JPS5920986A - Panel heater - Google Patents

Panel heater

Info

Publication number
JPS5920986A
JPS5920986A JP12955982A JP12955982A JPS5920986A JP S5920986 A JPS5920986 A JP S5920986A JP 12955982 A JP12955982 A JP 12955982A JP 12955982 A JP12955982 A JP 12955982A JP S5920986 A JPS5920986 A JP S5920986A
Authority
JP
Japan
Prior art keywords
heating element
fabric
electrodes
planar heating
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12955982A
Other languages
Japanese (ja)
Inventor
亨 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12955982A priority Critical patent/JPS5920986A/en
Publication of JPS5920986A publication Critical patent/JPS5920986A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、面状発熱体に関し、さらに詳しくは、高温に
なると電流量が自動的に少なくなる面状発熱体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a planar heating element, and more particularly to a planar heating element in which the amount of current automatically decreases when the temperature rises.

面状発熱体は、導電性物質と非導電性物質からなる平面
状の発熱体ベースに通電用の電極を設け、絶縁処理を施
してなるものであり、これに通電するとジュール熱を発
し、発熱体表面から赤外線を放射する。その簡便性と安
全性から近年、寒冷地の床暖房、屋根の融雪、農業用温
床、温床、一般住宅の暖房等、広範囲の用途に使用され
つつある。
A planar heating element is a flat heating element base made of a conductive material and a non-conductive material, provided with electrodes for conducting electricity, and subjected to insulation treatment.When electricity is applied to this element, it generates Joule heat and generates heat. It emits infrared rays from its body surface. Due to its simplicity and safety, in recent years it has been used for a wide range of applications, including floor heating in cold regions, snow melting on roofs, agricultural hotbeds, greenhouses, and heating for general homes.

従来、面状発熱体のベースとしては、ガラスクロスにカ
ーボンを含む樹脂をコーティングしたもの、カーボンと
合成樹脂をブレンドしたもの、または金属箔をエツチン
グしたもの等が知られている。これらのうち、カーボン
粒子と合成樹脂のブレンド物によるものは、製造および
構造が簡単であり、かつ電気絶縁性、耐湿性、耐薬品性
等に優れている。このようなカーボン粒子を含む面状発
― ゛熱体は、通電によって温度がある程度上昇すると、電
流の流れが自動的に停止して一定温度を保持する一種の
熱的半導体の性質を有する。すなわち、 □低温度にお
いては、導電体であるカーボンの接触面積が大きく、電
流が流れて発熱するが、発熱によって温度が上昇すると
、合成樹脂、例えばポリ塩化ビニルはカーボンの約10
倍の熱膨張率を有するため、樹脂中に分散しているカー
ボン粒子の接触面積が小さくなり、流れる電流も小さく
なる。
Hitherto, known bases for planar heating elements include glass cloth coated with a resin containing carbon, a blend of carbon and synthetic resin, and etched metal foil. Among these, those made of a blend of carbon particles and synthetic resin are simple to manufacture and have a structure, and are excellent in electrical insulation, moisture resistance, chemical resistance, etc. Such a planar heating element containing carbon particles has the property of a kind of thermal semiconductor, in which when the temperature rises to a certain extent due to the application of electricity, the flow of current is automatically stopped and the temperature is maintained at a constant level. In other words, □At low temperatures, the contact area of carbon, which is a conductor, is large, and current flows and generates heat. However, when the temperature rises due to heat generation, synthetic resins, such as polyvinyl chloride,
Since it has twice the coefficient of thermal expansion, the contact area of the carbon particles dispersed in the resin becomes smaller, and the current that flows also becomes smaller.

さらに温度が上昇するとカーボン粒子は完、全に非接触
となり、電流の流れが停止し、温度は逆に低下し始める
。一定温度まで降温すると樹脂中のカーボン粒子は再び
接触状態となり、電流が流れて発熱し、このような動作
を繰返して所定の恒温が自動的に保持される。
As the temperature rises further, the carbon particles become completely non-contact, current flow stops, and the temperature begins to drop. When the temperature drops to a certain temperature, the carbon particles in the resin come into contact again, a current flows and heat is generated, and this operation is repeated to automatically maintain a predetermined constant temperature.

しかし、上記のような単なるカーボンと・樹脂とのブレ
ンド陀よる面状発熱体は、部分的に異常高温になり、ま
た取扱い上も寸法安定性が悪いなどの問題点を有する。
However, the above-mentioned planar heating element made of a simple blend of carbon and resin has problems such as abnormally high temperatures in some parts and poor dimensional stability in handling.

本発明の目的は、上記従来技術の欠点を解消し、温度分
布幅が極めて小さく、かつ寸法安定性の良好な面状発熱
体を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide a planar heating element that has an extremely small temperature distribution width and good dimensional stability.

上記目的を達成するため、本発明は、カーボン粒子をブ
レンドした高分子材料からなるシートの両端に沿って一
対の線状電極を設けた面状発熱体において、前記電極間
に間隔をおいて該電極と実質的に並行して導電性線状物
を設けたことを特徴とする。
In order to achieve the above object, the present invention provides a planar heating element in which a pair of linear electrodes are provided along both ends of a sheet made of a polymeric material blended with carbon particles. It is characterized in that a conductive linear object is provided substantially parallel to the electrode.

本発明において、上記高分子材料からなるシートは合成
樹脂シートと布帛とが一体化されていることが好ましい
。一体化の方法としては、例えばカーボン粒子を含む樹
脂を布帛に含浸またはコーティングしたり、カーボン粒
子と合成樹脂をブレンドしたシートを布帛にラミネート
する方法があげられる。布帛と一体化された合成樹脂シ
ートを用いる場合には、前記導電性線状物は布帛に挿通
して設けることが好ましい。
In the present invention, it is preferable that the sheet made of the polymeric material is an integrated synthetic resin sheet and fabric. Examples of the integration method include impregnating or coating a fabric with a resin containing carbon particles, or laminating a sheet of a blend of carbon particles and a synthetic resin onto a fabric. When using a synthetic resin sheet integrated with a fabric, it is preferable that the conductive linear object is provided by being inserted through the fabric.

以下、本発明を図面によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明の一実施例を示す面状発熱体の平面図
、第2図は、そのII−II線に沿った断面図である。
FIG. 1 is a plan view of a planar heating element showing an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-II.

この発熱体1は、カーボン粒子をブレンドした合成樹脂
を含浸してシート状に形成した布帛2と、該布帛20両
端に沼って設けられた一対の電極3A、3Bと、該電極
間に該電極と実質的に並行して設けられた複数の導電性
線状物4と、発熱体の」二下両面を絶縁被覆する合成樹
脂シート5からなる。
This heating element 1 consists of a fabric 2 impregnated with a synthetic resin blended with carbon particles and formed into a sheet, a pair of electrodes 3A and 3B provided at both ends of the fabric 20, and a gap between the electrodes. It consists of a plurality of conductive linear objects 4 provided substantially in parallel with the electrodes, and a synthetic resin sheet 5 that insulates both lower surfaces of the heating element.

本発明に用いる合成樹脂としては、面状発熱体として充
分使用に耐える絶縁性および耐熱性を有するものであれ
ばよく、例えばポリ塩化ビニル系樹脂、フッ素樹脂、ポ
リエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂
、ポリエステル樹脂、エポキシ樹脂、ポリイミド系樹脂
などが挙げられ、これらの内、ポリ塩化ビニル樹脂、ポ
リエチレン樹脂、ポリプロピレン樹脂などの熱可塑性樹
脂が好ましく用いられる。またカーボン粒子としては、
平均粒径が2〜100mμ、好ましくは約2〜5゜アル
μのカーボンブラックが好ましく用いられる。面状発熱
体の合成樹脂100重量部に対するカーボン粒子の添加
敬は50〜120重滑部が好適である。
The synthetic resin used in the present invention may be any resin that has sufficient insulation and heat resistance to be used as a planar heating element, such as polyvinyl chloride resin, fluororesin, polyethylene resin, polypropylene resin, polyamide resin, Examples include polyester resins, epoxy resins, and polyimide resins. Among these, thermoplastic resins such as polyvinyl chloride resins, polyethylene resins, and polypropylene resins are preferably used. In addition, as carbon particles,
Carbon black having an average particle size of 2 to 100 μm, preferably about 2 to 5° Alμ, is preferably used. The amount of carbon particles to be added to 100 parts by weight of the synthetic resin of the planar heating element is preferably 50 to 120 parts by weight.

上記樹脂中のカーボン粒子を安定化させるために公知の
分散剤を添加することができる。このような分散剤とし
ては鉱物の繊維状物、例えば石綿(アスベスト)、セピ
オライト、アパルジャイト、バリコルスカイト、ウオラ
ストナイト、トバモライト等の繊維状物が挙げられる。
A known dispersant can be added to stabilize the carbon particles in the resin. Examples of such dispersants include mineral fibrous materials such as asbestos, sepiolite, apulgite, varicorskite, wollastonite, and tobermorite.

これらの鉱物の繊維状物は、分散・吸着性に優れており
、この作用によりカーボン粉末粒子は合成樹脂中に繊維
状物とともに分散され、かつ安定化される。かかる鉱物
の繊維状物の添加喰は、合成樹脂に対して0゜05〜1
0重量%、特に好ましくは0.5〜7重イバイバチる。
The fibrous materials of these minerals have excellent dispersion and adsorption properties, and due to this action, the carbon powder particles are dispersed and stabilized together with the fibrous materials in the synthetic resin. The amount of added mineral fibrous material to the synthetic resin is 0.05 to 1.
0% by weight, particularly preferably 0.5 to 7%.

また鉱物の繊維状物の繊維長は5 mm以下のものが、
ブレンドに時間がかからず、所期の性能の面状発熱体が
得られるので、好ましく用いられる。なお、5朋を超え
るものでも合成樹脂と充分にブレンドすることができれ
ば使用しても差し支えない。
In addition, mineral fibrous materials with a fiber length of 5 mm or less are
It is preferably used because blending does not take much time and a planar heating element with the desired performance can be obtained. In addition, even if it exceeds 5, it may be used as long as it can be sufficiently blended with the synthetic resin.

さらにカーボン粉末を合成樹脂中に分散させるのに役立
つ鉱物の繊維状物の中でも、その分散性のよいものは、
下記に定義するウェットボリュウム値の高いものほど優
れた効果を示す。ウェットボリュウムとは、鉱物の繊維
状物1gな容Ftl、000m1 (内径63.5mで
104目盛のもの)メスシリンダーに入れ、これに水温
20℃、pH6〜7の水を加えて全量を1.000m?
とじ、数回振とうして充分混合したのち、20℃の室中
[2時間静置し、沈降した繊維状物の容量を測定する。
Furthermore, among the mineral fibrous materials that are useful for dispersing carbon powder into synthetic resins, those with good dispersibility are
The higher the wet volume value defined below, the better the effect. The wet volume is the volume of 1g of mineral fibrous material Ftl, 000ml (inner diameter 63.5m, 104 scale) placed in a graduated cylinder, and water at a temperature of 20°C and pH 6 to 7 added to bring the total volume to 1. 000m?
After binding and thoroughly mixing by shaking several times, the mixture was allowed to stand for 2 hours in a room at 20°C, and the volume of the settled fibrous material was measured.

例えば100mlの目盛の位置まで沈降した繊維状物が
あれば、その繊維状物のウェットボリュウムは100m
1と定義する。本発明においては、このウェットボリュ
ウムが100−以上になる繊維状物が嵩高く分散するの
で好ましい。このように嵩高く分散するtこめには、繊
維状物が細い繊維束または単繊維に分離しておればよく
、繊維の種類には直接関係がない。また繊維の長さが長
いほど、ウェットボリュウムが高くなるが、繊維長が長
いものには前述のようにブレンド上の考慮が必要である
。このため、鉱物の繊維状物の中でも、繊維長をそれほ
ど短かくせずに、かつ細い繊維束または単繊維に分散さ
せることができるものカを好ましく、この点で石綿、特
にクリソタイル石綿が好適である。
For example, if there is a fibrous material that has settled to the 100 ml scale, the wet volume of that fibrous material is 100 ml.
Define as 1. In the present invention, fibrous materials having a wet volume of 100 or more are preferable because they are bulky and dispersed. The fibrous material that is dispersed in such a bulky manner only needs to be separated into thin fiber bundles or single fibers, and is not directly related to the type of fiber. Furthermore, the longer the fiber length, the higher the wet volume, but long fiber lengths require consideration in blending as described above. For this reason, among mineral fibrous materials, those that can be dispersed into thin fiber bundles or single fibers without shortening the fiber length are preferable, and in this respect, asbestos, especially chrysotile asbestos, is preferable. .

このようにウェットポリ、ニウムを高くし易い石綿の中
でも、市販の石綿ではウェットボリュウムが200m1
以上のものは少なく、このため一般には市販の石綿を公
知の技術により湿式で解繊するか、または乾式で叩解し
、ウェットボリュウムを高くして用いることが望ましい
。特に繊維長が1間以下のものでウェットボリュウムが
j00+nJ以」二、さらに好ましくは300 m1以
上の石綿は、繊維長が短いので分散させ易く、かつカー
ボン粒子を吸着し−Cその均一分散性がさらに高くなる
ので、本発明にとって好適なものとなる。
Among asbestos that can easily increase the wet volume, commercially available asbestos has a wet volume of 200 m1.
There are few of the above, and therefore it is generally desirable to use commercially available asbestos by wet defibration or dry defibration using known techniques to increase the wet volume. In particular, asbestos with a fiber length of 1 m or less and a wet volume of j00+nJ or more, and more preferably 300 m1 or more, is easy to disperse because of its short fiber length, and it adsorbs carbon particles and improves its uniform dispersibility. Since it becomes even higher, it becomes suitable for the present invention.

本発明に用いる布帛としては、編織物、不織布、特にメ
ツシュ状の編織物が好適であるが、シート状の多孔質体
でも使用可能である。繊維の材質としては、セルロース
、羊毛等の天然繊維、レーヨン等の再生繊維、アセテー
ト等の半合成繊維、ポリアクリロニトリル、ポリエステ
ル、ポリアミド〈 等の有機合成繊維(好ましヤはポリエステル繊維)、ガ
ラス繊維等の無機繊維が使用可能である。
The fabric used in the present invention is preferably a knitted fabric or a nonwoven fabric, particularly a mesh-like knitted fabric, but a sheet-like porous body can also be used. Fiber materials include natural fibers such as cellulose and wool, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, organic synthetic fibers (preferably polyester fibers) such as polyacrylonitrile, polyester, and polyamide, and glass fibers. Inorganic fibers such as

これらの布帛の目付(単位面積当りの重量)は30〜5
001/イが適当である。
The basis weight (weight per unit area) of these fabrics is 30 to 5.
001/i is appropriate.

上記布帛の両端に沿って線状電極3A、3Bを設けるに
は、剋えば直径0.1〜5 mxの銅線を1本、または
複数本並行して布帛に挿通、または載置固着させればよ
い。上記複数本の銅線の代りに扁平な線状物(例えばメ
ツシュ状電極)等を用いてもよい。
In order to provide the linear electrodes 3A and 3B along both ends of the fabric, one or more copper wires with a diameter of 0.1 to 5 mx are inserted or placed and fixed in parallel through the fabric. Bye. Instead of the plurality of copper wires described above, a flat linear object (for example, a mesh electrode) or the like may be used.

線状電極3A、3Bの間に実質的に並行に設けられる導
電性線状物4としては、例えば直径o、oi〜0.5玉
程度の銅線、カーボンブラック、金属粒子等を含む導電
性繊維等があげられる。これらは単数または複数木組合
わせて用いることができる。
The conductive linear object 4 provided substantially in parallel between the linear electrodes 3A and 3B is, for example, a conductive material including copper wire, carbon black, metal particles, etc. with a diameter of about o, oi to 0.5 beads. Examples include fibers. These trees can be used singly or in combination.

布帛に該導電性線状物を挿通するには、例えばこれらの
線状物を繊維と撚糸して製編織しパリ、繊維の何本おき
かに混入したり、または不織布に埋設する等の方法があ
げられる。これらの線状物の並べ方としては、電極の両
端に実質的に平行であればよく、例えば第3図の(イ)
〜(ハ)に示すような種々の配列が挙げられる。このよ
うな導電性線状物の設置間隔は、均一な導電性が得られ
る範囲であればよく、海常は1〜10CIILが適当で
ある。
In order to insert the conductive linear objects into the fabric, for example, these linear objects can be twisted with fibers, knitted and woven, mixed into every few fibers, or embedded in a non-woven fabric. can be given. These linear objects may be arranged so that they are substantially parallel to both ends of the electrode, for example, as shown in (a) in Figure 3.
Various arrangements as shown in ~(c) can be mentioned. The installation interval of such conductive linear objects may be within a range where uniform conductivity can be obtained, and 1 to 10 CIIL is usually appropriate.

本発明の面状発熱体を製造するには、例えば両端に電極
を有し、かつ電極間に4電性線状物を適宜間隔で有する
布帛を予め作成し、これにカーボン粒子を含む合成樹脂
を含浸したり、またはカーボン粒子を含む合成樹脂シー
トをラミネートした後、発熱体の両面を合成樹脂で絶縁
被覆すればよい。
In order to manufacture the planar heating element of the present invention, for example, a fabric having electrodes at both ends and tetraelectric wires at appropriate intervals between the electrodes is prepared in advance, and a synthetic resin containing carbon particles is added to the fabric. After impregnating the heating element with carbon particles or laminating a synthetic resin sheet containing carbon particles, both sides of the heating element may be insulated and coated with synthetic resin.

上記のようにして得られた面状発熱体の両端の電極に電
圧を印加すると電流はカーボン粒子間を流れて発熱する
。が、このとき、布帛の電極間に挿通されている導電性
線状物が一種のステーションの役割を果たし、これによ
り面状発熱体全面の電流密度が均一となり、局部的な異
常高温の発生が防止される。この導電性線状物は布帛に
均一に挿通されているうえ、この布帛自体がカーボン粒
子を含む合成樹脂層と密着しているため、電流の一層の
均一化がはかられる。また布帛は繊維から構成されてい
るため、寸法安定性が大きく、従来のシートのみのもの
に比してはるかに変形し難い。
When a voltage is applied to the electrodes at both ends of the planar heating element obtained as described above, current flows between the carbon particles and generates heat. However, at this time, the conductive wire inserted between the electrodes of the fabric plays the role of a kind of station, which makes the current density uniform over the entire surface of the sheet heating element, preventing the occurrence of localized abnormal high temperatures. Prevented. This conductive wire is uniformly inserted through the fabric, and the fabric itself is in close contact with the synthetic resin layer containing carbon particles, so that the current can be made even more uniform. Furthermore, since the fabric is composed of fibers, it has great dimensional stability and is much less deformable than conventional sheets only.

以上、本発明によれば、カーボン粒子を含む高分子材料
からなるシートの両端の電極間に導電性線状物を適当な
間隔で平行して設けたことにより、発熱体全面の電流密
度を均一化し、温度分布の不均一または局部的な異常高
温を防止し、また寸法安定性を向上させることができる
As described above, according to the present invention, by providing conductive wires in parallel at appropriate intervals between the electrodes at both ends of a sheet made of a polymeric material containing carbon particles, the current density over the entire surface of the heating element is made uniform. It is possible to prevent uneven temperature distribution or local abnormal high temperatures, and improve dimensional stability.

以下、本発明の具体的実施例を述べる。Hereinafter, specific examples of the present invention will be described.

実施例1 210デニール/4フイラメントのポリエステル繊維を
用いて経10木/儂、緯7木/ amの織物を作成した
。このとき、両端に1、直径0.3 mmの銅線を各5
本押通して電極とし、また両端の間には4m間隔で経糸
に直径0.1朋の銅線を撚糸したポリエステル繊維を用
いて導電性線状物質とした。
Example 1 A woven fabric with a warp of 10 wood/am and a weft of 7 wood/am was prepared using 210 denier/4 filament polyester fiber. At this time, connect 5 copper wires with a diameter of 0.3 mm to each end.
This was pressed through to form an electrode, and a conductive linear material was made between both ends by using polyester fibers in which copper wires with a diameter of 0.1 mm were twisted in the warp at intervals of 4 m.

この布帛にカーボンブラック:ポリ塩化ビニル、7 :
 10の厚さ1間のシートをラミネートし、絶縁被覆の
ために両面に0.7 mのポリ塩化ビニルシートをラミ
ネートして本発明の面状発熱体を製造した。
Carbon black: polyvinyl chloride, 7:
The planar heating element of the present invention was manufactured by laminating 10 sheets with a thickness of 1 to 1, and laminating 0.7 m polyvinyl chloride sheets on both sides for insulation coating.

この面状発熱体5 n?を床に敷設し、床面積1ぜ重@
 70 kgの荷重をかげ、両電極間にAC100V印
加して通電したところ、発熱温度は1500時間通電後
もすべての個所で60℃と均一であった。また500回
屈凸稜もこの温度は不変であり、また寸法も不変であっ
た。
This sheet heating element 5 n? Lay it on the floor, occupying 1 floor area @
When electricity was applied by applying AC 100V between both electrodes under a load of 70 kg, the heat generation temperature remained uniform at 60° C. at all locations even after 1500 hours of electricity application. Also, the temperature and dimensions of the 500-fold bent convex edge remained unchanged.

実施例2 0.1デニール5耶のポリアクリル繊維を用いて目付1
00 // / n?のウェブを抄造法にて2枚製造し
た。このウェブ一枚の両端に直径0.5 mmの銅線を
各3本載置し、その中間に6CrrL間隔で直径0.2
順の銅線を載置した後、その上に他の一枚のウェブをの
せ、柱状流にて二層のウェブを交絡一体化させた。
Example 2 Fabric weight 1 using 0.1 denier 5-yel polyacrylic fiber
00 // / n? Two webs were manufactured using the papermaking method. Three copper wires with a diameter of 0.5 mm are placed on each end of one web, and wires with a diameter of 0.2 mm are placed between them at intervals of 6 CrrL.
After placing the same copper wire, another web was placed on top of it, and the two layers of web were intertwined and integrated in a columnar flow.

一方、11の水にカナダ産の7Dクリックイル石綿1g
およびアニオン界面活性剤o、iyを加え、常温で空気
吹込下に24時間攪拌処理して得られたウェットボリュ
ウム800+++lの石綿(繊維長5關以下、繊維束の
孔径25μm)の懸濁液を得た。
On the other hand, 1g of 7D clickil asbestos from Canada per 11g of water.
and anionic surfactants o and iy were added and stirred for 24 hours at room temperature with air blowing to obtain a suspension of asbestos (fiber length 5 or less, fiber bundle pore diameter 25 μm) with a wet volume of 800+++ l. Ta.

この懸濁液を尿で10倍に希釈した後、この液にアセチ
レンブラック51−■(日本カーボン社製、比表面積約
100crn/11、粒径2〜3mm) 7011を添
加混合した。この時点で石綿にカーボンブラックが吸着
した凝集物が生成してくる。この凝集物を含む混合液を
遠心分離液にかけて固形物を分離し、この固形物を50
〜60℃の温度で乾燥した。
After this suspension was diluted 10 times with urine, acetylene black 51-■ (manufactured by Nippon Carbon Co., Ltd., specific surface area approximately 100 crn/11, particle size 2-3 mm) 7011 was added and mixed. At this point, aggregates of carbon black adsorbed to asbestos begin to form. The mixed solution containing this aggregate is centrifuged to separate the solids, and the solids are separated by 50%
Dry at a temperature of ~60°C.

得られた乾燥固形物を粉砕し、これにポリ塩化ビニルパ
ウダー100gを加えて10分間ブレンドした後、可塑
剤40gを加え、カレンダーロールで厚す1.0 my
nのシートに成形した。
The obtained dry solid was pulverized, 100 g of polyvinyl chloride powder was added thereto, blended for 10 minutes, 40 g of plasticizer was added, and the mixture was rolled to a thickness of 1.0 my with a calender roll.
It was molded into a sheet of n.

前記ウェブな一体化させた布帛に上記ボ1ノ塩イヒビニ
ルシートをラミネートして本発明の1frU状発熱体を
製造した。この面状発熱体の電極にAClooVを印加
して通電したところ、2000時間m電後もすべての個
所で温度は60°Cと一定であった。
The 1fr U-shaped heating element of the present invention was manufactured by laminating the above-mentioned borosalt hibinyl sheet onto the integrated fabric. When AClooV was applied to the electrodes of this planar heating element to energize it, the temperature remained constant at 60°C at all locations even after 2000 hours of electricity.

また500回屈凸稜も上記値に変化をまなカ・つた。Furthermore, the 500-cycle curved convex ridge did not change to the above value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す面状発熱体の平面図
、第2図は、そのII−u線に沿った矢視断面図、第3
図(イ)、(ロ)、(ハ)、…よ、それぞれ本発明に用
いる導電性線状物の種々の形状を示す線図である。符号
の説明は下記のと]6りである。 1・・・面状発熱体、2・・・合成樹脂シート、3A。 3B・・・電極、4・・・導電性線状物、5・・・絶縁
被覆。 代理人 弁理士  川 北 武 長 111  図 2rlJ
FIG. 1 is a plan view of a planar heating element showing one embodiment of the present invention, FIG. 2 is a sectional view taken along line II-u, and FIG.
Figures (A), (B), (C), . . . are diagrams showing various shapes of conductive linear objects used in the present invention, respectively. The explanation of the symbols is as follows. 1... Planar heating element, 2... Synthetic resin sheet, 3A. 3B... Electrode, 4... Conductive linear object, 5... Insulating coating. Agent Patent Attorney Takeshi Kawakita 111 Figure 2rlJ

Claims (2)

【特許請求の範囲】[Claims] (1)カーボン粒子をブレンドした高分子材料からなる
シートの両端に溢って一対の線状電極を設けた面状発熱
体において、前記電極間に間隔をおいて該電極と実質的
に並行して導電性線状物を設けたことを特徴とする面状
発熱体。
(1) In a planar heating element in which a pair of linear electrodes are provided over both ends of a sheet made of a polymeric material blended with carbon particles, the electrodes are arranged substantially parallel to each other with an interval between the electrodes. A planar heating element characterized in that a conductive linear object is provided on the surface of the heating element.
(2)前記高分子材料からなるシートは布帛と合成樹脂
シートとが一体化されてなり、かつ前記導電性線状物は
該布帛に挿通されていることを特徴とする特許請求の範
囲第1項記載の面状発熱体。
(2) The sheet made of the polymeric material is formed by integrating a fabric and a synthetic resin sheet, and the conductive linear object is inserted through the fabric. The planar heating element described in .
JP12955982A 1982-07-27 1982-07-27 Panel heater Pending JPS5920986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12955982A JPS5920986A (en) 1982-07-27 1982-07-27 Panel heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12955982A JPS5920986A (en) 1982-07-27 1982-07-27 Panel heater

Publications (1)

Publication Number Publication Date
JPS5920986A true JPS5920986A (en) 1984-02-02

Family

ID=15012483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12955982A Pending JPS5920986A (en) 1982-07-27 1982-07-27 Panel heater

Country Status (1)

Country Link
JP (1) JPS5920986A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642390U (en) * 1987-06-24 1989-01-09
JPH03165484A (en) * 1989-11-24 1991-07-17 Tokai Carbon Co Ltd Flexible sheet type element and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642390U (en) * 1987-06-24 1989-01-09
JPH03165484A (en) * 1989-11-24 1991-07-17 Tokai Carbon Co Ltd Flexible sheet type element and its manufacture

Similar Documents

Publication Publication Date Title
US3657516A (en) Flexible panel-type heating unit
RU2237382C1 (en) Carbon-fiber heating paper and sheet heater made of such paper
CN1929763B (en) Fiber reinforced heating unit and mattress with thereof
DE4447407C2 (en) Flexible surface heating element and method for producing a flexible surface heating element
US3829327A (en) Carbon paper
US3721799A (en) Electric heating source for seats and mattresses and methods of application of the same
KR930001591B1 (en) Heatable sheet assembly
US4629869A (en) Self-limiting heater and resistance material
KR101180037B1 (en) A film heater that can be controled by a independent cell
DE19726689B4 (en) Electric heating system for heating a room in flats and buildings by large-scale heat dissipation
JPS5920986A (en) Panel heater
KR100689990B1 (en) Net-type line surface heater
US3876968A (en) Glass heating fabric
JPS5920985A (en) Base for heater
US3691349A (en) Electrical heating sheet with series of eyelets connections
KR20160141312A (en) Soil heating cable and plate soil heater using the same
CA1091739A (en) Electric heating element with polyester resin/soot conductive layer
JP2001237052A (en) Planar heating body
EP0197745A1 (en) Conductive materials
RU2182406C1 (en) Electric heating cloth (alternatives) and electricity conducting thread for this cloth; method for manufacturing this thread
DE29724855U1 (en) Controlled electrical surface heating system used in apartment and buildings - has factory-coated layers of conductive particles and binder on substrate with metallic strip electrodes, for particularly uniform heating as part of wall-covering or tiling systems
KR890011925A (en) Flame Retardant Composite Polymer Foam
KR200258562Y1 (en) Sheet heater of ceramic carbon fibers
RU2059342C1 (en) Plate-type electric heater
KR200217397Y1 (en) Carbonite fiber heating board