two mutually orthogonal plane polarization components, and coupled to polarization maintaining fibers 14 and 15, respectively. The emitted light from the two polarization-preserving fibers is combined by a 7-fumirror 13 with a 1:1 ratio of transmission and opposite polarization, but at this time, the polarization axes of the emitted light from both polarization-maintaining fibers coincide. It shall be adjusted as follows.Half mirror 13
In order to prevent the two light waves from interfering when they are combined, the fiber lengths of the two polarization maintaining fibers are set to have a difference of about 4σ. . . . The light waves with aligned polarization axes synthesized by the mirror 13 are coupled to the polarization maintaining fiber 16 and transmitted to the next waveguide element while maintaining linear polarization. As many as 12 to 15 polarization correction devices according to the present invention are constructed.

この偏光補償装置においては単一モードファイバ11の
出射光は偏光ビームスプリッタ12によって互いに旧交
する2つの偏光成分子EモードおよびTMモードに分離
される。両lA11光成分はファイパイA(、;光fl
atの向き9縮11!!昏された偏波保存ファイバ14
および15にそれぞれ入射され、直線偏光を保ったまオ
ファイバの出射端まで伝送される。両仙波併存ファイバ
出射光は透過と反射との比が1対1であるハーフミラ−
13にょシ合成されるが、その隙には両(Ji’:波フ
ァイバの出射端において出射光のh+j光輔が−j′¥
するようにファイバ仙1]光1踊の6周県がなされてお
シ、ハーフミラ・−13にょシ合成された元は偏光軸の
そろった直線偏光となる。ハーフミラ李 一13出射光は(+:i;波保存ファイバ16に結合さ
れ、次段の導波形光素子へ1亘線偏光を保ったまま伝送
される。本構成においては入射光を互いに直交する2つ
の直線偏光成分に分離する手段として偏光ビームスプリ
ッタを、分割した両直線偏光成分の偏光軸を一致させる
手段として偏1波保存ファイバを用い、偏光軸のそろっ
た血源仏)光を合成する手段としてハーフミラ−を用い
ている。この構成の偏光補償装置においては、単一モー
ドファイバ出射光を一旦互いに直交する仙・1う°0成
分に分1i!inだ後、両者の偏光成分を一致させ再び
両名全合成するという方法を用いており、単一モード出
射光の側光状態がいかなるものであろうともつ・ii光
補色装置出射光の光量は一定となる。したがって単一モ
ードファイバの周囲温度変化や外力変化に幻して安定な
偏光補償装置が得られる。
In this polarization compensator, light emitted from a single mode fiber 11 is separated by a polarization beam splitter 12 into two polarization components E mode and TM mode, which are mutually old. Both lA11 light components are phipiA(,; light fl
Direction of at 9 reduction 11! ! polarization maintaining fiber 14
and 15, and are transmitted to the output end of the optical fiber while maintaining linear polarization. The light emitted from the fiber with both sentient waves is a half mirror with a ratio of transmission and reflection of 1:1.
13, but in the gap, both (Ji': h+j light of the emitted light at the output end of the wave fiber is -j'\
In this way, six rounds of fiber light are created, and half-mirror -13 light is combined to form linearly polarized light with aligned polarization axes. The emitted light from the half-mirror Li-ichi 13 is coupled to the (+:i; wave preserving fiber 16) and transmitted to the next waveguide optical element while maintaining the linear polarization. In this configuration, the incident light is orthogonal to each other. A polarization beam splitter is used to separate the two linearly polarized components, and a polarization-maintaining fiber is used to align the polarization axes of the two linearly polarized components, thereby synthesizing the light with the same polarization axes. A half mirror is used as the means. In the polarization compensator with this configuration, the single-mode fiber output light is once divided into mutually orthogonal components, 1i! After entering, a method is used in which the polarization components of both are matched and the two are completely synthesized again, so that no matter what the side light state of the single mode output light is, the amount of light output from the complementary color device is It becomes constant. Therefore, it is possible to obtain a polarization compensator that is stable despite changes in the ambient temperature and external forces of the single mode fiber.

以上述べたように、本実施例におしては偏光分離を行な
う偏光ビームスグリツタと分粗後の両偏光の偏j元方向
を一致させる偏波保存ファイバと偏光方向の一致した両
回線偏光を再度合成するハーフミラ−を用いた1γ0単
な構成を用いて、単−モードファイバ出射光の偏光状態
に依らず安定な偏光補償装置を得ることができる。
As described above, in this embodiment, a polarization beam sinter that performs polarization separation, a polarization-maintaining fiber that matches the polarization directions of both polarized lights after separation, and a polarization-maintaining fiber that matches the polarization directions of both polarized lights are used again. By using a simple 1.gamma.0 configuration using a half mirror to be synthesized, a stable polarization compensator can be obtained regardless of the polarization state of the light emitted from a single-mode fiber.

第3図は本発明による物九袖伍装置の他の実施例ケ示す
図である。第3図において単一モードファイバ31よシ
出射された光波は価ノブCビームスプリッタ33によっ
て互いに直交する2つの偏光成分に分圀1させられる。
FIG. 3 is a diagram showing another embodiment of the monokusodego device according to the present invention. In FIG. 3, a light wave emitted from a single mode fiber 31 is split by a value knob C beam splitter 33 into two mutually orthogonal polarized components.

一方の元ビームは半波長板35を通過した後ハーフミラ
−34に入射され、他方のビームはプリズム36にょシ
光路を曲げられた後ハーフミラ−34に入射され、ハー
フミラ−34で両ビームが合成された後偏波保存ファイ
バ32に結合される。なお、ハーフミラ−で合成される
際に2つの光ビームが干渉しないようにするため2つの
元ビームの光路長に4 cm程度の差をつけている。
One of the original beams passes through the half-wave plate 35 and then enters the half mirror 34, and the other beam has its optical path bent by the prism 36 and enters the half mirror 34. The half mirror 34 combines the two beams. After that, it is coupled to a polarization maintaining fiber 32. In order to prevent the two light beams from interfering when they are combined by a half mirror, the optical path lengths of the two original beams are set to have a difference of about 4 cm.

この偏光補償装置においては、単一モードファイバ31
の出射光は互いに直交する2つの面線偏元成分子Eモー
ドおよびTMモードの元ビームに分離される。一方の光
ビームは半波長板35を通過する際その偏光方向が90
°回転させられ、他方のビームの偏光方向と一致した後
ハーフミラ−34に入射する。他方のビームはその偏光
方向を保ったままプリズム36によって光路を曲げられ
た後ハーフミラ−34に入射し、両ビームが合成される
。合成された光ビームは11r’6波保存フアイバ32
に結合され、次段の導波形光素子へと接続される。本構
成の偏光補償装置においては偏光分離に偏光ビームスフ
IJツタを、一方の偏光成分のみを90°回転させる手
段として半波長板を、再度合成する手段としてハーフミ
ラ−を用いている。この構成を用いるとマイクロオグテ
ィクス部品を用いることにより装置の小型化を行なうこ
とが可能であり、部品点数も少ないという利点もある。
In this polarization compensator, a single mode fiber 31
The emitted light is separated into original beams of two planar polarization component elements, E mode and TM mode, which are orthogonal to each other. When one light beam passes through the half-wave plate 35, its polarization direction is 90
The beam is rotated by .degree., and after matching the polarization direction of the other beam, it enters the half mirror 34. The other beam has its optical path bent by the prism 36 while maintaining its polarization direction, and then enters the half mirror 34, where the two beams are combined. The combined light beam is passed through the 11r'6 wave preserving fiber 32.
and is connected to the next-stage waveguide optical element. In the polarization compensator of this configuration, a polarization beam filter IJ is used for polarization separation, a half-wave plate is used as a means for rotating only one polarization component by 90 degrees, and a half mirror is used as a means for recombining. When this configuration is used, it is possible to downsize the device by using microogistic components, and there is also the advantage that the number of components is small.

本構成においても単一モードファイバ出射光を一旦偏光
分離し、片方の偏光成分のみを90°回転させて他方に
一致式せた後両者を合成するという手法をとっているた
め、単一モードファイバ出射光の偏光状態に依らず偏光
補償装置出射光量が一定であり、単一モードファイバ出
射光の偏光状態が時間的に変化しても安定に偏光補償を
行なうことが可能である2゜以上述べたように、本実施
例においては偏光分離用の偏光ビームスプリッタと偏光
回転用の半波長板および合成用のハーフミラ−を用いた
簡単で小型化が可能な光回路構成で単一モードファイバ
出射光の偏光状態に依らず安定な偏光補償装置を得るこ
とができる。
In this configuration as well, the single mode fiber output light is polarized once, and only one polarization component is rotated by 90 degrees and matched with the other, and then both are combined. The amount of output light from the polarization compensator is constant regardless of the polarization state of the output light, and it is possible to stably perform polarization compensation even if the polarization state of the output light from a single mode fiber changes over time. As described above, in this example, a single mode fiber output beam is created using a simple and downsized optical circuit configuration using a polarizing beam splitter for polarization separation, a half-wave plate for polarization rotation, and a half mirror for synthesis. A stable polarization compensator can be obtained regardless of the polarization state of the polarization state.

第4図は本発明による偏光補償装置をオl」用した導波
形光素子の例を示す図である。第4図において単一モー
ドファイバ41が偏光補償に置50に接続きれ、偏光補
償装置50の出射光は偏波保存ファイバ42を弁して導
波形光スイッチ49に接続される。
FIG. 4 is a diagram showing an example of a waveguide type optical device using the polarization compensator according to the present invention. In FIG. 4, a single mode fiber 41 is connected to a polarization compensator 50, and the output light from the polarization compensator 50 is connected to a waveguide optical switch 49 through a polarization maintaining fiber 42.

導波形光スイッチ49の出射光は単一モードファイバア
レイ43のうちの一本に選択的に結合され次段の元素子
へ伝送される。第4図において導波形光スイッチはニオ
ブ酸リチウム結晶(LINbOl)基板44にT1を拡
散することによシ光導波路45 、46 。
The light emitted from the waveguide optical switch 49 is selectively coupled to one of the single mode fiber arrays 43 and transmitted to the next stage element. In FIG. 4, a waveguide type optical switch is constructed by diffusing T1 into a lithium niobate crystal (LINbOl) substrate 44 to form optical waveguides 45 and 46.

47.48が形成されており、それら光等波路は2〜5
μm程度にまで近接した部分を5つ有する。この近接し
た部分には電圧印加用眠極が取シ付けられており、′嘔
気光字効果を第11用した方向性結合形光スイッチエレ
メントとして機能し、5つの方向併結゛合形元スイッチ
エレメントを有する4H形元スイッチけ4×4マトリク
ススイツチとして動作する。また第4図における偏光補
償装置区としては、第1図、第2図および第3図に示し
た偏光補償装置のいずれかもしくは他の構成のt、11
光補償装置“とする。以上により偏元桶世装置付尋波形
元スイ。
47 and 48 are formed, and these equal optical wave paths are 2 to 5.
It has five parts that are close to each other on the order of μm. A sleep electrode for voltage application is attached to this adjacent part, which functions as a directional coupling type optical switch element using the ``nausea light'' effect, and connects five directional coupling type switch elements. The 4H type original switch operates as a 4x4 matrix switch. In addition, as the polarization compensator section in FIG. 4, any one of the polarization compensators shown in FIGS.
"Optical compensator".As described above, the polarized waveform generator is attached to the polarized waveform generator.

チが構成される。なお導波形光スイッチの入出力チャン
ネル数は4×4に限るものではな(nXnのものを用い
ても伺ら不都合はない。
is formed. Note that the number of input/output channels of the waveguide optical switch is not limited to 4×4 (nXn may also be used without any inconvenience).

この偏光補1μ装置付導波形元スイッチに単一モードフ
ァイバ41よシ光波が入射されると、その1iii光状
態がどのようなものであっても1jj1元補111装値
50の出射光は面線偏光と々る。価1元袖仏装置50と
導波形光スイッチ49の接秘には偏波保存ファイバ42
を用いているので導波形光スイッチ入射ツCもやはり直
&!偏光である。しかも偏波保存ファイバではその出射
端においてファイバをねじることによシ直線偏光の向き
を任意に変えることができるので導波形光スイッチ49
が最も効率良く動作する面線偏光の向きに偏波保存ファ
イバ42の出射光の偏光方向を調整することがbJ化で
ある。このようにして単一モードファイバ41の出射光
〇M]1;光状態がいかなるものでも導波形光スイッチ
49への入射光は所望の直線偏光となる。本構成のよう
に入射側に偏光補償装置を取り付けるととにより本来偏
光依存性のある導波形光スイッチを入射偏光に依存せず
動作させることがT:Ij能となる。
When a light wave from the single mode fiber 41 is input to this waveguide source switch with polarization compensation 1μ device, the output light from the 1jj 1 component compensation 111 compensation 50 is Linearly polarized light hits. A polarization maintaining fiber 42 is used to connect the polarization unit 50 and the waveguide optical switch 49.
Since the waveguide optical switch input point C is also direct &! It is polarized light. Moreover, with a polarization-maintaining fiber, the direction of linearly polarized light can be changed arbitrarily by twisting the fiber at its output end, so the waveguide optical switch 49
bJ conversion is adjusting the polarization direction of the light emitted from the polarization-maintaining fiber 42 to the direction of plane polarized light that operates most efficiently. In this way, the light 〇M]1 outputted from the single mode fiber 41; whatever the optical state, the incident light to the waveguide optical switch 49 becomes a desired linearly polarized light. By attaching a polarization compensator on the input side as in this configuration, it becomes possible to operate a waveguide optical switch, which is originally polarization dependent, without depending on the incident polarization.

以上述べたように、入射側に本発明による偏光補償装置
を取り付けることによシ入射偏光状態に依存せず動作し
、単一モードファイバ伝送系への過用も可能な偏光補イ
貧装置付導波形元スイッチを構成することができる。
As described above, by attaching the polarization compensator according to the present invention to the input side, the polarization compensation device operates independently of the input polarization state, and can be overused in single mode fiber transmission systems. A waveguide source switch can be configured.

本発明は上記の実施例に限定されるものではない。例え
ば他の実施例としては、偏光分丙11に偏光ビームスプ
リッタを偏光回転に偏波保存ファイバを用い、光ビーム
の合成に導波形Y字合成器もしくは単一モードファイバ
カップラを用いた飴元aii償装置や、偏光ビームスプ
リッタを導波形方向性結合器で、(J+6元回転器をく
し型電極を具備した導波路で、合成器を導波形方向性結
合器もしくは導波形Y字合成器で構成し、それらを1枚
のニオブ酸リチウム(LiNbOs)基板上に集積化し
た偏光補償装置、さらに上記の集積化した偏光補償装置
と導波形光スイッチを一枚の基板上に集積化した集積化
偏光補償装置付導波形光スイッチなどを構成することが
できる。
The invention is not limited to the above embodiments. For example, in another embodiment, a polarization beam splitter is used for the polarization splitter 11, a polarization maintaining fiber is used for polarization rotation, and a waveguide Y-combiner or a single mode fiber coupler is used for combining the light beams. The compensation device and polarization beam splitter are configured with a waveguide directional coupler, the J+6 element rotator is configured with a waveguide equipped with comb-shaped electrodes, and the combiner is configured with a waveguide directional coupler or a waveguide Y-shaped combiner. A polarization compensation device in which these are integrated on one lithium niobate (LiNbOs) substrate, and an integrated polarization device in which the above-mentioned integrated polarization compensation device and waveguide optical switch are integrated on one substrate. A waveguide optical switch with a compensator or the like can be constructed.

本発明の応用は導波形光スイッチに限定されるものでは
なく、導波形光変調器に偏光補償装置を取シ付けた偏光
補償装置付導波形光変調器やいくつかの機能の導波形光
素子を集積した導波形光集積素子、たとえばファイバセ
ンサ用導波形光集積素子、に偏光補償装置を取9付けた
偏光佃償装置付纒波形元集積素子などを構成することが
できる。
The application of the present invention is not limited to waveguide optical switches, but also waveguide optical modulators with a polarization compensation device, in which a polarization compensation device is attached to a waveguide optical modulator, and waveguide optical devices with several functions. It is possible to construct a waveguide optical integrated device with a polarization compensator attached to a waveguide optical integrated device, for example, a waveguide optical integrated device for a fiber sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図は本発明の(Jiii光補
償装置の実施例を示す図、第4図は偏光補償装置を応用
したくダ波形元スイッチを示す図である。 図において 1、.11,31.41−−−一単一モードファイバ3
−−−−−−−−−−一複屈折結晶 6−一 −〜−−−−−−導波形Y字合成器7−−−−
 −−−−−−−−−導波路12.33−−−−−−−
−1λT11元ビームスグリツタ13.34−−−−−
−−−−−ハーフミラ−35−−−−−−−−−一半波
長板 36−−−−−−−−〜−プリズム 43−−−−−、−−−−−−−単一モードファイバア
レイ50−、−−−−−、−−−−−−偏光補償装置で
ある。 、゛−−〜゛− 滉  1  図 第 2 図 互    3   図 第    4    日
1, 2, and 3 are diagrams showing an embodiment of the (Jiii) optical compensation device of the present invention, and FIG. 4 is a diagram showing a waveform source switch to which the polarization compensation device is applied. 1, .11, 31.41 --- one single mode fiber 3
−−−−−−−−−−Birefringent crystal 6-1 −−−−−−−Waveguide type Y-combiner 7−−−−
---------- Waveguide 12.33------
-1λT11 element beam sinter 13.34------
--------Half mirror 35---------One-half wave plate 36----- Prism 43----, Single mode fiber Array 50-, -----, --- is a polarization compensator. ,゛--〜゛- 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] Y 入射光を互いに直交する2つのlkM偏光成分に分
割する手段と、一方の直線偏光成分のみを回転させて他
方のiμ線線光光方向一致させる手段と両者を再び合成
する手段とを備え、さらに’Jii光を分離してから合
成するまでの2つの直線偏光の光路長が異なっているこ
と全特徴とする偏光補償装置。
Y: comprising means for splitting the incident light into two lkM polarized light components orthogonal to each other, means for rotating only one linearly polarized light component to match the direction of the other iμ-ray light, and means for recombining both, Furthermore, the polarization compensator is characterized in that the optical path lengths of the two linearly polarized lights are different from when the 'Jii light is separated to when it is combined.
JP8354083A 1983-05-13 1983-05-13 Polarization compensating device Pending JPS59210414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8354083A JPS59210414A (en) 1983-05-13 1983-05-13 Polarization compensating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8354083A JPS59210414A (en) 1983-05-13 1983-05-13 Polarization compensating device

Publications (1)

Publication Number Publication Date
JPS59210414A true JPS59210414A (en) 1984-11-29

Family

ID=13805334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8354083A Pending JPS59210414A (en) 1983-05-13 1983-05-13 Polarization compensating device

Country Status (1)

Country Link
JP (1) JPS59210414A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000711A1 (en) * 1987-07-21 1989-01-26 Plessey Overseas Limited Optical device arrays
GB2399220A (en) * 2003-03-06 2004-09-08 Toshiba Res Europ Ltd Photonic quantum information system using unpolarised light

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000711A1 (en) * 1987-07-21 1989-01-26 Plessey Overseas Limited Optical device arrays
GB2399220A (en) * 2003-03-06 2004-09-08 Toshiba Res Europ Ltd Photonic quantum information system using unpolarised light
GB2399220B (en) * 2003-03-06 2005-07-13 Toshiba Res Europ Ltd Photonic quantum information system using unpolarised light
US7684701B2 (en) 2003-03-06 2010-03-23 Kabushiki Kaisha Toshiba Photonic quantum information system using unpolarised light

Similar Documents

Publication Publication Date Title
US7689125B2 (en) Methods and systems for polarization control and polarization mode dispersion compensation for wideband optical signals
US7106512B2 (en) Wavelength selective switching device and method for selectively transmitting optical signals based on wavelength
US7046417B2 (en) Folded liquid-crystal variable optical attenuator
KR20020021145A (en) Wavelength seletive switch
US8873898B2 (en) Polarization independent wavelength converter and polarization independent wavelength conversion method
WO2015032095A1 (en) Grating coupling method, apparatus and system of grating coupler
US6711311B2 (en) Polarization beam splitter or combiner
EP1168035A2 (en) Polarization beam splitter or combiner
US6304380B1 (en) Reducing polarization dependency of optical apparatus
US6718076B2 (en) Acousto-optic tunable filter with segmented acousto-optic interaction region
US20050174919A1 (en) Optical polarization controller
JPS59210414A (en) Polarization compensating device
JP4500074B2 (en) Polarization-independent optical equipment
US20020012487A1 (en) Polarization mode dispersion generator
JP4092986B2 (en) Light switch
JPH0452443B2 (en)
JPH0119126Y2 (en)
JPS6134128B2 (en)
JP3997785B2 (en) Polarization mode dispersion generator
WO2004104664A1 (en) Polarization device
JPH0527200A (en) Polarized wave coupler
JP3204416B2 (en) Spatial optical encoder
JPS61112123A (en) Depolarizer
US20040080823A1 (en) Optical element
GB2391954A (en) Optical device for reducing polarisation dependence