JPS59208953A - Transmitting and receiving system of optical signal - Google Patents

Transmitting and receiving system of optical signal

Info

Publication number
JPS59208953A
JPS59208953A JP58083407A JP8340783A JPS59208953A JP S59208953 A JPS59208953 A JP S59208953A JP 58083407 A JP58083407 A JP 58083407A JP 8340783 A JP8340783 A JP 8340783A JP S59208953 A JPS59208953 A JP S59208953A
Authority
JP
Japan
Prior art keywords
optical
hologram
light
optical signal
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58083407A
Other languages
Japanese (ja)
Inventor
Hiroaki Tajima
田島 裕昭
Koichiro Tamura
浩一郎 田村
Yoshikuni Okada
義邦 岡田
Yoichi Hamazaki
濱崎 陽一
Joji Matsuda
浄史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58083407A priority Critical patent/JPS59208953A/en
Publication of JPS59208953A publication Critical patent/JPS59208953A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce the optical power loss and therefore to reduce the transmission electric power by transmitting selectively the optical signals to plural optical signal receivers from optical signal transmitters via a hologram. CONSTITUTION:Both optical transmitters and receivers are unified into a unit via a optical transmitting/receiving device as shown by TR1-TRn in the figure. In this case, a mirror M is adhered close to the back of a hologram H. The light delivered from any of optical transmitting/receiving devices TR1-TRn is reflected by the mirror M through the hologram H and forms a light spot over the photodetecting part of each of devices TR1-TRn. For this purpose, the hologram H has a specific structure. As a result, the communication lines are formed among devices TR1-TRn to secure the exchange of information among these devices under the proper control.

Description

【発明の詳細な説明】 この発明は、光信号の伝達をホログラムを介して行う光
信号送受信方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical signal transmission/reception system in which optical signals are transmitted via a hologram.

周知のとおり、数百台のプロセッサユニット”2持つよ
うなマルチプロセッサシステムの開発が行われているが
、プロセッサ間の通信に使われる共有バスは大きな通信
容量が要求される。処理速度を上げるためにプロセッサ
の数を多くすれば、バスの通信斂が増大し、通信容量が
不足すればシステムの性能低下を招く。このような共有
バスは将来、ギガ(109)ビット/秒を越える高速の
転送V−)が要求されるのは必至であり、その実現の可
能性は光な媒体とした情報伝送以外に考えられない。通
常、光信号の伝送には光ファイバが利用される。光フフ
イバは優れた特性を持っているが、光の分岐の際、減衰
が大きく、また、接続コネクタが高価である等の欠点が
ある。マルチプロセッサシステムの共有バスにも光ファ
イバの利用が当然考えられるが、数百台ものプロセッサ
を結ぶにはぼう大な光ファイバの結線を必要とするため
に上記の欠点が現われて実用不可能となる。このため、
上記問題の解決策として、円筒鏡を用いた光情報交換方
式(特開昭57−10551号参照)が提案された。こ
れを第1図に示す。この図においては、マルチプロセッ
サシステムの各プロセッサ間の情報交換に用いる放送形
バスへの応用を想足している。
As is well known, multiprocessor systems with hundreds of processor units are being developed, but the shared bus used for communication between processors requires a large communication capacity.In order to increase processing speed, Increasing the number of processors in a network will increase bus communication congestion, and a lack of communication capacity will degrade system performance. It is inevitable that V-) will be required, and the only possible way to realize it is to transmit information using an optical medium.Normally, optical fibers are used to transmit optical signals. Although it has excellent characteristics, it has drawbacks such as large attenuation when splitting light and expensive connectors.Of course, optical fibers can also be used as a shared bus in multiprocessor systems. However, connecting hundreds of processors requires a large amount of optical fiber connections, which causes the above-mentioned drawbacks and makes it impractical.
As a solution to the above problem, an optical information exchange system using a cylindrical mirror (see Japanese Patent Laid-Open No. 10551/1983) was proposed. This is shown in FIG. In this figure, an application to a broadcast bus used for exchanging information between processors in a multiprocessor system is considered.

円筒鏡面A’&画する円筒鏡1の部材として、この場合
は円筒形凹面鏡が選ばれており、この円筒鏡1の円筒鏡
面Aに相対する仮想の曲面B上に、複数の光信号送受信
器(以下、光送受信器という)TR+、TR+、TR,
、が設げられる。各光送受信器TR+ 、TR+ 、T
R,は、曲面B上の都合の良い位置P、、P、、 P”
3にあるものの−LAヲ便宜的に示しているに過ぎず、
実際は、後述のように、曲面B上に必要個数を分布させ
ることができる。
In this case, a cylindrical concave mirror is selected as the member of the cylindrical mirror 1 that defines the cylindrical mirror surface A', and a plurality of optical signal transceivers are mounted on the virtual curved surface B of the cylindrical mirror 1, which faces the cylindrical mirror surface A. (hereinafter referred to as optical transceiver) TR+, TR+, TR,
, will be established. Each optical transceiver TR+, TR+, T
R, is a convenient position P,,P,,P” on the curved surface B.
3 - LA is only shown for convenience,
Actually, the required number can be distributed on the curved surface B as described later.

光送受信器自体の構成は任意であって、これを規定する
ものではないが、例えば発光ダイオード、半導体レーザ
等の発光素子と、PIN光ダイオード、なだれ光ダイオ
ード等の受光素子とを適当なハウジング内に一体的に組
み入れたもの等が考えられる。そして、これ等発光、受
光素子に対する電気信号入出力線路群2に、適当なイン
ターフェース回路を介して夫々のプロセッサ3を接続す
る。
The configuration of the optical transmitter/receiver itself is arbitrary and is not specified, but for example, a light emitting element such as a light emitting diode or a semiconductor laser, and a light receiving element such as a PIN photodiode or an avalanche photodiode are housed in a suitable housing. It is conceivable that the system is integrated into the system. Each processor 3 is connected to the electrical signal input/output line group 2 for these light emitting and light receiving elements via a suitable interface circuit.

従って、プロセッサ3と同数の光送受信器の数があるこ
とになる。
Therefore, there are the same number of optical transceivers as there are processors 3.

このようにして、円筒鏡面A、[1111面B間が各光
送受信器TR+ 、TR+、TRo相互間の共用の伝送
路となるが、以下この点に就きさらに説明な加える。
In this way, the area between the cylindrical mirror surface A and the [1111 surface B] becomes a shared transmission path between the respective optical transmitters/receivers TR+, TR+, and TRo, but this point will be further explained below.

第1図において、曲面B上から円筒鏡面Aに放射角θで
放射された光が円筒鏡面Aの中央点4と円弧の中心点5
0間を丁度通過する位51. p I に光送受信器T
R+を置いて発光素子にて光な送った場合、円筒鏡面A
で反射した光は、位BP、と、中央点4.中心点5とを
結ぶ軸icに対して位置P1  と対称となる位置P、
との間に拡がって返ってくる。これは光の性質から明ら
かである。また、例えば軸線C上の位負から放射角θで
放射された光も、曲面B上の位置21〜23間に拡がっ
て返ってくる位置P2が存在する。
In Fig. 1, light emitted from curved surface B to cylindrical mirror surface A at a radiation angle θ is transmitted to center point 4 of cylindrical mirror surface A and center point 5 of the circular arc.
Just passing between 0 and 51. Optical transceiver T on p I
When R+ is placed and light is sent by a light emitting element, the cylindrical mirror surface A
The light reflected at the center point BP and the center point 4. A position P that is symmetrical to the position P1 with respect to the axis ic connecting the center point 5,
It spreads between and returns. This is clear from the nature of light. Further, for example, there is a position P2 where light emitted from a position on the axis C at a radiation angle θ spreads and returns between positions 21 to 23 on the curved surface B.

このようにθなる放射角で放射された光が円筒鏡面Aで
反射して位置p+−ps間に拡がって返って来る条件を
満足する点は曲面B上に連続して存在し、この曲線は光
学および幾何学により容易に求めることができる。こう
して求めた曲面日の上に必要な数の送受信Bk分布させ
て設置する。
There are consecutive points on the curved surface B that satisfy the condition that the light emitted at the radiation angle θ is reflected by the cylindrical mirror surface A, spreads between the positions p+ and ps, and returns, and this curve is It can be easily determined by optics and geometry. The required number of transmission and reception Bk is distributed and installed on the curved surface obtained in this way.

この装置は放送形バスを想冗しているから、この種の公
知方式により、ある時点で送信が許されるのは唯一つの
みで、他は全部受信側となる。データが放送されると多
数の受信側はそれぞれが自分に必要なデータが含まれて
いれはこれを採り込み、不要なデータであれば捨てる。
Since this device is based on a broadcast bus, this type of known system allows only one transmitter to transmit at a given time, while all others are receivers. When data is broadcast, each of the many receivers takes in the data if it contains the data they need, and discards the data if it is unnecessary.

このようにすれば、そのデータが必要な受信者が如何に
多(ても最低一度の送信でデータの伝送は完了する。も
し受信誤りが有れば再送信を要求し、再び同じデータを
送信するようにすれば信頼性は充分高いものになる。さ
らに送信器のファンアウトも電線を用いるものに比較し
て非常に大きく、通常の半導体論理素子であるTTLバ
スドライバではファンアウトが10〜30であるのに対
して1000以上も採れることが確かめられている。
In this way, no matter how many recipients need the data, data transmission can be completed with at least one transmission. If there is a reception error, a retransmission is requested and the same data is sent again. If this is done, the reliability will be sufficiently high.Furthermore, the fanout of the transmitter is very large compared to one that uses electric wires, and the fanout of a TTL bus driver, which is a normal semiconductor logic element, is 10 to 30. However, it has been confirmed that more than 1,000 can be harvested.

ところで、上記の光情報交換方式は、元ファイバを使用
しないで光信号な空間に発して情報伝送を行うため光フ
ァイバの欠点は存在しない。しかし、この方式は第1図
に示すように放射角θで発(、た光が円筒鏡1で反射し
、必要イ装置PIpP3間に拡がることを応用している
ため構造上各党送受信器TRY、・・・、TR,、・・
・、TRゎの発光素子。
By the way, the above-mentioned optical information exchange system does not have the drawbacks of optical fibers because it transmits information by emitting optical signals into space without using the original fiber. However, as shown in Fig. 1, this method utilizes the fact that the light emitted at the radiation angle θ is reflected by the cylindrical mirror 1 and spreads between the necessary devices PIpP3. ...,TR,,...
・, TRゎ light emitting element.

受光素子をすべて一直線上に配置角せざるを得ない制限
があった。また、円筒鏡1から反射してきた光は、受光
部以外の各発光部や空隙等必妥のない部分にまでおよび
、光パワーの大きな損失となって光信号送信器(以下、
光送信器という)のファンアウトの減少、すなわちバス
に付ゆられるボートの数を減少させる原因となっていた
There was a restriction that all the light receiving elements had to be arranged on a straight line. In addition, the light reflected from the cylindrical mirror 1 reaches unnecessary parts such as light emitting parts other than the light receiving part and gaps, resulting in a large loss of optical power and causing a large loss of optical power to the optical signal transmitter (hereinafter referred to as
This has led to a reduction in the fan-out of optical transmitters (optical transmitters), which in turn has led to a reduction in the number of boats attached to the bus.

この発明は、上記の点にかんがみなされたもので、九フ
ァイバを使用せず、直接光(8号を空間に放射して情報
の交換を行い、かつ、ボログラクイ−技術により全部の
光信号受信器(以下、光受信器という)の受光部のみに
選択的に光信号を送ることによって光パワー損失の減少
を計り、従って送信電力の軽減とファンアウトの増大に
よって旨い効率を得るとともに構造も簡単で経済的なパ
スを提供せんとするものである。以下、この発明の原理
と実施例とについて説明する。
This invention was made in consideration of the above points, and it does not use 9 fibers, but directly radiates light (No. By selectively sending optical signals only to the light receiving section of the optical receiver (hereinafter referred to as an optical receiver), optical power loss is reduced. Therefore, by reducing transmission power and increasing fan-out, good efficiency is achieved and the structure is simple. The present invention is intended to provide an economical path.The principles and embodiments of the present invention will be described below.

第2図はこの発明の原理を示す説明図である。FIG. 2 is an explanatory diagram showing the principle of this invention.

この図において、sl 1  St J ・・・、sI
、lはコヒー〆ントな光を出す光源、Hはホログラム、
scはスクリーン、1□、17.・・・、+n け前記
スクリーンSC上の光点である。ただし、スクリーンS
Cは平面である必要はない1.ホログラムHは、例えば
光源SIから発した光を受け、スクリーンSC上にn個
の光点1□j 12.・・・7In’<得るように作る
ことができるのは良く知られている。この場合、理想的
には光#S、から出た光のパワーは各光点117127
 ・・、+nに等分割されて到達するようにできる。ま
た、ホログラムHは光源Sl。
In this figure, sl 1 St J ..., sI
, l is a light source that emits coherent light, H is a hologram,
sc is screen, 1□, 17. . . , +n are the light spots on the screen SC. However, screen S
C does not have to be a plane1. The hologram H receives light emitted from, for example, a light source SI, and forms n light spots 1□j 12. on the screen SC. It is well known that it can be made to obtain 7In'<. In this case, ideally the power of light emitted from light #S is 117127 at each light point.
. . , +n can be equally divided and reached. Further, the hologram H is a light source Sl.

S2.・・、Sゆのいずれの位置から発した光を受けて
もスクリーンSC上のIIF  +27・・・7  I
nの位置に光点を得るように作ることができる。このよ
うなホログラムHを用い、光源S、、S、、・・・。
S2. ..., IIF on the screen SC regardless of the light emitted from any position on S Yu +27...7 I
It can be made to obtain a light spot at position n. Using such a hologram H, light sources S, , S, . . .

S□の位置にそれぞれ光送信器を、光点12,1□。Optical transmitters are placed at the positions of S□, light points 12 and 1□.

・・・、1.、の位置にそれぞれ光受信器を設ければ、
光臨S、、S2.・・・、Sm のうちの任意の1つ以
上の光送信器は光点11.+2.・・・g  Inの全
部の光受信器に同時に光信号を送ることができる。この
とき光送信器の光パワーは光点11125・・・、  
+nのyt受イy器の部分のみに送られ、それ以外の不
要部分に散ることがない。
..., 1. If an optical receiver is installed at each position, then
Korin S,,S2. . +2. . . . Optical signals can be sent to all optical receivers of g In at the same time. At this time, the optical power of the optical transmitter is at the light point 11125...
It is sent only to the +n yt receiver and is not scattered to other unnecessary parts.

第3図はこの発明の原理を示す他の説明図で、ホログラ
ムHの背面に鏡Mを密着した場合を示すものである。こ
の場合、光源S、、S、、・・・、S□からホログラム
Hに当った光は鏡Mで反射して光点1’1.  l’、
 、・・・、1′oの各位置に集光するようになる。
FIG. 3 is another explanatory diagram showing the principle of the invention, and shows a case where a mirror M is closely attached to the back surface of a hologram H. In this case, the light hitting the hologram H from the light sources S, , S, . l',
, . . . , 1'o.

光送信器の発光部のコヒーンントな光源としては/−ザ
ダイオードが適している。また、光受信器の受光素子と
してはアバランシェフォトダイオード、PINフォトダ
イオード等が適している。
A diode is suitable as a coherent light source for the light emitting part of the optical transmitter. Moreover, an avalanche photodiode, a PIN photodiode, etc. are suitable as the light receiving element of the optical receiver.

第4図はこの発明の上記の原理に基づいてなされたもの
で、光を媒体とした光信号送受信方式の第1の実施例を
示すものである。この図において、TR,、TR2,・
・・、TR11はそれぞれ光送受信器で、前述の光送信
器と光受信器とを1つにまとめたものであり、ホログラ
ムHの背面に鏡M7!l−密着して置かれている。この
場合、光送受信器TR,。
FIG. 4 is based on the above-mentioned principle of the present invention, and shows a first embodiment of an optical signal transmission/reception system using light as a medium. In this figure, TR,,TR2,・
..., TR11 are optical transceivers, which combine the aforementioned optical transmitter and optical receiver into one, and there is a mirror M7 on the back of the hologram H! l - placed in close contact. In this case, the optical transceiver TR,.

TR,、・・・、TR1+のいずれから発した光もホp
グラムH’&経て鏡Mで反射し、光送受信器TR,。
The light emitted from any of TR, ..., TR1+ is hop
gram H'& reflected by mirror M, and optical transmitter/receiver TR.

TR,、・・・、TRn のそれぞれの受光部上に光点
を結ぶようにホログラムHを作る。このようにすれば、
光送受信器TR,、TR2,・・・、TR1l相互間に
通信路ができ、適当な制御のもとに光送受信器TR,,
TR2,・・・+TRiTR間の情報交換を行うことが
できる。
A hologram H is created so as to connect light points on each of the light receiving parts of TR, . . . , TRn. If you do this,
A communication path is established between the optical transceivers TR, TR2,..., TR1l, and the optical transceivers TR,..., TR1l are connected under appropriate control.
Information can be exchanged between TR2, . . . +TRiTR.

また、このとき第5図に示すようにホログラムHの中央
点Oを中心とする半径rの円弧上または半球面上に光送
受信器TR,,TR2,・・・、TR。
At this time, as shown in FIG. 5, optical transceivers TR, TR2, .

を配置できるようにすれば、各光送受信器TR,。If it is possible to arrange each optical transceiver TR,.

TR,、・・・、TRゎ相互間の光路長をほぼ等しくす
ることができ、光路差による光信号の位相差を無視する
ことができる。従って、信号の位相差に起因する情報伝
送の信頼性低下が無くなると同時に光送受信器TR,、
TR,、・・・、TRn  に信号の位相差次補正する
装置を省くことができて溝造が簡単になり舒済的である
The optical path lengths between TR, . Therefore, the reliability of information transmission due to the phase difference of signals is eliminated, and at the same time, the optical transceiver TR,
Since it is possible to omit a device for correcting the phase difference of the signals in TR, .

第6図はこの発明の第2の実施例を示す説明図で、ホロ
グラムHの構成を変えて多数の光送受信器の間で選択的
に通信路を形成したものである。
FIG. 6 is an explanatory diagram showing a second embodiment of the present invention, in which the configuration of the hologram H is changed to selectively form communication paths between a large number of optical transmitters and receivers.

説明の便宜上6台の光送受信器TR,、TR,。For convenience of explanation, there are six optical transceivers TR,,TR,.

・・・、TR,Y配置しであるが、もちろん台数に!特
別の限定はない。この図におい℃、ホログラムHは次の
ように構成されている。すなわち、光送受信器TR,か
ら発した光信号は、点線で示すようにホログラムHを経
てNMで反射して光送受信器T RI !  T R4
、T R!l の受光部にのみそれぞれ集ブ0する。同
様に光送受信器TR,からうむした光信号も光送受信器
TR,、TR,、TR,の受光部に集光し、光送受信器
TR,の発した光信号も光送受信器TR1,TR,、T
R,の受光部に集光する。次に、光送受信器TR,の元
した光信号は実線で示すようにホログラムHを経て鏡M
で反射し、光送受信器TR,J  TR,、TR,の受
光部のみにそれぞれ集光する。同様に光送受信器■R3
,TR,の発した光信号もそれぞれ光送受信器TR,、
TR,、TR,の受光部のみに集光する。このように構
成されたホログラムHな用いると、光送受信器T Rt
 s  T R4v  T R11相互間は情報交換が
可能であるが、他の光送受信器TR2,。
..., TR, Y layout, but of course the number of units! There are no special limitations. In this figure, the hologram H is constructed as follows. That is, the optical signal emitted from the optical transceiver TR, passes through the hologram H and is reflected by NM, as shown by the dotted line, and is reflected by the optical transceiver TRI! T R4
, T R! The light is focused only on the light receiving section of 1. Similarly, the optical signal transmitted from the optical transceiver TR is also focused on the light receiving part of the optical transceiver TR, , TR, , TR, and the optical signal emitted by the optical transceiver TR is also focused on the optical transceiver TR1, TR, TR, , T
The light is focused on the light receiving section of R. Next, the optical signal originating from the optical transceiver TR passes through the hologram H and the mirror M as shown by the solid line.
and is focused only on the light receiving sections of the optical transmitters/receivers TR, JTR, , TR. Similarly, optical transceiver ■R3
The optical signals emitted by , TR, are also transmitted to optical transceivers TR, , TR, respectively.
The light is focused only on the light receiving section of TR, , TR. When the hologram H configured in this way is used, an optical transceiver T Rt
s TR4v TR11 can exchange information with each other, but other optical transceivers TR2,.

TRs、TR,とはいずれも情報交換が不可能である。It is impossible to exchange information with both TRs and TR.

同様に光送受信器TR2、TRs s  丁R6相互間
は悄襲交換が可能であるが、他の光送受信器TR1、T
R,、TR5とliいずれも(′iv?11 交換が不
可能である。
Similarly, attack exchange is possible between optical transceivers TR2, TRs and R6, but other optical transceivers TR1 and T
Both R,, TR5 and li ('iv?11 cannot be exchanged.

この第2の実施例の特徴は、多数の光送受信器TR,、
TR2,・・・、TR11のうちの特定のグループ間の
み情報交換を行わせることができることKある。この方
法により光送受信器TR,、TR,。
The feature of this second embodiment is that a large number of optical transceivers TR,
In some cases, information can be exchanged only between specific groups among TR2, . . . , TR11. By this method, the optical transceiver TR,,TR,.

・・・、TR1,を持っプロセッサユニット多数からな
るマルチプロセッサシステムにおいては、ホログラムH
を交換すればマルチプ戸セッサの通信網を簡単に変える
ことができる。
..., TR1, in a multiprocessor system consisting of many processor units, the hologram H
By replacing the , you can easily change the communication network of the multiplexer.

第7図はこの分明の第3の実施例を示す説明図で、この
図においては複数のビットからなる情報を並列転送によ
って交換する光送受信器を形成したものである。この実
施例では、2ビツトを並列転送する光送受信器3台で構
成した場合であるが。
FIG. 7 is an explanatory diagram showing a third embodiment of this understanding, in which an optical transceiver is formed that exchanges information consisting of a plurality of bits by parallel transfer. In this embodiment, three optical transceivers transmit two bits in parallel.

もちろんビット数や光送受)言器の数に特別の制限はな
い。第7図において、T I+、”12 p Tl’J
 y T22 y731p  TR2は光送信器、R1
□y R121R211R22*R31s  R32は
光受信器である。光送信器T11と光受信器R11とを
一対にしてM4図、第5図、第6図の第1.第2の実施
例における光送受信器TR。
Of course, there is no particular limit to the number of bits or the number of optical transceivers. In FIG. 7, T I+, "12 p Tl'J
y T22 y731p TR2 is an optical transmitter, R1
□y R121R211R22*R31s R32 is an optical receiver. The optical transmitter T11 and the optical receiver R11 are paired as shown in FIG. 1 in FIG. M4, FIG. 5, and FIG. Optical transceiver TR in the second embodiment.

と同一の機能を持たせ、光送信器Tnと光受信器Rft
の関係も同様とし、しかも先送、受信器”11゜R□と
711 J  R12とをもって第1の光送受信器を構
成する。この場合、光送信器TllとLtはそれぞれf
jlE>の光送受信器の第1ビツトおよび第2ビツトの
送信を受は持つ。また、光受信器R11,Ruはそれぞ
れ第1ピントおよび第2ビツトの受信を受は持つ。同様
に、先送、受信器Ttjp R2++ T2□R22s
  T31 + F?sr 4 Tit + R11*
がそれぞし第2.第3の光送受信器を構成する。ホログ
ラムHは背面に密着した鏡Mを持ち、いずれの光送信器
もホログラムHK向げて光信号を発すればホログラムH
を経て鏡Mで反射した光信号はすべての光受信器のそれ
ぞれ対応したビットの受光部に集光するように構成され
ている。このようにすると、3台の光送受信器相互間で
2ピントの情報を交換することができる。
The optical transmitter Tn and the optical receiver Rft have the same functions as the optical transmitter Tn and optical receiver Rft.
Furthermore, the first optical transmitter/receiver is composed of the forward transmitter, receiver "11°R□" and 711JR12. In this case, the optical transmitters Tll and Lt are respectively f
The receiver has the transmission of the first bit and the second bit of the optical transceiver of jlE>. Further, the optical receivers R11 and Ru each receive the first and second bits. Similarly, forward transmission, receiver Ttjp R2++ T2□R22s
T31 + F? sr 4 Tit + R11*
That's the second one. A third optical transceiver is configured. The hologram H has a mirror M closely attached to the back, and if any optical transmitter emits an optical signal toward the hologram HK, the hologram H
The optical signal reflected by the mirror M is condensed onto the light receiving portion of each corresponding bit of all the optical receivers. In this way, two-focus information can be exchanged between the three optical transceivers.

第8図はこの発明の第4の実施例を示す説明図で、ホロ
グラムH火多数使用するものである。この図においても
2ビット並列転送の光送受信器3台の例を示す。もちろ
ん並列転送のビット数および光送受信器の数に特別の制
限はない。この図において、光透、受信器Tll a 
T+21 T217722J ”31 pT32t R
11R1+!s R21s R22J R31! Rs
t はそれぞれ第7図の第3の実施例と同一である。H
1□p H+27H21rH22y H3L * H3
2はホログラムで、背面には鏡Mが密着しており、各光
送受信器の各ピントごとに独立して設けられている。す
なわち、第4の実施例の場合は2ビツトの光送受信器が
3台であるから6個のホログラムH1l p l”’1
12 s・・・v  HR□が一枚の板の−Hに作られ
ている。各ホログラムHII、HI!、・・・。
FIG. 8 is an explanatory diagram showing a fourth embodiment of the present invention, in which a large number of hologram H lights are used. This figure also shows an example of three optical transceivers for 2-bit parallel transfer. Of course, there is no particular limit to the number of parallel transfer bits or the number of optical transceivers. In this figure, the optical transmitter, receiver Tll a
T+21 T217722J ”31 pT32t R
11R1+! s R21s R22J R31! Rs.
t are respectively the same as in the third embodiment of FIG. H
1□p H+27H21rH22y H3L * H3
Reference numeral 2 denotes a hologram, and a mirror M is closely attached to the back surface of the hologram, and is provided independently for each focus of each optical transmitter/receiver. That is, in the case of the fourth embodiment, since there are three 2-bit optical transceivers, there are six holograms H1l p l"'1
12 s...v HR□ is made on -H of one board. Each hologram HII, HI! ,...

Ha2は以下のように構成されている。すなわち、光送
信器T11から発した光信号はホログラムH11はR2
1 にT12はR12に、「J責、T22はR22に、T 
s+ !、LH31に、T32はR32に向けてそれぞ
れ光信号を1欠、−する。先送4M冊Tl+の発した光
信号はポログラ;÷iH1+を経て鏡Mで反射して光受
イ1−1器RII p R21e R3+の受光部にそ
れぞれ集光する。また、光送信器■2.。
Ha2 is configured as follows. That is, the optical signal emitted from the optical transmitter T11 is transmitted from the hologram H11 to R2.
1, T12 said to R12, ``J responsibility, T22 said to R22, T
s+! , LH31, and T32 send optical signals to R32, respectively. The optical signal emitted by the forwarding 4M volumes Tl+ passes through the polarizer; ÷iH1+, is reflected by the mirror M, and is focused on the light receiving section of the light receiver 1-1 RII p R21e R3+. Also, optical transmitter ■2. .

T31の発した光信号はそれぞれホログラムH2++H
i’llと鏡Mとによりゃはり光受信器R11t R2
+ 1 R31の受光部にそれぞれ集光する。同様に光
送信器TI27Tnp  ’rs2の発した光信号もそ
れぞれホログラムH1□H22y R32と鏡Mとによ
って光受信器R12+ R22vR12+の受光部にそ
れぞれ集光する。
The optical signals emitted by T31 are each hologram H2++H
Optical receiver R11t R2 by i'll and mirror M
+ 1 The light is focused on the light receiving section of R31. Similarly, the optical signals emitted by the optical transmitter TI27Tnp'rs2 are also focused on the light receiving sections of the optical receivers R12+ R22vR12+ by the holograms H1□H22y R32 and the mirror M, respectively.

以上のように構成されたホログラムH1l 、R12y
・・・、R32をもった第4の実施例のものは、第7図
の第3の実施例と全(同一の効果を持つと同時に次の利
点がある。すなわち、第3の実施例では光送受信器のホ
ログラムに対する光信号の発射角度がそれぞれ異なって
いたが、第4の実施例では光送信器T11.ホログラム
R11,光受信器R1,,R□。
Holograms H1l and R12y configured as above
..., the fourth embodiment with R32 has the same effects as the third embodiment shown in FIG. 7, and at the same time has the following advantages. Although the emission angles of the optical signals from the optical transceivers to the holograms were different, in the fourth embodiment, the optical transmitter T11, the hologram R11, and the optical receivers R1, , R□.

R31の間の位置関係と、光送信器T12.ホログラム
R12,光受信器R12F R22+ R32の間の位
置関係が単に高さhが異なるのみであるように形成され
ているならば、1つの光送受信器の各ビットは同一角度
で光信号を発することができることになる。
R31 and the optical transmitter T12. If the positional relationship between the hologram R12 and the optical receiver R12F R22+R32 is formed such that only the height h differs, each bit of one optical transceiver will emit an optical signal at the same angle. will be possible.

これは多くのビット数を並列転送するための光送信器を
作る場合に大変便利で量産に適している。
This is very convenient when creating an optical transmitter for transferring a large number of bits in parallel, and is suitable for mass production.

また・各ホログラムH1lと812 p H21と82
2z  l”131と832は全く同じものでよいから
写真の複写で容易に作ることができる。
Also, each hologram H1l and 812p H21 and 82
2z l"131 and 832 can be exactly the same, so they can be easily made by photocopying.

以上詳却1に説明したようにこの発明は、少なくとも】
台の光送信器から複数台の光受信器へ光信号を送る光イ
J号送受信方式において、光送信器から複数台の光受信
器への光信号の伝達をホログラムを介して選択的に行わ
せるようにしたので、高速大容量の電子計算機、特にマ
ルチプロセッサシステムの実現に不可欠な下記の利点を
得ることができる。
As explained above in detail 1, this invention has at least
In the Optical I-J transmission/reception method that sends optical signals from one optical transmitter to multiple optical receivers, optical signals are selectively transmitted from the optical transmitter to multiple optical receivers via holograms. As a result, the following advantages, which are essential for realizing a high-speed, large-capacity electronic computer, especially a multiprocessor system, can be obtained.

(1)光送受信器相互間の伝送線の数の制限を受けるこ
となく光送受信器の数を増すことができる。
(1) The number of optical transceivers can be increased without being limited in the number of transmission lines between the optical transceivers.

(2)  光を情報伝送の媒体として用いることにより
数ギガビット/秒以上のきわめて高い転送レートを使用
できる。
(2) By using light as a medium for information transmission, extremely high transfer rates of several gigabits/second or more can be used.

(3)光による通信であるため外界の電磁気雑音の影響
火受けないので高い信頼性が得られる。
(3) Since communication is based on light, it is not affected by external electromagnetic noise, so high reliability can be achieved.

(4)ホログラムを使用することにより必要な場所への
み光信号を送ることができるので光パワーの損失がほと
んど無く、高い効率が得られろ。
(4) By using a hologram, optical signals can be sent only to where they are needed, so there is almost no loss of optical power and high efficiency can be obtained.

(5)背面に鏡を持つホログラムを使用すれば、光送信
器と光受信器を隣接した場所に設置できるため、送信器
と受信器間の配線長が短かくなり、全体の構造が簡単に
なるため、システムの高速化、高信頼性が得られる。
(5) By using a hologram with a mirror on the back, the optical transmitter and optical receiver can be installed in adjacent locations, which shortens the wiring length between the transmitter and receiver, simplifying the overall structure. This makes the system faster and more reliable.

(6)  ホログラムの作り方で多数の光送受信器のう
ちの特定グループ相互間のみ情報交換を行うように設計
することができる。
(6) By creating a hologram, it is possible to design a hologram so that information can be exchanged only between a specific group of a large number of optical transceivers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光情報交換方式の一例を示す説明図、第
2図、第3図はこの発明の原理をそれぞれ示す説明図、
第4図、第5図はこの発明の第1の実施例を示す説明図
、第6図はこの発明の第2の実施例を示す説明図、第7
図はこの発明の第3の実施例を示す説明図、第8図はこ
の発明の第4の実施例を示す説明図である。 図中、Sit 827”・、Soは光源、Hはホログラ
ム、SCはスクリーン、lI、12)  ・−、+nは
光点、Mは鏡、TR,、TR,、・・・、  TRゎは
光送受信器である。 第1図 第2図 第5図 第6図
FIG. 1 is an explanatory diagram showing an example of a conventional optical information exchange system, and FIGS. 2 and 3 are explanatory diagrams each showing the principle of the present invention.
4 and 5 are explanatory diagrams showing the first embodiment of the invention, FIG. 6 is an explanatory diagram showing the second embodiment of the invention, and FIG. 7 is an explanatory diagram showing the second embodiment of the invention.
The figure is an explanatory diagram showing a third embodiment of the invention, and FIG. 8 is an explanatory diagram showing a fourth embodiment of the invention. In the figure, Sit 827"・, So is the light source, H is the hologram, SC is the screen, lI, 12) ・-, +n is the light point, M is the mirror, TR,, TR,..., TRゎ is the light It is a transmitter/receiver. Fig. 1 Fig. 2 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1台の光信号送信器から複数台の元信号受信
器へ光信号を送る元(p斜送受信方式において、前記光
信号送信器から複数台の前記光信号受信器への光信号の
伝達をホログラム欠介して選択的に行わせること?<%
徴とする光信号送受信方式。
A source for transmitting an optical signal from at least one optical signal transmitter to a plurality of original signal receivers (in the p-oblique transmission/reception method, transmission of an optical signal from the optical signal transmitter to the plurality of optical signal receivers) Can it be performed selectively through holograms? <%
An optical signal transmission and reception method.
JP58083407A 1983-05-12 1983-05-12 Transmitting and receiving system of optical signal Pending JPS59208953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083407A JPS59208953A (en) 1983-05-12 1983-05-12 Transmitting and receiving system of optical signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083407A JPS59208953A (en) 1983-05-12 1983-05-12 Transmitting and receiving system of optical signal

Publications (1)

Publication Number Publication Date
JPS59208953A true JPS59208953A (en) 1984-11-27

Family

ID=13801571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083407A Pending JPS59208953A (en) 1983-05-12 1983-05-12 Transmitting and receiving system of optical signal

Country Status (1)

Country Link
JP (1) JPS59208953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111516A (en) * 2014-12-05 2016-06-20 大日本印刷株式会社 Optical communication system and illumination device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146648A (en) * 1976-05-31 1977-12-06 Mitsubishi Electric Corp Optical divider
JPS55146403A (en) * 1979-05-04 1980-11-14 Nippon Telegr & Teleph Corp <Ntt> Photo branching and distributing device
JPS5710551A (en) * 1980-06-21 1982-01-20 Agency Of Ind Science & Technol Transmission system of optical information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146648A (en) * 1976-05-31 1977-12-06 Mitsubishi Electric Corp Optical divider
JPS55146403A (en) * 1979-05-04 1980-11-14 Nippon Telegr & Teleph Corp <Ntt> Photo branching and distributing device
JPS5710551A (en) * 1980-06-21 1982-01-20 Agency Of Ind Science & Technol Transmission system of optical information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111516A (en) * 2014-12-05 2016-06-20 大日本印刷株式会社 Optical communication system and illumination device

Similar Documents

Publication Publication Date Title
US4850044A (en) Serial optical interconnect bus for logic cards and the like
US4358858A (en) Optical information exchange system
US5822096A (en) Optoelectronic apparatus
US4063083A (en) Data communication system using light coupled interfaces
CA1280465C (en) Optical backplane
TWI451143B (en) Optical interconnect fabrics and optical switches
JPH11205232A (en) Optical bus system and signal processing unit
US5313536A (en) Modular photonic waveguide distribution system
EP0435806B1 (en) Fault-tolerant serial attachment of remote high-speed I/O busses
JPS59208953A (en) Transmitting and receiving system of optical signal
US5131061A (en) Modular active fiber optic coupler system
US4845706A (en) Switch configured network
JP2005064888A (en) System for transmitting signal having error correcting code
US6993260B2 (en) Interconnecting processing units of a stored program controlled system using free space optics
WO2000016503A1 (en) Free space optical interconnect system
JPH02177481A (en) Optical wiring circuit
US20020162083A1 (en) Mid-connect architecture with point-to-point connections for high speed data transfer
JP3124341B2 (en) Optical processor interconnection network.
US5185833A (en) Modular active fiber optic coupler system
EP0166193B1 (en) Switch configured communication network
JP2979175B2 (en) Optical space distributor
US20210208346A1 (en) Systems using microled-based interconnects
JP3724271B2 (en) Optical signal transmission device and optical signal generation device
JPH0430128A (en) Light spatial distributor
JP2023047347A (en) Media adaptor for multimode waveguide interconnects