JPS59209009A - Gas insulated switching device - Google Patents

Gas insulated switching device

Info

Publication number
JPS59209009A
JPS59209009A JP58082192A JP8219283A JPS59209009A JP S59209009 A JPS59209009 A JP S59209009A JP 58082192 A JP58082192 A JP 58082192A JP 8219283 A JP8219283 A JP 8219283A JP S59209009 A JPS59209009 A JP S59209009A
Authority
JP
Japan
Prior art keywords
point
grounding
container section
ground
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58082192A
Other languages
Japanese (ja)
Inventor
永海 捷司
菅野 善夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP58082192A priority Critical patent/JPS59209009A/en
Publication of JPS59209009A publication Critical patent/JPS59209009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明はガス絶縁開閉装置の主導電部を内蔵した金属
円筒を互いに導電的に結合してなる容器区分の接地方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for grounding a container section in which metal cylinders containing main conductive parts of a gas-insulated switchgear are electrically conductively coupled to each other.

〔従来技術とその問題点〕[Prior art and its problems]

ガス絶縁開閉装置における容器区分の接地方法には、該
容器区分中の1点のみを接地する一点接地方法と、該容
器区分の軸線方向に間隔をおいて複数の点を接地する多
点接地方法とがある。一点接地方法は常時運転中のガス
絶縁開閉装置の各容器区分を大地電位に保つとともに、
たとえば該容器区分中に設けられた絶縁部材の対地絶縁
性能の劣化を、接地個所の接地導体を取り外して微小電
流の測定器を接続することにより容易に判別できるよう
にするなど、容器区分中に収容された機能部材の外部診
断を容易ならしめた接地方法であるが、常時運転中に雷
サージや、断路器などの開閉機器が小電流を遮断する際
の再点弧や再発弧による開閉サージに伴って容器区分の
金属円筒にサージ電流が流れると、該容器区分が大地に
対して有するインダクタンス分とサージ電流との積によ
る対地過渡電圧すなわちいわゆるシースサージ電圧が該
容器区分上の接地点から離隔した位置と大地との間に現
われ、運転員の感電事故や、該容器と同電位にあるたと
えば断路器の操作器箱とこの中の制御配線との間の絶縁
破壊などを生ずる恐れがある。他方、多点接地方法の場
合には、上述のサージ電流は複数の接地点に向かって分
流するので、容器区分と大地との間に現われるシースサ
ージ電圧は低くなるが、この場合には次のような欠点が
ある。
Grounding methods for container sections in gas-insulated switchgear include a single-point grounding method in which only one point in the container section is grounded, and a multi-point grounding method in which multiple points are grounded at intervals in the axial direction of the container section. There is. The single-point grounding method maintains each container section of the gas-insulated switchgear at ground potential during continuous operation, and
For example, deterioration of the ground insulation performance of insulating members installed in the container can be easily determined by removing the grounding conductor at the grounding point and connecting a microcurrent measuring device. Although this grounding method facilitates external diagnosis of the functional components housed in the building, it is susceptible to lightning surges during continuous operation, and switching surges caused by re-ignition or re-ignition when switching devices such as disconnectors cut off small currents. When a surge current flows through the metal cylinder of the container section, a transient voltage to the ground due to the product of the inductance of the container section with respect to the ground and the surge current, that is, a so-called sheath surge voltage, separates from the ground point on the container section. There is a risk of electrocution of the operator or dielectric breakdown between, for example, the operating box of a disconnector and the control wiring therein, which are at the same potential as the container. On the other hand, in the case of the multi-point grounding method, the above-mentioned surge current is shunted toward multiple grounding points, so the sheath surge voltage appearing between the container section and the ground is lower, but in this case, the following There are some drawbacks.

第1図(a)に従来の多点接地された容器区分の例を示
す。図において2,3はそれぞれ容器区分1を構成する
全域円筒であって、Bの個所において第1図(I))に
示すような可撓導体4を介して導電的に結合され、該容
器区分1に隣接する金属円筒6゜7とは第1図(C)に
示すような絶縁鞘5によって絶縁されている′。E、、
E2はそれぞれ容器区分1中の接地点である。第1図(
a)に示すように主導電部を形成する中心導体9と開閉
機器1oとを経由して商用周波の通電電流■oが流れる
と、この■。にょってその電流経路のまわシにつくられ
る磁束を打ち消すような誘導電流10+が図示のような
方向に接地点を経由して循環する。この誘導電流■。′
の大きさは容器区分1の地上高さによっても異なるが通
電電流■oの30〜80%にもなシ、容器区分を構成す
る金属円筒の発熱が問題となる。
FIG. 1(a) shows an example of a conventional container section that is grounded at multiple points. In the figure, reference numerals 2 and 3 each indicate a full-area cylinder constituting the container section 1, which is electrically conductively coupled at a point B via a flexible conductor 4 as shown in FIG. 1 is insulated from the adjacent metal cylinder 6.7 by an insulating sheath 5 as shown in FIG. 1(C). E...
E2 is the ground point in container section 1, respectively. Figure 1 (
As shown in a), when the commercial frequency current ■o flows through the central conductor 9 forming the main current part and the switching device 1o, this ■. An induced current 10+ that cancels out the magnetic flux created around the current path circulates in the direction shown in the figure via the ground point. This induced current ■. ′
Although the size of the container section 1 varies depending on the height above the ground of the container section 1, it is 30 to 80% of the energizing current (2o), and the heat generation of the metal cylinder constituting the container section becomes a problem.

〔発明の目的〕 この発明は上述の一点接地方法において発生するシース
サージ電圧の大きさを低減するとともに、多点接地方法
において発生する誘導電流による容器区分の金属円筒の
発熱を防止することを目的とする。
[Objective of the Invention] The purpose of the present invention is to reduce the magnitude of the sheath surge voltage generated in the above-mentioned single-point grounding method, and to prevent heat generation in the metal cylinder of the container section due to the induced current generated in the multi-point grounding method. do.

〔発明の要点〕[Key points of the invention]

この発明は主導電部を内蔵し互いに導電的に結合された
金属円筒からなる容器区分中の1点のみを直接接地する
とともに該接地点とは異なる少なくとも1点をコンデン
サを介して接地することによシ、雷サージや開閉サージ
に基因するシースサージ電圧を低減するとともに、常時
運転中の通電電流によって訪起され容器区分と複数の接
地点とを経由して循環する誘導電流を抑制して該容器区
分中の金属円筒の発熱を防止しようとするものである。
This invention involves directly grounding only one point in a container section consisting of metal cylinders that are conductively connected to each other and containing a main conductive part, and at least one point different from the grounding point to ground via a capacitor. In addition to reducing the sheath surge voltage caused by lightning surges and opening/closing surges, it is also possible to suppress the induced current generated by the current flowing during continuous operation and circulating through the container section and multiple grounding points to reduce the sheath surge voltage caused by lightning surges and opening/closing surges. This is intended to prevent heat generation in the metal cylinder during classification.

〔発明の実施例〕[Embodiments of the invention]

まず第2図の等価回路によって容器区分におけるシース
サージ電圧の発生機構と、本発明によるシースサージ定
圧低減の原理を説明する。
First, the mechanism of generating a sheath surge voltage in the container section and the principle of reducing the constant pressure of the sheath surge according to the present invention will be explained using the equivalent circuit shown in FIG.

第2図(a)は第1図における82点が接地されていな
い場合の、すなわち1点接地の場合の等価回路であって
、矩形波状の電圧Uが中心導体9と接地点E1との間に
印加された場合を想定したものである。Llは接地点B
、とE2との範囲内にある中心導体9と開閉機器1oと
によって形成されたインダクタンス、L2は容器区分の
同一範囲内のインダクタンス、C1ハ同−範囲内におけ
る主導電部と容器区分との間のキャパシタンスであって
、いずれモ実際には分布定5数であるがここでは集中常
数によって模擬している。このときの電流11は次式に
よって表わされる。
FIG. 2(a) is an equivalent circuit when 82 points in FIG. 1 are not grounded, that is, when one point is grounded, and a rectangular wave voltage U is applied between the center conductor 9 and the grounding point E1. This assumes that the voltage is applied to Ll is ground point B
, and E2, L2 is the inductance within the same range of the container section, and C1 is the inductance between the main conductor and the container section within the same range. The capacitance is actually a distributed constant of five numbers, but here it is simulated by a lumped constant. The current 11 at this time is expressed by the following equation.

l ωl − π7n曹互 この゛リージ電流I、により82点にはv5=L2* 
d i、/d tのンースサージ′rff、圧: 2 v、=       U casω1t ・・・・・・
・・・・・・・・ (11Ll +L。
l ωl − π7n Due to this league current I, at point 82, v5=L2*
d i, /d t's surge ′rff, pressure: 2 v, = U casω1t ・・・・・・
・・・・・・・・・ (11Ll +L.

が現われる。すなわち印加電圧の波高値Uに対してL2
 / (Ll +L2)の比でシースサージ電圧の波高
値が現われる。この電圧をできるだけ小さくするために
はL2を小さくすればよく、このため第1図の82点を
接地して、El +”’2間の大地によってL2を短路
することによりり、を小さくしたのと同様の効果を得る
ことができる。
appears. In other words, L2 for the peak value U of the applied voltage
The peak value of the sheath surge voltage appears at the ratio of / (Ll +L2). In order to make this voltage as small as possible, it is sufficient to make L2 small. Therefore, by grounding point 82 in Figure 1 and short-circuiting L2 with the ground between El +"'2, we reduced L2. You can get the same effect as .

そこで第2図(b)に示すように82点をコンデンサC
2を介して接地しても多点接地と同様の効果が得られる
ことを式によって示す。第2図(a)と同様にして第2
図(b)における82点のシースサージ電圧v′を求め
ると次式となる。
Therefore, as shown in Figure 2(b), 82 points are connected to the capacitor C.
It is shown by the formula that the same effect as multi-point grounding can be obtained even if the grounding is done through 2. Similarly to Fig. 2(a), the second
The sheath surge voltage v' at 82 points in Figure (b) is determined by the following equation.

丁T ・・・・・・・・・・ ・・・  (2)ここで L、 CI +L2 CI +L2 C2(2)式より
明らかなようにC2/CIを大きくするほどシースサー
ジ電圧■1は小さくなる。たとえばL2/L、−3,C
7/C,−10の条件で計算すると■の最大値Vは第2
図(a)すなわち一点接地の場合■−s       
                         
            SO,75Uとなるのに対し
、第2図(b)すなわちE、点と、C2を介して接地さ
れた82点との2点接地の場合の■1の最大値はV’=
0.180となり、約1/4に抑制さS       
         Sれたことがわかる。ここでC1の
値はガス絶縁開閉装置の場合数十/IF/m程度である
からC2の値は01μF程度であれば十分な抑制効果が
得られる。
Ding T ・・・・・・・・・・・・ (2) Here, L, CI +L2 CI +L2 C2 As is clear from formula (2), the larger C2/CI becomes, the smaller the sheath surge voltage ■1 becomes. . For example, L2/L, -3,C
When calculated under the conditions of 7/C, -10, the maximum value V of ■ is the second
Figure (a) In other words, in the case of single point grounding ■-s

SO, 75U, whereas in the case of two-point grounding in Figure 2(b), namely point E and point 82 grounded via C2, the maximum value of ■1 is V'=
0.180, suppressed to about 1/4
I can see that I got S. Here, since the value of C1 is about several tens/IF/m in the case of a gas-insulated switchgear, a sufficient suppressing effect can be obtained if the value of C2 is about 01 μF.

まだ0.1μFの商用周波50Hztたは5QHzに対
するインピーダンスは約30 kΩであり、十分高いイ
ンピーダンスとなるので、主導電部を流れる通電電流に
よってd起され、容器区分と接地点とを循環する誘導電
流は極めて小さい値に抑制され、容器区分の発熱の間頴
が生じることはない。
The impedance for a commercial frequency of 50 Hzt or 5 QHz, which is still 0.1 μF, is approximately 30 kΩ, which is a sufficiently high impedance, so that an induced current generated by the current flowing through the main conductive part and circulating between the container section and the ground point. is suppressed to an extremely small value, and no mold occurs during heat generation in the container section.

そこで第3図にこの発明の実施例を示す。図において2
は開閉機器10を収゛容した金属円筒、3は中心導体9
を収容した金属円筒、Jlは外部たとえば屋外用ブッシ
ングに至る中心導体9を収容した金属円筒であって、こ
れらの円筒は可撓導体4によって互いに導電的に結合さ
れてひとつの容器区分を形成している。寸だガス絶縁開
閉装置が据え付けられている地面中には接地網13が埋
設され、金属円筒2はE、点においてこの接地網と直接
接続され、金属円筒3は82点においてコンデンサC2
を介して、壕だ金属円筒11は81点においてコンデン
サC3を介してそれぞれ接地網と接続されている。この
ように接続することによって、さきに述べた原理により
シースサージ電圧が低減されるとともに容器区分の金属
円筒を加熱する誘導電流を抑制することができる。
Therefore, FIG. 3 shows an embodiment of the present invention. In the figure 2
3 is a metal cylinder containing the switching device 10, and 3 is the center conductor 9.
Jl is a metal cylinder containing a central conductor 9 leading to the exterior, e.g. an outdoor bushing, these cylinders being conductively connected to each other by a flexible conductor 4 to form one container section ing. A grounding net 13 is buried in the ground where the gas insulated switchgear is installed, the metal cylinder 2 is directly connected to this earthing net at point E, and the metal cylinder 3 is connected to the capacitor C2 at point 82.
The trench metal cylinder 11 is connected to the ground network at 81 points via a capacitor C3. By connecting in this way, the sheath surge voltage can be reduced in accordance with the principle described above, and the induced current that heats the metal cylinder of the container section can be suppressed.

本実施例においては容器区分の一方の端部が直接接地さ
れているが、直接接地される点は容器区分中のどの位置
にあってもよい。またこの直接接地された点を含む複数
の接地点相互間の間隔がシースサージ’flf圧を低減
するのに適切であれば容器区分の各金属円筒をすべて接
地することは必ずしも必要でなく、また1個の金属円筒
が適切な接地点間隔より長いときには1個の金属円筒上
に複数の接地点を設けることが必要となる。
In this embodiment, one end of the container section is directly grounded, but the point of direct grounding may be located anywhere within the container section. Also, if the spacing between the multiple grounding points including this directly grounded point is appropriate to reduce the sheath surge 'flf pressure, it is not necessarily necessary to ground all the metal cylinders of the container section, and When each metal cylinder is longer than the appropriate grounding point spacing, it becomes necessary to provide multiple grounding points on one metal cylinder.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、ガス絶縁開閉装置の密閉容器を構成
するそれぞれの容器区分中の1点を直接接地するととも
に、該直接接地点とは異なる少なくとも1点をコンデン
サを介して接地することによりシースサ−ジ電圧が低減
されるので、運転員の感電事故や、該容器と同電位にあ
る、たとえば断路器などの機器の操作器箱とこの中の低
圧制御配線との間の絶縁破壊などを防止でき、また容器
区分と接地点とを循環して流れる誘導電流が抑制される
ので容器区分の金属円筒の発熱が避けられるという効果
が得られる。
As described above, by directly grounding one point in each container section constituting the hermetic container of the gas-insulated switchgear, and by grounding at least one point different from the direct grounding point via a capacitor, the sheath - This reduces electric shock to operators and prevents insulation breakdown between the operating box of equipment such as a disconnector, which is at the same potential as the container, and the low-voltage control wiring inside. Furthermore, since the induced current circulating between the container section and the ground point is suppressed, heat generation in the metal cylinder of the container section can be avoided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の多点接地された容器区分の例において曲
用周波誘導電流の発生を示す説明図、第2図はシースサ
ージ電圧の発生機構を説明するだめの等価回路、第3図
は本発明の一実施例を示す説明図である。 2.3.11・・・金属円筒、4・・・可撓導体、1゜
12・・・容器区分、C,、C,・・・コンデンサ、E
I・・・直接接地点、B2.B3 ・・・コンデンサを
介して接地された接地点。 r−人一一一、 (CI) (b)          (c) 第1図
Fig. 1 is an explanatory diagram showing the generation of bending frequency induced current in an example of a conventional multi-point grounded container section, Fig. 2 is an equivalent circuit to explain the generation mechanism of sheath surge voltage, and Fig. 3 is an explanatory diagram of the present invention. FIG. 2 is an explanatory diagram showing one embodiment of the invention. 2.3.11... Metal cylinder, 4... Flexible conductor, 1゜12... Container division, C,, C,... Capacitor, E
I...direct grounding point, B2. B3...Grounding point grounded via a capacitor. r-person 111, (CI) (b) (c) Figure 1

Claims (1)

【特許請求の範囲】[Claims] 主導電部を内蔵し互いに導電的に結合された金属円筒か
らなる容器区分中の1点のみを直接接地するとともに該
接地点とは異なる少なくとも1点をコンデンサを介して
接地したことを特徴とするガス絶縁開閉装置。
It is characterized in that only one point in the container section, which is made up of metal cylinders that have built-in main conductive parts and are electrically conductively coupled to each other, is directly grounded, and at least one point different from the grounding point is grounded via a capacitor. Gas insulated switchgear.
JP58082192A 1983-05-11 1983-05-11 Gas insulated switching device Pending JPS59209009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082192A JPS59209009A (en) 1983-05-11 1983-05-11 Gas insulated switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082192A JPS59209009A (en) 1983-05-11 1983-05-11 Gas insulated switching device

Publications (1)

Publication Number Publication Date
JPS59209009A true JPS59209009A (en) 1984-11-27

Family

ID=13767565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082192A Pending JPS59209009A (en) 1983-05-11 1983-05-11 Gas insulated switching device

Country Status (1)

Country Link
JP (1) JPS59209009A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089850A (en) * 1973-12-12 1975-07-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089850A (en) * 1973-12-12 1975-07-18

Similar Documents

Publication Publication Date Title
US7529073B2 (en) Protecting medium voltage inductive coupled device from electrical transients
Tavakoli et al. Comparison between suppressing approaches of very fast transients in gas-insulated substations (GIS)
RU2046427C1 (en) High-voltage instrument current transformer
Zhu et al. Analyses on an electronic voltage transformer's failure by its resonance with very fast transient overvoltage and suppression
US4314303A (en) Overvoltage protection device
JPS59209009A (en) Gas insulated switching device
Gillies et al. Methods for reducing induced voltages in secondary circuits
CN114089023A (en) Detection method and device for secondary cable disturbance voltage by VFTO and computer equipment
JP2918060B2 (en) Gas insulated electrical equipment
Tavakoli et al. Mitigation of transient overvoltages generated due to switching operations and lightning in gas-insulated substation (GIS) Without extra limiter
JPH06505125A (en) Current transformer
JPH01309303A (en) Tank type arrester and gas insulated switchgear utilizing same arrester
JPH03230726A (en) Counteracting circuit for overvoltage induced in communication cable
JPH0624991Y2 (en) Gas insulated transformer
Tavakoli et al. Influence of terminal components for suppression of high-frequency transients in GIS
JPS5953773B2 (en) Multiphase bulk gas insulated electrical equipment
JPH04261307A (en) Earthing arrangement
JP3234615B2 (en) Gas insulation equipment
JPS6036969Y2 (en) gas insulated electrical equipment
JPH0127391Y2 (en)
JP2002135920A (en) Voltage transformer
JP3369321B2 (en) Gas insulated switchgear
JP2986846B2 (en) Gas disconnector
JPS6119508Y2 (en)
Alamoudi et al. Investigation of Transient Overvoltages on GIS Busbars and External Enclosures