JPS59209278A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPS59209278A
JPS59209278A JP58082719A JP8271983A JPS59209278A JP S59209278 A JPS59209278 A JP S59209278A JP 58082719 A JP58082719 A JP 58082719A JP 8271983 A JP8271983 A JP 8271983A JP S59209278 A JPS59209278 A JP S59209278A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte
catalyst layer
ion exchange
exchange group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58082719A
Other languages
Japanese (ja)
Inventor
Tsutomu Tsukui
津久井 勤
Toshio Shimizu
清水 年男
Takanori Sato
隆徳 佐藤
Ryota Doi
良太 土井
Motoo Yamaguchi
元男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58082719A priority Critical patent/JPS59209278A/en
Publication of JPS59209278A publication Critical patent/JPS59209278A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To disperse electrolyte in an electrode catalyst layer or on an interface of an electrode and electrolyte, and allowing effective ionic conductivity by water penetration to increase cell performance by adding ion exchange group or placing a substance having ion exchange group between electrolyte and an electrode or in an electrode catalyst layer. CONSTITUTION:Ion exchange group is added or substance having ion exchange group is placed between an electrolyte 31 and electrodes 21 and 22 or in an electrode catalyst layer. For example, a polyelectrolyte 111, such as liquid state polystyrene sulfonic acid or poyethylene sulfonic acid is impregnated in a catalyst layer of a fuel electrode 21, or fixed by kneading in catalyst layer when the electrode is manufactured. A polyelectrolyte 112 is arranged between an ion exchange film 31 and the electrode when a unit cell is assembled, if necessary.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は燃料電池に係り、特に電解質と電極間の構成に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fuel cell, and more particularly to a structure between an electrolyte and an electrode.

〔発明の背景〕[Background of the invention]

電気化学反応にもとすく燃料電池の単位電池1の原理図
を第1図に示す。同図に示すように、電極2は燃料極2
1と酸化剤極22からなり、この両電極間に電解質室3
を構成している。燃料極21に隣接して燃料6が送られ
る燃料室4f:、酸化剤極22に隣接して酸化剤7が送
られる酸化剤室5を構成している。燃料6としては水素
のようなガスか、メタノールやヒドラジンのような液体
が用いられる。酸化剤7としては酸素あるいは酸素を含
むガス(一般に空気が用いられる)が用いられる。また
、生成物81として燃料極21ではメタノールが燃料の
場合に炭酸ガスが、ヒドラジンの場合窄素が発生する。
FIG. 1 shows a diagram of the principle of a unit cell 1 of a fuel cell that facilitates electrochemical reactions. As shown in the figure, the electrode 2 is a fuel electrode 2
1 and an oxidizer electrode 22, with an electrolyte chamber 3 between the two electrodes.
It consists of A fuel chamber 4f adjacent to the fuel electrode 21 to which the fuel 6 is sent constitutes an oxidizer chamber 5 adjacent to the oxidizer electrode 22 to which the oxidizer 7 is sent. As the fuel 6, a gas such as hydrogen or a liquid such as methanol or hydrazine is used. As the oxidizing agent 7, oxygen or a gas containing oxygen (air is generally used) is used. Further, as a product 81, carbon dioxide gas is generated in the fuel electrode 21 when methanol is used as the fuel, and carbon dioxide is generated when hydrazine is used as the fuel.

一方、酸化剤極22では電解質が酸性の場合生成物82
として水が発生する。なお、電解質が塩基性の場合には
燃料極21で水が生成する。
On the other hand, at the oxidizer electrode 22, if the electrolyte is acidic, the product 82
Water is generated as Note that water is generated at the fuel electrode 21 when the electrolyte is basic.

第1図のような単位電池の構成において、電解質として
硫酸や力性カリのような液体を用いる場合には液が電解
質室3からもれて電極にも浸透するので性能の面からみ
れば良好な特性が得られるので一般に採用されている。
In the configuration of a unit battery as shown in Figure 1, if a liquid such as sulfuric acid or potassium chloride is used as the electrolyte, the liquid leaks from the electrolyte chamber 3 and permeates into the electrodes, which is good from a performance standpoint. It is generally used because it provides certain characteristics.

しかし、この使い方では電解液が外部にもれ出す危険性
のあることや・燃料電池を動かすための補機類に耐酸性
や耐塩基性の要求があって簡易化できない欠点がある。
However, this method has drawbacks such as the risk of the electrolyte leaking outside and the requirement for acid and base resistance for the auxiliary equipment used to operate the fuel cell, making it difficult to simplify.

これを改善するために・電解質として硫酸や力性カリの
ような液体でない高分子電解質やイオン交換膜などが検
討されている。このような場合、電解質のしみ出しが不
十分となりやすく、電極触媒層内に電解質がいきわたら
力いと性能が不十分という欠点があった。
To improve this, non-liquid polymer electrolytes such as sulfuric acid and potassium hydroxide, and ion exchange membranes are being considered as electrolytes. In such a case, the electrolyte tends to ooze out insufficiently, and if the electrolyte permeates into the electrode catalyst layer, there is a drawback that power and performance are insufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電解質3と電極2の間の界面をみなお
し・この界面を電解質によって満たす方法を提供するこ
とKある。
An object of the present invention is to reconsider the interface between the electrolyte 3 and the electrode 2 and to provide a method for filling this interface with the electrolyte.

〔発明の概要〕[Summary of the invention]

本発明は、最も簡易な方法で電解質と電極間の界面を改
善し、前述の公知の技術の欠点を排除しながら可能とし
た方法である。
The present invention is a method that improves the interface between an electrolyte and an electrode using the simplest method and eliminates the drawbacks of the above-mentioned known techniques.

電解質としてイオン交換膜を使用する場合を例にとれば
、第2図に示すように電解質3がイオン交換膜であり、
燃料極21と酸化剤極22が組み合わされている。電極
2は電極基体に触媒を塗布したものからなっている。こ
の電極2をイオン交換膜と重ね、これに水が浸透したと
しても電極2と電解質3との接触部10は第2図のよう
に少なく空隙層9が存在する。そのため、一方の電極で
イオンの発生があっても電解質を通って他方の電極にい
くには空隙層9のため大きな抵抗となる。
Taking the case where an ion exchange membrane is used as an electrolyte as an example, as shown in FIG. 2, the electrolyte 3 is an ion exchange membrane,
A fuel electrode 21 and an oxidizer electrode 22 are combined. The electrode 2 consists of an electrode base coated with a catalyst. Even if this electrode 2 is overlapped with an ion exchange membrane and water permeates therein, the contact area 10 between the electrode 2 and the electrolyte 3 is small and a void layer 9 is present as shown in FIG. Therefore, even if ions are generated at one electrode, there is a large resistance due to the void layer 9 in passing through the electrolyte to the other electrode.

何故なら、空隙層9は水があったとしてもイオンの電導
に対して大きな抵抗を示すからである。更に微細にみれ
ば、電極2の触媒層も多孔質にかつており1通常カーボ
ン材の担持材に白金等を添着させているが・イオン電導
を効果的に行うには終局的にはこの白金のような活性の
大きい微粒子のまわりに電解質が分散していることが必
要である。
This is because the void layer 9 exhibits large resistance to ion conduction even in the presence of water. If we look at the finer details, the catalyst layer of the electrode 2 is also porous, and platinum or the like is usually attached to the carbon supporting material.In order to achieve effective ionic conduction, this platinum must be It is necessary that an electrolyte be dispersed around such highly active particles.

そのため、この電解質が十分電極触媒層にコンタクトさ
せるため電解質としてイオン交換膜のみでは不十分で別
の電解質と組合せる必要がある。
Therefore, in order to bring this electrolyte into sufficient contact with the electrode catalyst layer, the ion exchange membrane alone is not sufficient as an electrolyte, and it is necessary to combine it with another electrolyte.

今まで・硫酸や力性カリのような液体しか用いられてい
なかった。
Until now, only liquids such as sulfuric acid and potassium have been used.

上記液体にかわるものとして、高分子電解質を用いるこ
とにより電極の触媒層内や電極とイオン交換膜間を充填
でき、良好なイオン電導の役目をはだすことができる。
By using a polymer electrolyte instead of the above-mentioned liquid, it can fill the inside of the catalyst layer of the electrode or between the electrode and the ion exchange membrane, and can perform the role of good ion conduction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。電極
2の触媒層に高分子電解質111(例えはポリスタレン
スルホン酸やポリエチレンスルホン酸は分子が大きいた
め容易に外部にもれない)の液状のものを含浸させるか
、あらかじめ電極製作時触媒層形成時に混練する等の方
法によって固定できる。また必要に応じて、単位電池組
立て侍史に高分子電解質112をイオン交換膜31と電
極間に介在させることも容易である。この場合・高分子
酸がペースト状のものを触媒層表面からぬりつけるか、
あらかじめ触媒層形成時に混練してもよい。この方法は
電解質が塩基の場合であっても同様である。
An embodiment of the present invention will be described below with reference to FIG. The catalyst layer of the electrode 2 is impregnated with a liquid polymer electrolyte 111 (for example, polystyrene sulfonic acid and polyethylene sulfonic acid have large molecules, so they do not easily leak outside), or the catalyst layer is formed in advance during electrode fabrication. It can be fixed by a method such as kneading. Further, if necessary, it is also easy to interpose the polymer electrolyte 112 between the ion exchange membrane 31 and the electrodes when assembling the unit battery. In this case, apply a paste of polymeric acid to the surface of the catalyst layer, or
It may be kneaded in advance when forming the catalyst layer. This method is similar even when the electrolyte is a base.

また、電解質3として、イオン交換膜の他高子電解質か
らなる固形状、あるいはゾル状の半固形物で、酸性電解
質ではポリスチレンスルホン酸や、ポリエチレンスルホ
ン酸、あるいはポリスチレンジビニルベンゼンなどがあ
る。これらの材料は架橋度を適当に選ぶことによって比
較的任意に制御できる。
Further, the electrolyte 3 is a solid or sol-like semi-solid consisting of an ion exchange membrane or a polymer electrolyte, and examples of acidic electrolytes include polystyrene sulfonic acid, polyethylene sulfonic acid, and polystyrene divinylbenzene. These materials can be controlled relatively arbitrarily by appropriately selecting the degree of crosslinking.

他の実施例、電解質3に用いる微粒子状の固形物あるい
は半固形物触媒層にぬり込むか、あらかじめ解媒形成時
にこれに混練して用いることができる。固形物になると
数μの粒子よりサブきクロンの粒子の方がまた、架橋も
あまり強くない方が水分の吸収もよくイオン電導が良好
な結果を示す。
In other embodiments, it can be used by applying it to the fine particulate solid or semi-solid catalyst layer used in the electrolyte 3, or by kneading it in advance when forming the decomposition medium. When it comes to solid materials, submicron particles exhibit better water absorption and ion conductivity than particles of several micrometers, and those with less strong crosslinking exhibit better results.

当然この高分子電解質のイオン濃度を高くするのが好ま
しい。
Naturally, it is preferable to increase the ion concentration of this polymer electrolyte.

次に、前述のように液状の高分子電解質では電池構造に
よっては外部に逃げやすいということも起こりうるので
、その場合には上記の固体あるいは半固形状の電解質の
使用は可能であるが、その他の方法として液状の高分子
電解質を触媒形成時に混練するかあるいは触媒層にあと
から含浸し、あとから加熱によって架橋を進めて外部に
もれKくくする方法も取りうる。
Next, as mentioned above, depending on the battery structure, liquid polymer electrolytes may easily escape to the outside, so in that case, it is possible to use the solid or semi-solid electrolytes mentioned above, but other As a method, a method may be used in which a liquid polymer electrolyte is kneaded at the time of catalyst formation or impregnated into the catalyst layer afterwards, and then crosslinked by heating to prevent leakage to the outside.

更には、有機物(例えばスチレン、ポリエチレン)のモ
ノマーを触媒形成的に混練するか、あるいは触媒層に含
浸したあと、濃硫酸あるいは発煙硫酸中で架橋とスルホ
ン酸化することにより高分子のポリスチレンスルホン酸
やポリエチレンスルホン酸にしても同様の効果が得られ
る。
Furthermore, by kneading organic monomers (such as styrene and polyethylene) in a catalyst-forming manner or impregnating them into a catalyst layer, crosslinking and sulfonation are performed in concentrated sulfuric acid or fuming sulfuric acid to form polymeric polystyrene sulfonic acid or A similar effect can be obtained by using polyethylene sulfonic acid.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電解質として従来の硫酸や力性カリの
ような液体を使わず高分子電解質により燃料電池の電解
質とする場合外部にもれ出さず、しかも、電極触媒層中
や電極と電解質界面も含めて電解質が分散されており、
水の浸入によって効果的なイオン電導が可能となるので
、電池性能の良好なものが得られる。
According to the present invention, when a polymer electrolyte is used as an electrolyte in a fuel cell without using a conventional liquid such as sulfuric acid or potassium hydroxide, it does not leak to the outside, and moreover, the electrolyte does not leak into the electrode catalyst layer or between the electrodes. The electrolyte is dispersed, including at the interface.
Since effective ionic conduction is enabled by the infiltration of water, a battery with good performance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃料電池の原理図、第2図は従来の実施例の原
理構成図、第31図は本発明の一実施例の構成図である
。 111・・・触媒層に塗布された高分子電解質、112
・・・電極と電解質問に充填された高分子電解質、9・
・・電極触媒層と電解質との接触個所、10・・・電極
と電解質との間の空隙部。 代理人 弁理士 高橋明夫 (7) 第2m
FIG. 1 is a diagram showing the principle of a fuel cell, FIG. 2 is a diagram showing the principle configuration of a conventional embodiment, and FIG. 31 is a diagram showing the configuration of an embodiment of the present invention. 111... Polymer electrolyte applied to the catalyst layer, 112
...polymer electrolyte filled in the electrode and electrolyte, 9.
...Contact point between the electrode catalyst layer and the electrolyte, 10...Gap between the electrode and the electrolyte. Agent Patent Attorney Akio Takahashi (7) 2nd m

Claims (1)

【特許請求の範囲】 1、電気化学反応にもとすく燃料電池において。 電極間に介在する電解質と電極間との間に、または電極
触媒層中にイオン交換基を付加するか、イオン交換基を
もつ物質を介在させることを特徴とする燃料電池。
[Claims] 1. In a fuel cell that is suitable for electrochemical reactions. A fuel cell characterized by adding an ion exchange group or interposing a substance having an ion exchange group between the electrolyte and the electrodes interposed between the electrodes or in the electrode catalyst layer.
JP58082719A 1983-05-13 1983-05-13 Fuel cell Pending JPS59209278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082719A JPS59209278A (en) 1983-05-13 1983-05-13 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082719A JPS59209278A (en) 1983-05-13 1983-05-13 Fuel cell

Publications (1)

Publication Number Publication Date
JPS59209278A true JPS59209278A (en) 1984-11-27

Family

ID=13782215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082719A Pending JPS59209278A (en) 1983-05-13 1983-05-13 Fuel cell

Country Status (1)

Country Link
JP (1) JPS59209278A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195855A (en) * 1986-02-22 1987-08-28 Hitachi Ltd Fuel cell
EP0241432A2 (en) * 1986-03-07 1987-10-14 Tanaka Kikinzoku Kogyo K.K. Gas permeable electrode
JPS62256379A (en) * 1986-04-29 1987-11-09 Shin Kobe Electric Mach Co Ltd Liquid fuel cell
JPS62290062A (en) * 1986-06-07 1987-12-16 Hitachi Ltd Liquid fuel cell
FR2667728A1 (en) * 1990-10-08 1992-04-10 Sorapec Fuel cell
JP2008053089A (en) * 2006-08-25 2008-03-06 Univ Of Yamanashi Gas diffusion composition and manufacturing method of same, gas diffusion electrode, membrane electrode assembly, and electrochemical device using this
US7838164B2 (en) 2004-12-07 2010-11-23 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
US8142956B2 (en) * 2003-01-22 2012-03-27 Nitto Denko Corporation Fuel cell

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62195855A (en) * 1986-02-22 1987-08-28 Hitachi Ltd Fuel cell
JPH0799696B2 (en) * 1986-02-22 1995-10-25 株式会社日立製作所 Method for producing fuel cell using ion exchange membrane as electrolyte
EP0241432A2 (en) * 1986-03-07 1987-10-14 Tanaka Kikinzoku Kogyo K.K. Gas permeable electrode
JPS62256379A (en) * 1986-04-29 1987-11-09 Shin Kobe Electric Mach Co Ltd Liquid fuel cell
JPS62290062A (en) * 1986-06-07 1987-12-16 Hitachi Ltd Liquid fuel cell
FR2667728A1 (en) * 1990-10-08 1992-04-10 Sorapec Fuel cell
US8142956B2 (en) * 2003-01-22 2012-03-27 Nitto Denko Corporation Fuel cell
US7838164B2 (en) 2004-12-07 2010-11-23 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
EP2424019A1 (en) 2004-12-07 2012-02-29 Toray Industries, Inc. Fuel cell membrane electrode assembly
US8278004B2 (en) 2004-12-07 2012-10-02 Toray Industries, Inc. Membrane electrode assembly and method of producing the same and fuel cell
JP2008053089A (en) * 2006-08-25 2008-03-06 Univ Of Yamanashi Gas diffusion composition and manufacturing method of same, gas diffusion electrode, membrane electrode assembly, and electrochemical device using this

Similar Documents

Publication Publication Date Title
US7125626B2 (en) Ion exchange assembly for an electrochemical cell
JP3245161B2 (en) Membrane electrode assembly using gasket for electrochemical fuel cell
DE19513292C1 (en) Polymer electrolyte membrane fuel cell
EP0100530B1 (en) Fuel cell using organic high-molecular electrolyte
JPH05242897A (en) Solid high polymer electrolyte type fuel cell
MXPA01008664A (en) Sol gel membrane
JPS59209278A (en) Fuel cell
JP3502508B2 (en) Direct methanol fuel cell
JP2006140062A (en) Electrode paste for fuel cell, electrode and membrane-electrode assembly, and manufacturing method of fuel cell system
JP2000299119A (en) Manufacture of catalyst layer
JP3515161B2 (en) Solid polymer electrolyte fuel cell
JPH07335233A (en) Fuel cell
JP2829184B2 (en) Fuel cell
JP4965833B2 (en) Solid polymer electrolyte membrane electrode assembly and solid polymer fuel cell
EP1571724B1 (en) Fuel Cell
JP3738723B2 (en) ELECTRODE FOR FUEL CELL AND FUEL CELL USING THE SAME
JP2001126737A (en) Electrode for a fuel cell, method for preparing the fuel cell, and the fuel cell
JP2005276847A (en) Polymer solid electrolyte-electrode junction
JP5087216B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JPS60165062A (en) Fuel cell
WO1995015016A1 (en) Cell/membrane and electrode assembly for electrochemical cells
JP2004220951A (en) Electrochemical device and its manufacturing method
JPH1050332A (en) Fuel cell gas seal structure
JPH04233164A (en) Method of junctioning electrode and solid electrolyte
JPS6167790A (en) Production of joined body of ion exchange resin film and electrode