JPS59210264A - Wave force utilizing system - Google Patents

Wave force utilizing system

Info

Publication number
JPS59210264A
JPS59210264A JP58085575A JP8557583A JPS59210264A JP S59210264 A JPS59210264 A JP S59210264A JP 58085575 A JP58085575 A JP 58085575A JP 8557583 A JP8557583 A JP 8557583A JP S59210264 A JPS59210264 A JP S59210264A
Authority
JP
Japan
Prior art keywords
heat
oil
water
circuit
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58085575A
Other languages
Japanese (ja)
Other versions
JPH0454151B2 (en
Inventor
Yasuo Kita
喜多 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP58085575A priority Critical patent/JPS59210264A/en
Publication of JPS59210264A publication Critical patent/JPS59210264A/en
Publication of JPH0454151B2 publication Critical patent/JPH0454151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PURPOSE:To obtain the wave force utilizing system, compact, high in capacity and easy in maintenance and inspection, by a method wherein the kinetic energy of wave is converted directly into heat by employing a positive displacement pump and a heating means. CONSTITUTION:When the sea surface (b) is moved up-and-down by the waves which are beating a shore, the volume of an air chamber 3 is increased and decreased, therefore, reciprocating airflows are caused in an air-duct 4. By the reciprocating airflow, a Wales turbine is rotated into a constant direction, the posi tive displacement pump 2 is driven and oil (c) circulates in a circulating circuit 6. The oil (c) is heated by a flow path resistance in case it passes through a multi-stage orifice 8 and the heat thereof is exchanged with the heat of water (d) in a secondary side circuit 14 in case it passes through a heat exchanger 13 and, thus, a part of heat, possessed by the oil (c), is taken out to the outside of the circulating circuit 6 through the water (d). Warm-water, thus reserved in a hot-water reserving tank 15, is introduced to the outside from a releasing path 17 in accordance with necessity and is utilized for melting snow on a road or the like.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、海の波が有している運動エネルギを熱に変換
して家屋や温室の暖房あるいは道路の融雪等に利用し得
るようにした波力利用システムに関するものである。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention is designed to convert the kinetic energy of ocean waves into heat, which can be used for heating houses and greenhouses, melting snow on roads, etc. This is related to a wave power utilization system.

回 従来技術 近時、クリーンエネルギの利用技術の開発が盛んであり
、その一つとして、海の波が有している膨大な運動エネ
ルギを有効に利用し得るようにしたシステムが注目を浴
びている。
3. Conventional Technology Recently, there has been an active development of clean energy utilization technologies, and one such system that has been attracting attention is a system that can effectively utilize the enormous kinetic energy possessed by ocean waves. There is.

ところで、従来の波力利用システムは、波による海面の
上下動を空気流に変換するとともに、この空気流をター
ビンで回転動力に変え、この回転動力により発電機を駆
動して電力を得ることができるようになっている。とこ
ろが、このような構成のシステムは、理論的にもエネル
ギの変換効率が低いため、前記発電機から得られる電力
をさらにヒータ等により熱に変えて給湯や暖房あるいは
道路の融雪等に利用する場合には、設備のわりに能力の
低いものになってしまう。
By the way, conventional wave power utilization systems convert the vertical movement of the sea surface caused by waves into airflow, convert this airflow into rotational power using a turbine, and use this rotational power to drive a generator to obtain electricity. It is now possible to do so. However, in a system with such a configuration, theoretically, the energy conversion efficiency is low, so when the electricity obtained from the generator is further converted into heat by a heater etc. and used for hot water supply, space heating, snow melting on roads, etc. In this case, the capacity is low compared to the equipment.

(ハ) 目的 本発明は、このような事情に着目してなされたもので、
簡単な構成により波の運動エネルギを効率よ(熱エネル
ギに変換して利用し得るようにした波力利用システムを
提供することを目的とする。
(c) Purpose The present invention was made with attention to the above circumstances, and
The purpose of the present invention is to provide a wave power utilization system that can efficiently convert wave kinetic energy into thermal energy and use it with a simple configuration.

に)構成 本発明は、かかる目的を達成するために、波力により容
積形ポンプを作動させて回路内の作動液を流動させるよ
うにし、この回路に、流路抵抗により該回路内を流れる
作動液を加熱する加熱手段と、前記作動液の保有してい
る熱を前記回路外へ取り出して利用に供するための熱交
換手段とを設けたことを特徴とするものである。
In order to achieve such an object, the present invention operates a positive displacement pump by wave force to cause the working fluid in the circuit to flow, and in this circuit, the hydraulic fluid flows in the circuit due to the flow path resistance. The present invention is characterized in that it is provided with a heating means for heating the liquid and a heat exchange means for extracting the heat held by the working liquid out of the circuit and making it available for use.

(ホ)実施例 以下、本発明の一実施例を図面を参照して説明する。(e) Examples Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図および第2図に示すように本発明に係る波力利用
システムは、波力エネルギを機械エネルギに変換する共
振形波力変換装置1と、この装置1によって駆動される
容積形ポンプ2とを備えている。共振形波力変換装置1
は、下端開口部3aを海中に開口させて既設防波堤の前
面等に取着され波aによる海面すの上下動に伴ってその
容積が増減する空気室3と、一端をこの空気室3に連通
させ他端を大気に開放させた空気ダクト4と、この空気
ダクト4の途中に介設され前記空気室3の容積増減に伴
って該空気ダクト4内に惹起される往復空気流に付勢さ
れて一定方向に回転するウェールズタービン5とを具備
してなるもので、前記ウエールズタービン5は、前記容
積形ポンプ2の入力軸2aに接続されている。そして、
この容積形ポンプ2の出口2bと入口2Cとを循環回路
6を介して連通させ、ポンプ作動時に前記出口2bから
逐時吐出される作動液(例えば、油C)を該循環回路6
を通して循環させるようにしている。
As shown in FIGS. 1 and 2, the wave power utilization system according to the present invention includes a resonant wave power conversion device 1 that converts wave energy into mechanical energy, and a positive displacement pump 2 driven by this device 1. It is equipped with Resonant wave power conversion device 1
is connected to an air chamber 3 whose lower end opening 3a opens into the sea and is attached to the front surface of an existing breakwater, etc., and whose volume increases and decreases as the sea surface moves up and down due to waves a, and one end communicates with this air chamber 3. An air duct 4 whose other end is open to the atmosphere, and which is interposed in the middle of the air duct 4 and is energized by the reciprocating air flow generated within the air duct 4 as the volume of the air chamber 3 increases or decreases. The Welsh turbine 5 is connected to the input shaft 2a of the positive displacement pump 2. and,
The outlet 2b and the inlet 2C of the positive displacement pump 2 are communicated via a circulation circuit 6, and the working fluid (for example, oil C) discharged from the outlet 2b from time to time when the pump is operated is transferred to the circulation circuit 6.
I try to circulate it through the

なお、この循環回路6の途中には、複合弁7と、発熱手
段たる多段オリフィス8と、ジェットブースタ9とを順
次介設しており、これら複合弁7、多段オリフィス8、
ジェットブースタ9および前記容積形ポンプ2を共通の
油タンク11内に収容して発熱ユニット12を構成して
いる。複合弁7は、スピードリミッタにより過大波高時
でもタービン5の回転速度を設定速度以下に抑える過速
防止機構と、油温をワックス・エレメントで感知しワッ
クスの相変化時の体積変化を利用して設定油温以上で自
動的にタービン5を停止させ設定油温以下に回復すれば
自動的に復帰するように構成した過熱防止機構と、前記
タービン5を手動で停止させるための手動切換機構とを
具備してなる。また、前記多段オリフィス8は、流路抵
抗により前記循環回路6内を流れる油Cを加熱するため
のもので、多段カスケード形式を採用している。一方ジ
エツトブースタ9は、前記ポンプ2の出口2b側から逐
次供給される油Cを小径な噴射口から狭小な油通路をな
すスロートに向けて噴射するノズルと、このノズルから
高速の油流が前記スロートに向けて射出されることによ
り惹起される負圧状態を利用して油タンク11内の油C
を前記油流内に取り込ませるための油吸引通路と、前記
スロートを通過した油Cの流路を漸次拡大して散油Cの
静圧を高め前記ポンプ2の入口2Cに所要のブースト圧
を発生させるディフューザとを具備してなる。また、前
記循環回路6の前記多段オリフィス8と前記ジェットブ
ースタ9との間に位置する部分を油タンクll外へ延出
させ、その延田部に前記油Cの保有している熱を前記回
路6外へ取り出して利用に供するための熱交換手段たる
熱交換器5− 13を介設している。具体的に説明すれば、熱交換器1
3は、前記循環回路6と2次側回路14との間に設けた
もので、前記循環回路6内を流れる高温の油Cと、前記
2次側回路14内を流れる低温の2次側流体、例えば水
dとの間で熱交換を行なわせ得るようになっている。2
次側回路14は貯湯槽15の底部から取り出した水dを
前記熱交換器13を経由させて前記貯湯槽15内に戻し
得るようにしたもので、断熱配管により構成されている
。貯湯槽15は、温水使用場所の近傍に設置された断熱
容器であり、該貯湯槽重5には、新たな水dを補給する
ための給水系路16と、該貯湯槽15内の温水dを外部
に放出するための放出系路17とが接続しである。また
、さらに、前記循環回路6の途中に、該回路6内を流れ
る油Cに付勢されて作動する容積形の油圧モータ18を
介設するとともに、前記2次側回路14の途中に該回路
14内の水dを循環させるための水ポンプ19を介設し
、前記油圧モータ18の動力で前記水ポンプ19を駆動
するようにしている。
In addition, in the middle of this circulation circuit 6, a composite valve 7, a multistage orifice 8 serving as a heat generating means, and a jet booster 9 are sequentially provided.
A heat generating unit 12 is constructed by housing the jet booster 9 and the positive displacement pump 2 in a common oil tank 11. The composite valve 7 has an overspeed prevention mechanism that uses a speed limiter to keep the rotational speed of the turbine 5 below a set speed even in the event of excessive wave height, and a wax element that senses the oil temperature and utilizes the volume change when the wax changes phase. An overheat prevention mechanism configured to automatically stop the turbine 5 when the oil temperature exceeds a set oil temperature and automatically restart when the oil temperature returns to below the set oil temperature, and a manual switching mechanism for manually stopping the turbine 5. It will be equipped. Further, the multi-stage orifice 8 is for heating the oil C flowing in the circulation circuit 6 due to flow path resistance, and adopts a multi-stage cascade type. On the other hand, the jet booster 9 has a nozzle that injects oil C sequentially supplied from the outlet 2b side of the pump 2 from a small diameter injection port toward a throat forming a narrow oil passage, and a high-speed oil flow from this nozzle. The oil C in the oil tank 11 is pumped using the negative pressure state caused by being injected toward the throat.
An oil suction passage for introducing oil into the oil flow and a flow passage for oil C that has passed through the throat are gradually expanded to increase the static pressure of the oil spray C and apply a required boost pressure to the inlet 2C of the pump 2. and a diffuser for generating electricity. Further, a portion of the circulation circuit 6 located between the multi-stage orifice 8 and the jet booster 9 is extended outside the oil tank 11, and the heat held by the oil C is transferred to the extending portion of the circuit 6. A heat exchanger 5-13 is provided as a heat exchange means for taking the heat outside for use. To explain specifically, heat exchanger 1
3 is provided between the circulation circuit 6 and the secondary circuit 14, and is configured to handle the high temperature oil C flowing in the circulation circuit 6 and the low temperature secondary fluid flowing in the secondary circuit 14. , for example, can perform heat exchange with water d. 2
The next circuit 14 is configured to return water d taken out from the bottom of the hot water storage tank 15 into the hot water storage tank 15 via the heat exchanger 13, and is constructed of adiabatic piping. The hot water storage tank 15 is an insulated container installed near the place where hot water is used. It is connected to a release line 17 for releasing the water to the outside. Furthermore, a displacement type hydraulic motor 18 that is operated by being energized by the oil C flowing in the circuit 6 is interposed in the middle of the circulation circuit 6, and the circuit is disposed in the middle of the secondary circuit 14. A water pump 19 for circulating the water d in the water pump 14 is provided, and the water pump 19 is driven by the power of the hydraulic motor 18.

6− 次いで、この実施例の作動を説明する。6- Next, the operation of this embodiment will be explained.

打寄せる波によって海面すが上、下動すると空気室3の
容積が増減して空気ダクト4内に往復空気流が惹起され
る。それによって、前記空気ダクト4の途中に配設した
ウェールズタービン5が一定方向に回転することになり
、該ウエールズタービン5の回転動力によって容積形ポ
ンプ2が駆動される。そうすると、循環回路6内を油C
が循環することになるが、該回路6内を流れる油Cは多
段オリフィス8を通過する際に流路抵抗により加熱され
る。こうして加熱され昇温した油Cは、熱交換器13を
通過する際に2次側回路14内の水dと熱交換を行なう
ことになり、散油Cが保有している熱の一部が前記水d
を介して循環回路6外へ取り出される。なお、前記循環
回路6内を油Cが流れると油圧モータ18が作動して水
ポンプ19を駆動するため、前記2次側回路14内の水
dが該水ポンプ19に付勢されて循環する。すなわち、
貯湯槽15の底部から導出された水dが前記熱交換器1
3へ導びかれ、該熱交換器13を通過することによって
温められた水dが前記貯湯槽15へ戻されることになる
。そのため、かかる運転を続けていると、前記貯湯槽1
5内の水dの温度がしだいに高くなり、複合弁7の設定
温度に近い値にまで上昇することになる。このようにし
て前記貯湯槽15内に貯えられた温水は、必要に応じて
放出系路17から外部へ導出され、道路の融雪等に使用
される。
When the sea surface moves up and down due to the crashing waves, the volume of the air chamber 3 increases and decreases, causing a reciprocating air flow in the air duct 4. As a result, the Welsh turbine 5 disposed in the middle of the air duct 4 rotates in a fixed direction, and the positive displacement pump 2 is driven by the rotational power of the Welsh turbine 5. Then, the oil C inside the circulation circuit 6
The oil C flowing in the circuit 6 is heated by the flow path resistance when passing through the multi-stage orifice 8. When the oil C heated and raised in temperature in this way passes through the heat exchanger 13, it exchanges heat with the water d in the secondary circuit 14, and part of the heat held by the oil spray C is The water d
It is taken out to the outside of the circulation circuit 6 via. Note that when the oil C flows through the circulation circuit 6, the hydraulic motor 18 is activated to drive the water pump 19, so the water d in the secondary circuit 14 is energized by the water pump 19 and circulated. . That is,
The water d drawn out from the bottom of the hot water storage tank 15 is transferred to the heat exchanger 1.
The water d heated by passing through the heat exchanger 13 is returned to the hot water tank 15. Therefore, if such operation continues, the hot water tank 1
The temperature of the water d in the valve 5 gradually increases to a value close to the set temperature of the composite valve 7. The hot water thus stored in the hot water storage tank 15 is led out from the discharge system 17 as needed, and is used for melting snow on roads, etc.

なお、加熱手段は、多段オリフィスに限定されるもので
はないが、多段オリフィスは耐久性に優れているため、
信頼性を高めることができる。
Note that the heating means is not limited to a multistage orifice, but since a multistage orifice has excellent durability,
Reliability can be increased.

また、作動液は油に限らず他の液体であってもよい。Furthermore, the hydraulic fluid is not limited to oil, and may be other fluids.

さらに、前記実施例では、循環回路中に油圧モータを介
設し、この油圧モータで熱交換器の2次側流体を移送す
るポンプを駆動するようにした場合について説明したが
、本発明はかならずしもこのようなものに限られるもの
ではな(、前記油圧モータを無くし、前記ポンプを格別
な電動機等によって駆動するようにしてもよい。
Furthermore, in the embodiment described above, a hydraulic motor is provided in the circulation circuit, and the hydraulic motor drives a pump that transfers the secondary fluid of the heat exchanger. However, the present invention is not limited to this; the hydraulic motor may be omitted and the pump may be driven by a special electric motor or the like.

また、波力で容積形ポンプを駆動するための手段も図示
実施例のものに限られないのは勿論であり、本発明の趣
旨を逸脱しない範囲で種々変形が可能である。
Further, it goes without saying that the means for driving the positive displacement pump by wave force is not limited to the illustrated embodiment, and various modifications can be made without departing from the spirit of the present invention.

(へ)効果 本発明は以上のような構成であるから次のような効果が
得られる。
(f) Effects Since the present invention has the above-described configuration, the following effects can be obtained.

まず、波の運動エネルギを容積形ポンプとオリフィス等
の発熱手段を用いて直接に熱に変換しこの熱を適宜利用
に供し得るようにしているので効率がきわめて高い。す
なわち、断熱不完全による損失を除けば、理論上100
96の一次変換効率を得ることができる。
First, the efficiency is extremely high because the kinetic energy of the waves is directly converted into heat using a positive displacement pump and a heat generating means such as an orifice, and this heat can be used as appropriate. In other words, excluding losses due to incomplete insulation, theoretically 100
A first order conversion efficiency of 96 can be obtained.

また、容積形ポンプで回路内の作動液を流動させ、この
作動液を流路抵抗によって加熱する方式によれば、簡単
でしかも技術的に熟成された機器類のみを用いて波のエ
ネルギを熱エネルギに変換することができる。そのため
、効率が良いことと相まって、コンパクトで能力が高く
、しかも、保守点検が容易な波力利用システムを提供で
きる9− ものである。
In addition, according to a method in which a positive displacement pump is used to flow the working fluid in the circuit, and this working fluid is heated by the resistance of the flow path, wave energy is converted into heat using only simple and technologically mature equipment. Can be converted into energy. Therefore, in addition to being highly efficient, it is possible to provide a wave power utilization system that is compact, has high capacity, and is easy to maintain and inspect.

さらに、前記実施例のように波のエネルギをタービンを
用いて機械エネルギに変換する場合には、容積形ポンプ
の特性やオリフィスの絞り率等を適切に選定することに
よって、波高のいかんにかかわらず常にタービン効率最
大の点が作動点になるようにすることができる。すなわ
ち、制御電源を一切用いることなしに安全に最適負荷整
合制御を行なうことが可能である。
Furthermore, when converting wave energy into mechanical energy using a turbine as in the above embodiment, by appropriately selecting the characteristics of the positive displacement pump and the orifice rate, etc., it is possible to convert wave energy into mechanical energy regardless of the wave height. The point of maximum turbine efficiency can always be the operating point. That is, it is possible to safely perform optimal load matching control without using any control power source.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は全体を示すシ
ステム説明図、第2図は要部を示す回路説明図である。 2・・・容積形ポンプ 6・・・回路(循環回路) 8・・・加熱手段(多段オリアイス) 13・・・熱交換手段(熱交換器) a・・・波  b・・・海面 代理人 弁理士 赤澤−博 10− 第1図 11
The drawings show one embodiment of the present invention, with FIG. 1 being an explanatory diagram of the entire system, and FIG. 2 being an explanatory circuit diagram showing the main parts. 2...Displacement pump 6...Circuit (circulation circuit) 8...Heating means (multi-stage oriice) 13...Heat exchange means (heat exchanger) a...Wave b...Sea surface agent Patent attorney Hiroshi Akazawa 10- Figure 1 11

Claims (1)

【特許請求の範囲】[Claims] 波力エネルギにより駆動されて、回路内の作動液を流動
させる容積形ポンプと、前記回路の途中に介設され流路
抵抗により該回路内を流れる作動液を加熱する加熱手段
と、前記作動液の保有している熱を前記回路外へ取り出
して利用に供するための熱交換手段とを具備してなるこ
とを特徴とする波力利用システム。
a positive displacement pump that is driven by wave energy to flow a working fluid in a circuit, a heating means that is interposed in the middle of the circuit and heats the working fluid flowing in the circuit due to flow resistance, and the working fluid 1. A wave power utilization system comprising: heat exchange means for extracting heat held by the circuit outside the circuit for use.
JP58085575A 1983-05-15 1983-05-15 Wave force utilizing system Granted JPS59210264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58085575A JPS59210264A (en) 1983-05-15 1983-05-15 Wave force utilizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085575A JPS59210264A (en) 1983-05-15 1983-05-15 Wave force utilizing system

Publications (2)

Publication Number Publication Date
JPS59210264A true JPS59210264A (en) 1984-11-28
JPH0454151B2 JPH0454151B2 (en) 1992-08-28

Family

ID=13862609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085575A Granted JPS59210264A (en) 1983-05-15 1983-05-15 Wave force utilizing system

Country Status (1)

Country Link
JP (1) JPS59210264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681565C1 (en) * 2017-07-17 2019-03-11 Виктор Владимирович Варакута Power supply system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638576A (en) * 1979-09-05 1981-04-13 Shimadzu Corp Aeroheater
JPS5770957A (en) * 1980-10-18 1982-05-01 Kaiyo Kagaku Gijutsu Center Wave power generator driven by wells turbine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638576A (en) * 1979-09-05 1981-04-13 Shimadzu Corp Aeroheater
JPS5770957A (en) * 1980-10-18 1982-05-01 Kaiyo Kagaku Gijutsu Center Wave power generator driven by wells turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2681565C1 (en) * 2017-07-17 2019-03-11 Виктор Владимирович Варакута Power supply system

Also Published As

Publication number Publication date
JPH0454151B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
US2969637A (en) System for converting solar energy into mechanical energy
JPS6458956A (en) Liquid heater
WO2003048652A1 (en) Exhaust heat recovery system
WO2018086238A1 (en) Method for saving energy by means of circulation pressure boosting and circulation heating
US6064047A (en) Microwave hot water boiler heating system
CN108425784A (en) A kind of water pumping compressed air energy-storage and its operation method
US4427350A (en) Solar diaphragm pump
US20010003285A1 (en) Supersonic 3-way super energy-saving unit
JPS59210264A (en) Wave force utilizing system
JPS59210265A (en) Natural energy utilizing system
CN112455642B (en) Condensate water supercharging device and condensate water system based on steam injection
JP2004019626A (en) Wind power generator
RU2201562C2 (en) Cavitation-type driving heat generator
US5142882A (en) Solar heat pump
SU1703924A1 (en) Heat generator
JPS5499338A (en) Heat medium circulating type room heater
CN219160445U (en) Solid heat storage equipment heating system equipped with hydrodynamic fan
CN109268908A (en) Compressor-free effective warming temperature difference heat pump
CN217884310U (en) Cooling system of wind generating set frequency converter
CN210101259U (en) Fuel oil hot water and warm air integrated motor home heating system and motor home
CN215521311U (en) High-temperature-resistant centrifugal fan
RU2162990C1 (en) Self-contained heating system for residential buildings
CN210485847U (en) Water circulating device for floor heating
RU2120058C1 (en) Energy extracting pneumohydraulic turbine
JPS58158452A (en) Oil-immersed type hydraulic heater