JPS59208515A - Focus detecting device - Google Patents

Focus detecting device

Info

Publication number
JPS59208515A
JPS59208515A JP8362183A JP8362183A JPS59208515A JP S59208515 A JPS59208515 A JP S59208515A JP 8362183 A JP8362183 A JP 8362183A JP 8362183 A JP8362183 A JP 8362183A JP S59208515 A JPS59208515 A JP S59208515A
Authority
JP
Japan
Prior art keywords
light
pair
focus detection
receiving elements
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8362183A
Other languages
Japanese (ja)
Inventor
Takanobu Tamaki
太巻 隆信
Shuzo Matsushita
修三 松下
Akiyoshi Nakamura
昭義 中村
Nobuyuki Taniguchi
信行 谷口
Takeshi Egawa
猛 江川
Norio Ishikawa
典夫 石川
Toru Matsui
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP8362183A priority Critical patent/JPS59208515A/en
Publication of JPS59208515A publication Critical patent/JPS59208515A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To detect exactly a focus even in case of a dark object by providing an insensitive part on each pair of photodetectors for constituting a photodetector group. CONSTITUTION:A titled device is provided with many minute optical members 24 arrayed in the rear of an image forming lens 2, and a pair of photodetectors 26a, 26b arrayed adjacently to each other in the rear of the respective members at every said optical member 24. This device is constituted so as to detect a focus of the image forming lens 2 basing on an output of these photodetectors 26a, 26b, and provided with a projecting means for generating a luminous flux toward a focus detecting object through the image forming lens 2 from the rear of the image forming lens 2. Also, a blind part B having a shape and size by which a luminous flux generated from a projecting meand and reflected by the image forming lens 2 is not photodetected by a pair of photodetectors 26a, 26b is provided between a pair of photodetectors for constituting each pair of photodetectors 26a, 26b.

Description

【発明の詳細な説明】 2− 技術分野 本発明は、結像レンズの焦点調節状態を検出する為の焦
点検出装置に関し1更に詳しくは、カメラの自動焦点調
節装置に用いられる焦点検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION 2- Technical Field The present invention relates to a focus detection device for detecting the focus adjustment state of an imaging lens.1 More specifically, the present invention relates to a focus detection device used in an automatic focus adjustment device of a camera.

従来技術 従′来、特公昭57−4984.1号公報によって、結
像レンズの予定焦点面の近傍に光軸垂直方向に多数の微
小レンズを配列するとともに、各微小レンズの後方に第
1及び第2の受光素子をそれぞれ各微小レンズの光軸を
はさんで隣接配置することによって、第1の受光素子群
によって結像レンズの射出瞳の第1の領域を介して被写
体からの光を受光するとともに第2の受光素子群によっ
て該射出瞳の第2の領域を介して被写体からの光を受光
し、両受光素子群の受光状態を比較することによって結
像レンズの被写体に対する焦点調節状態を検出する装置
が知られている。
Prior Art Conventionally, according to Japanese Patent Publication No. 57-4984.1, a large number of microlenses are arranged in the direction perpendicular to the optical axis near the expected focal plane of the imaging lens, and a first and second microlens is arranged behind each microlens. By arranging the second light-receiving elements adjacent to each other across the optical axis of each microlens, the first light-receiving element group receives light from the subject through the first region of the exit pupil of the imaging lens. At the same time, the second light-receiving element group receives light from the object through the second region of the exit pupil, and the focusing state of the imaging lens with respect to the object is determined by comparing the light-receiving states of both light-receiving element groups. Devices for detection are known.

しかしながら、このような装置においては、被写体が暗
いと両受光素子群に無点検、出に充分な光量が受光され
ずに正確な焦点検出が不可能となるという欠点が存在し
ている。
However, such a device has the disadvantage that if the subject is dark, both light receiving element groups are not inspected and a sufficient amount of light is not received, making accurate focus detection impossible.

目的 本発明は上記欠点に鑑みてなされたものであり、その目
的は、暗い被写体に対しても正確な焦点検出が可能であ
るとともに、結像レンズが交換されても正確な焦点検出
が可能な焦点検出装置を簡単な構成のもとに提供するこ
とにある。
Purpose The present invention was made in view of the above-mentioned drawbacks, and its purpose is to enable accurate focus detection even for dark objects and to enable accurate focus detection even when the imaging lens is replaced. An object of the present invention is to provide a focus detection device with a simple configuration.

発明の要旨 」−記目的を達成する為に、本発明は、結像レンズ後方
から被写体に向けて光ビームを投射し、その被写体によ
る反射光を前記第1及び第2の受光素子群で受光して両
受光素子群の受光状態を比較することにより焦点検出を
行うことによって暗い被写体に対しても正確な焦点検出
を可能とするとともに、上記光ビームが被写体に達する
ことなく結像レンズのレンズ面によって反射されてもこ
れが受光素子群によって受光されて検出精度を悪化させ
るこ々のないように、受光素子群を構成する各受光素子
対に不感部を設けたことを特徴とするものである。
SUMMARY OF THE INVENTION In order to achieve the object described in "Summary of the Invention", the present invention projects a light beam toward a subject from behind an imaging lens, and receives reflected light from the subject by the first and second light receiving element groups. By performing focus detection by comparing the light receiving states of both light receiving element groups, accurate focus detection is possible even for dark subjects, and the lens of the imaging lens is prevented from reaching the subject by the light beam. In order to prevent the reflected light from the surface from being received by the light-receiving element group and deteriorating detection accuracy, each light-receiving element pair constituting the light-receiving element group is provided with a dead section. .

実施例 以下図面に基づいて本発明の実施例を詳細に説明する。Example Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明一実施例の焦点検出装置を用いたレンズ
交換式の一眼レフレックスカメラを示しており、−同図
において、(2)は変形ガラスタイプのレンズi (4
)を有する撮影レンズ、(1))は種々のレンズを交換
可能なカメラボディである。(8)は焦点板(10)の
近傍に設けられた赤外光を発する発光ダイオードであり
、発光ダイオード(8)から発せられた光はけ焦点板(
10)と一体成型されたレンズ(10a)によって集光
されて、小径(例えば3fiφ)の平行光ビームとなる
。この平行赤外光ビームは、焦点板(10)の中央に設
けられたミラー(12)によって反射され、更に、可動
ミラー(14)によって反射されて撮影レンズ(2)の
光軸(へ)を中心とする小径の光束として撮影レンズの
レンズ系(4)に後方から入射する。この赤外光ビーム
は撮影レンズ(2)によって発散されて被写体に向けて
投射される。
FIG. 1 shows a lens-interchangeable single-lens reflex camera using a focus detection device according to an embodiment of the present invention. In the same figure, (2) is a deformed glass type lens i (4
), and (1)) is a camera body with which various lenses can be exchanged. (8) is a light emitting diode that emits infrared light provided near the focusing plate (10), and the focusing plate (
The light is focused by a lens (10a) integrally molded with 10), and becomes a parallel light beam with a small diameter (for example, 3fiφ). This parallel infrared light beam is reflected by a mirror (12) provided at the center of the focus plate (10), and further reflected by a movable mirror (14) to direct the optical axis of the photographic lens (2). The light enters the lens system (4) of the photographic lens from the rear as a small-diameter light beam centered at the center. This infrared light beam is diverged by a photographic lens (2) and projected toward the subject.

 5 − そして、被写体によって反射された赤外光は、再び撮影
レンズ(2)を通り、可動ミラー圓中央の光半透過部を
通って、更に副ミラー(1G)によって反射されて受光
部(18)に入射される。受光部(18)は赤外光を測
光するように予め分光感度が定められている。
5 - Then, the infrared light reflected by the subject passes through the photographing lens (2) again, passes through the light semi-transparent part at the center of the movable mirror circle, is further reflected by the sub mirror (1G), and reaches the light receiving part (18). ). The light receiving section (18) has a spectral sensitivity determined in advance so as to photometer infrared light.

(20)は受光部(18)の受光状態に応じて撮影レン
ズ(2)の焦点調節状態を検出し、検出結果に基づいて
、前ピン、合焦、後ピンなどの表示を行う不図示の表示
装置や合焦に向けて撮影レンズをフォーカシングする不
図示のフォーカシング手段などに焦点調節状態を示す信
号を送る演算処理回路である。このように、焦点検出装
置から被写体に向けて光を投射し、その反射光を用いて
焦点検出を行うことによって、暗い被写体に対しても正
確な焦点検出が可能である。
(20) detects the focus adjustment state of the photographing lens (2) according to the light receiving state of the light receiving unit (18), and displays front focus, focus, back focus, etc. based on the detection result. This is an arithmetic processing circuit that sends a signal indicating a focus adjustment state to a display device or a focusing means (not shown) that focuses a photographic lens toward focusing. In this way, by projecting light from the focus detection device toward the subject and performing focus detection using the reflected light, accurate focus detection is possible even for dark subjects.

しかしながら、発光ダイオード(8)から発せられた赤
外光の一部が、被写体に致達することなく、撮影レンズ
(2)のレンズ面によって反射されて、受光部(]8)
に入射してしまうと、有害光とな9、焦点検出精度が悪
化してしまう。これを第2図を用い 6− て説明する。第2図において、撮影レンズ(2)のレン
ズ系(4)の各レンズ面を物体側から順に、rl、r2
・・−・・、rll  とする。aI″!、発光ダイオ
ード(8)から発せらねて撮影レンズ(2)を介して被
写体(0)に向けられる投射光を示し、その一部はレン
ズ面(rl)及び(r + o)で反射されて反射光束
l)及びCとなる。この反射光束1〕及びCが焦点検出
用の受光部(18)に入射すると有害光となるわけであ
るが、このような反射光束が生しうる撮影レンズ(2)
のレンズ系(4)の構成を第1表に示す。表中fは焦点
距離、FNaはFナンバー、2ωは画角をそれぞれ示す
ものである。
However, a part of the infrared light emitted from the light emitting diode (8) does not reach the subject and is reflected by the lens surface of the photographic lens (2), causing the light receiving part (]8
If the light enters the light, it becomes harmful light 9 and focus detection accuracy deteriorates. This will be explained using FIG. 2. In FIG. 2, the lens surfaces of the lens system (4) of the photographic lens (2) are arranged in order from the object side: rl, r2.
...-..., rll. aI''!, indicates the projected light that is not emitted from the light emitting diode (8) and is directed to the subject (0) via the photographic lens (2), a part of which is reflected at the lens surface (rl) and (r + o). It is reflected and becomes reflected light beams 1) and C. When these reflected light beams 1] and C enter the light receiving part (18) for focus detection, they become harmful light, and such reflected light beams can occur. Photography lens (2)
Table 1 shows the configuration of the lens system (4). In the table, f represents the focal length, FNa represents the F number, and 2ω represents the angle of view.

 7− 第    1   表 f=50τ   FN[l=1..7   2ω二47
゜曲率半径   芯 厚    屈折率   アツベ数
r+    37.99 dl  4.66  N+  1.7003  シ14
7.6r2332.30 d20.1.6 r4   37.04 642.22 r5   66.81 ds  1..4−6  N3  ]、、7006  
ν3301T’6   ]、5.32 d611.62 r7 −16.83 d7 0.88  N4 1..6129  ν437
0rs    63.42 ds  6.41  Ns  1.6935  ν55
34r9 −22.58 d90.16 rlo 278.82 d102.80  N6 1..781   シロ 4
46rn −48,58 第3図は受光部(18)内の光学系を示すものであり、
(22)はコンデンサーレンズ、(24)はその後方に
多数配列される微小レンズであり、各微小レンズの後方
には一対の受光素子(26a) (26b)がそれぞれ
配列されている。コンデンサーレンズ(22+及び微小
レンズ圀)の構成を第2表に示す。
7- 1st Table f=50τ FN[l=1. .. 7 2ω247
° Radius of curvature Core thickness Refractive index Atsube number r+ 37.99 dl 4.66 N+ 1.7003 Si14
7.6r2332.30 d20.1.6 r4 37.04 642.22 r5 66.81 ds 1. .. 4-6 N3],,7006
ν3301T'6], 5.32 d611.62 r7 -16.83 d7 0.88 N4 1. .. 6129 ν437
0rs 63.42 ds 6.41 Ns 1.6935 ν55
34r9 -22.58 d90.16 rlo 278.82 d102.80 N6 1. .. 781 Shiro 4
46rn -48,58 Figure 3 shows the optical system inside the light receiving section (18).
(22) is a condenser lens, (24) is a large number of microlenses arranged behind it, and a pair of light receiving elements (26a) (26b) are arranged behind each microlens. Table 2 shows the configuration of the condenser lens (22+ and micro lens group).

第    2   表 曲率半径  芯厚    屈折率   アツベ数24 
         dl40.58  N+31.49
14  57.8第4図(a) (+)) (C)は、
それぞれ」二記特公昭57−4.9841号公報記載の
如き受光部では、発光ダイオードから発せられて撮影レ
ンズによって反射された光束が、各微小レンズごとに設
けられた一対の受光素子に入射して有害光となる様子を
示すものである。
Table 2 Radius of curvature Core thickness Refractive index Atsbe number 24
dl40.58 N+31.49
14 57.8 Figure 4 (a) (+)) (C) is
In the light-receiving section as described in Japanese Patent Publication No. 57-4.9841, a light beam emitted from a light-emitting diode and reflected by a photographing lens enters a pair of light-receiving elements provided for each microlens. This figure shows how harmful light becomes.

 9− 8− 第4図(a)は、撮影レンズのレンズ面(r8)によっ
て反射された光束が撮影レンズの光軸から垂直方向に2
胴離れた光軸(Aa)を有する微小レンズ(24a)を
透過する状態を示すものであり、この光束は微小レンズ
(24a)の光軸(Aa)をはさんで隣接配置さて反射
された光束が撮影レンズの光軸から垂直方向に1喘離れ
た光軸(Ah)を有する微小レンズ(24,b)を透過
する状態を示すものであり、この光束は微小レンズ(2
411)の光軸(Ab)をはさんで隣接配置された一対
の受光素子(28a) (28b)に入射して有害光と
なる。第4図(qは、撮影レンズのレンズ面(rl)に
よって反射された光束が、撮影レンズの光軸から垂直方
向に0.5 rnJn離れた光軸(Ac)を有する微小
レンズ(24C)を透過して、該光軸(Ac)をはさん
で隣接配置された一対の受光素子(28a) (28b
’)に入射して有害光となる状態を示す。上記各有害光
は、受光素子の受光面」二ではそれぞれスポット像とな
るものであり、その様子を第5図に示す。
9-8- Figure 4(a) shows that the light beam reflected by the lens surface (r8) of the photographic lens is 2 times vertically from the optical axis of the photographic lens.
This shows a state in which the light beam passes through a microlens (24a) having an optical axis (Aa) separated from the body, and this light beam is a reflected light beam that is placed adjacent to the microlens (24a) across the optical axis (Aa). This shows the state in which the light beam passes through the microlens (24, b) whose optical axis (Ah) is vertically 1 inch away from the optical axis of the photographic lens, and this luminous flux passes through the microlens (24, b).
The light enters a pair of light-receiving elements (28a) and (28b) arranged adjacently across the optical axis (Ab) of 411) and becomes harmful light. Figure 4 (q) shows a microlens (24C) in which the light flux reflected by the lens surface (rl) of the photographic lens has an optical axis (Ac) that is vertically away from the optical axis of the photographic lens by 0.5 rnJn. A pair of light receiving elements (28a) (28b) are transmitted through the light and are arranged adjacently across the optical axis (Ac).
') and becomes harmful light. Each of the above-mentioned harmful lights becomes a spot image on the light-receiving surface of the light-receiving element, and the situation is shown in FIG.

10− 第5図において、(A)は第4図図示の微小レンズの光
軸(Aa) (Ah)も1. <は(Ac)であり、(
Sl) (S2) (S3)はそ第1ぞれ第4図(a)
0))(c)図示の有害光によって形成されるスポット
像である。第6図のように、第5図の−に下方向にY座
標、左右方向にX座標をとり、微小レンズの光軸が通る
点を原点とするときの各スポット像の拡がりを第3表に
示す。第3表において、各スポット像の]―端の座標を
(0,Y+)、中心の座標をρ、Yo)、下端の座標を
(D、Y2)としい左右方向の幅をXlとする。
10- In FIG. 5, (A) is the optical axis (Aa) of the microlens shown in FIG. 4. (Ah) is also 1. < is (Ac) and (
SL) (S2) (S3) Figure 4 (a)
0))(c) This is a spot image formed by the illustrated harmful light. Table 3 shows the spread of each spot image when the origin is the point through which the optical axis of the microlens passes, with the Y coordinate in the downward direction and the X coordinate in the horizontal direction, as shown in Fig. 5 -. Shown below. In Table 3, the coordinates of the edge of each spot image are (0, Y+), the coordinates of the center are ρ, Yo), the coordinates of the lower end are (D, Y2), and the width in the left and right direction is Xl.

第    3    表 但し、投射された赤外光ビームの径は3胡である。Table 3 However, the diameter of the projected infrared light beam is 3 Hu.

本実施例は、第7図図示のように、受光素子(26a)
 (261))が1/レンズによって反射された光束を
受光するのを防ぐ為に、微小レンズをはさんで隣接配置
される一対の受光素子(26a) (261))のそれ
ぞれを光軸近傍に不感部の)を有する形状としたことを
特徴とするものである。本実施例において、一対の受光
素子の間に設けられる不感部の形状は第5図の円Φ)の
ように微小レンズ光軸上に中心を有する円形であり、そ
の径は0.075wnである。
In this embodiment, as shown in FIG.
(261)) from receiving the light beam reflected by the 1/lens, each of the pair of light receiving elements (26a) (261)) placed adjacent to each other with a microlens in between is placed near the optical axis. It is characterized by having a shape having a dead part). In this example, the shape of the dead part provided between the pair of light receiving elements is a circle whose center is on the optical axis of the microlens, as shown in circle Φ in FIG. 5, and its diameter is 0.075wn. .

ここで、不感部の形状及び大きさは、上述の如き反射光
束によって照明される範囲に応じて定められるものであ
り、受光素子対の撮影レンズ光軸からの距離、反射され
るレンズ面及びそれ以後のレンズ系の構成などによって
」−記範囲は種々変化するけれども、これらのことを考
慮した上で上記範囲すなわち不感部の形状及び大きさを
設定しているので上記反射光束が不感部外の受光素子に
入射されて有害光となることはない。
Here, the shape and size of the dead area are determined according to the range illuminated by the reflected light flux as described above, and are determined by the distance from the optical axis of the photo-taking lens of the pair of light-receiving elements, the reflected lens surface, and Although the above range changes in various ways depending on the subsequent configuration of the lens system, etc., the above range, that is, the shape and size of the dead area is set with these things in mind, so that the reflected light flux does not exceed the outside of the dead area. The light does not enter the light receiving element and become harmful light.

本実施例によれば、発光ダイオード(8)から撮影レン
ズ(2)を介して被写体に向けて投射された赤外光ビー
ムの被写体による反射光を用いて焦点検出を行うので、
被写体が暗い場合にも正確な焦点検出が可能であり、焦
点検出装置の低輝度側のダイナミックレンジを拡げるこ
とができる上に、該赤外光ビームか被写体に到達するこ
となく撮影レンズのレンズ面によって反射されても、こ
れが焦点検出用の受光素子群に入射することはないので
、焦点検出時の有害光となることはない。更に、赤外光
を焦点検出に用いることにより被写界の定常光の影響を
除去することができるL1撮影レンズ光軸を中心とする
小径の平行ビームを投光するこ(!:により撮影系と焦
点検出系とのバララックスもない。また、従来装置に比
べて、発光ダイオードの追加と受光素子の形状変化など
わずかな変更のみでよいので、構成も簡単である。
According to this embodiment, focus detection is performed using the reflected light from the subject of the infrared light beam projected from the light emitting diode (8) towards the subject via the photographic lens (2).
Accurate focus detection is possible even when the subject is dark, and the dynamic range of the focus detection device on the low-brightness side can be expanded. Even if the light is reflected by the light, it does not enter the light receiving element group for focus detection, so it does not become harmful light during focus detection. Furthermore, by using infrared light for focus detection, a small diameter parallel beam centered on the optical axis of the L1 photographing lens can be emitted, which can eliminate the influence of stationary light in the subject. There is no variation between the focus detection system and the focus detection system.Furthermore, compared to conventional devices, the configuration is simpler because only slight changes such as adding a light emitting diode and changing the shape of the light receiving element are required.

第7図は本発明の別の実施例に係る一対の受光素子(2
6a) (261))の形状を示すものであり、本実施
例においては、先の実施例の不感部の)が円形であった
のに対し、微小レンズの光軸を中心に回転対称な長円形
の不感部0とされている点が先の実施13− 例との相異点である。但し、図示のように、両受光素子
(28a)(281))には、互いに対向する辺に、そ
れぞれ半円状の切欠(d)が形成されている。これは受
光素子対(28a) (28b)が撮影レンズの光軸に
関して対称に配置されている場合に、レンズ面反射光に
よるスポット像(Sl) (S2) (S3)は、第8
図及び第9図のように、微小レンズの光軸を中心にして
受光素子の配列方向にずれた位置に形成されるので長円
形状の不感部(qで有害光を充分に除去できるからであ
る。このように構成すれば、円形と長円形との差に応じ
た部分(e)を受光面として利用できるので、受光面積
が増大し、暗い被写体に関してもより大きな出力を得る
ことができる。
FIG. 7 shows a pair of light receiving elements (2
6a) This shows the shape of (261)), and in this example, the dead part ) of the previous example was circular, but in this example, it is a long shape that is rotationally symmetrical about the optical axis of the microlens. This embodiment differs from the previous embodiment 13 in that it has a circular dead section 0. However, as shown in the figure, semicircular notches (d) are formed on opposing sides of both light receiving elements (28a, 281). This means that when the light receiving element pair (28a) (28b) is arranged symmetrically with respect to the optical axis of the photographing lens, the spot image (Sl) (S2) (S3) due to the light reflected from the lens surface is
As shown in Fig. 9 and Fig. 9, it is formed at a position shifted from the optical axis of the microlens in the direction in which the light receiving elements are arranged. With this configuration, the portion (e) corresponding to the difference between the circular shape and the oval shape can be used as the light-receiving surface, so the light-receiving area increases and a larger output can be obtained even for a dark subject.

第10図は第8図図示の一対の受光素子と共に用いられ
る一対の受光素子を示すものであり、特に撮影レンズと
してカメラボディに装着されるレンズの開放絞り径が小
さいときに用いられるように配置されたものを示してい
る。この受光素子対は、第8図図示の受光素子対(26
a) (26b>と同様の形状を有しているが、第8図
及び第10図に比較14− の為に書かれた同形の円(ト)を基準にすると、第10
図の受光素子対(30a)(3o1))の方が外径が小
さいことがわかる。但し、両受光素子(3oa)(3o
l))の間に形成さ、lする不感部(qの形状及び大き
さは両者同一である。これは、レンズ面反射光によるス
ポット像は撮影レンズ光軸上と同様に形成されうるから
である。
Fig. 10 shows a pair of light receiving elements used together with the pair of light receiving elements shown in Fig. 8, and is arranged so as to be used especially when the aperture diameter of the lens attached to the camera body as a photographic lens is small. It shows what was done. This light-receiving element pair is the light-receiving element pair (26
a) It has the same shape as (26b>), but based on the same-shaped circle (G) drawn for comparison 14- in Figures 8 and 10, it becomes 10th
It can be seen that the photodetector pair (30a) (3o1) in the figure has a smaller outer diameter. However, both light receiving elements (3oa) (3o
The shape and size of the dead area (q) formed between (1) and (1) are the same for both. This is because the spot image by the light reflected from the lens surface can be formed in the same way as on the optical axis of the photographing lens. be.

第11図は本発明の更に別の実施例の受光素子対を示す
ものであり、第8図図示の受光素子対(26a> (2
6b)ノ不感部(C) K第2の受光素子対(32a)
、(32+))を配置し、被写体が明るくて発光ダイオ
ード(8)による照明が不要なときには、該発光ダイオ
ード(8)を消灯して第2の受光素子対(32a) (
32+))(7)出力をも用いて焦点検出を行うととも
に、被写体が暗くて発光ダイオード責8)が点灯されて
いるときKは第2の受光素子対(32a) (3213
)の出力を遮断して有害光を除去するように構成したも
のである。
FIG. 11 shows a light-receiving element pair according to still another embodiment of the present invention, in which the light-receiving element pair (26a> (2
6b) Blind part (C) K second light receiving element pair (32a)
, (32+)), and when the subject is bright and illumination by the light emitting diode (8) is unnecessary, the light emitting diode (8) is turned off and the second light receiving element pair (32a) (
32 +)) (7) Output is also used for focus detection, and when the subject is dark and the light emitting diode 8) is lit, K is used as the second light receiving element pair (32a) (3213
) is configured to remove harmful light by blocking the output of the light.

このように構成すれば、被写体が明るい々きには従来装
置と同様に、被写体を照明することなく焦点検出を行う
ことができ、発光ダイオードの点灯による電力消費を減
少せしめることができる。ここで、発光ダイオード(8
)の点灯・消灯は手動スイッチによって制御されるよう
にしても良いし、被写体輝度に応じて制御されるように
構成しても良い0 尚、上記各実施例における受光素子の形状は、全て、第
2図図示の如き変型ガウスタイプの標準レンズのレンズ
系によるレンズ面反射光に着目して決定されたものであ
るが、これは種々のレンズに関してレンズ面反射光の光
路を計算した結果、この標準レンズのデータでレンズ面
反射光の光路をほぼ代表出来ることが確認されたためで
ある。
With this configuration, when the subject is bright, focus detection can be performed without illuminating the subject, as in the conventional device, and power consumption due to lighting of the light emitting diode can be reduced. Here, the light emitting diode (8
) may be controlled by a manual switch or may be configured to be controlled according to the brightness of the subject. Note that the shapes of the light receiving elements in each of the above embodiments are as follows. This was determined by focusing on the light reflected from the lens surface by the lens system of a modified Gaussian type standard lens as shown in Figure 2. This was determined by calculating the optical path of the light reflected from the lens surface for various lenses. This is because it has been confirmed that the standard lens data can almost represent the optical path of light reflected from the lens surface.

つまり広角レンズや望遠レンズを介して光束を投光して
も夫々のレンズにおける面間反射では標準レンズの面間
反射による光路とほぼ同様の光路をたどるので、不感部
の面積を更に大きくする必要はない事を意味している。
In other words, even if a beam of light is projected through a wide-angle lens or a telephoto lens, the inter-plane reflection of each lens will follow almost the same optical path as the optical path caused by inter-plane reflection of a standard lens, so it is necessary to further increase the area of the dead area. It means no.

効  果 以」二のように、本発明は、結像レンズの射出瞳の互い
に異なる2つの領域を透過した光を、多数の微小光学部
材を介して、各微小光学部材ごとにそれぞれ対応するよ
う配置された一対の受光素子で受光し、多数の受光素子
対の出力に基づいて結像レンズの焦点検出を行う焦点検
出装置において結像レンズの後方から該結像レンズを介
して焦点検出対象に向けて光束を発する投光手段を設け
るとともに、−I―記各受光素子対を、互いに隣接配置
された2つの受光素子の間に、」二記投光手段から発せ
られて結像レンズによって反射された光束を受光しない
不感部を設けた形状としたことを特徴とするものであり
、このように構成することによって対象が暗い場合にも
投光手段からの投射光を用いて正確な焦点検出が可能で
ある」―に、投光手段から発せられた光が結像レンズの
レンズ面によって反射されてもこれが焦点検出用の受光
素子に入射して有害光となることはなく、結像レンズが
交換されても正確な焦点検出が可能であり、従来装置に
比べて構成上の変更点もわずかであるので構成も簡単で
ある。
Effects As described in ``2'', the present invention allows light transmitted through two different regions of the exit pupil of an imaging lens to be transmitted through a large number of micro optical members so as to correspond to each micro optical member. In a focus detection device that receives light with a pair of arranged light receiving elements and detects the focus of an imaging lens based on the outputs of a large number of pairs of light receiving elements, light is passed from behind the imaging lens to the focus detection target through the imaging lens. A light projecting means for emitting a luminous flux toward the target is provided, and each pair of light receiving elements described in -I- is arranged between two light receiving elements arranged adjacent to each other. The device is characterized in that it has a shape that includes a dead section that does not receive the emitted light beam, and with this configuration, accurate focus detection is possible using the projected light from the light projecting means even when the object is dark. Even if the light emitted from the light projecting means is reflected by the lens surface of the imaging lens, it will not enter the light receiving element for focus detection and become harmful light, and the imaging lens Accurate focus detection is possible even if the 2D device is replaced, and the configuration is simple as there are only a few changes in the configuration compared to conventional devices.

更に、実施態様のように、結像レンズ後方から17− 投射される光を光軸を中心とする小径の平行光束とし、
不感部を長円形形状とすることによって、受光素子の受
光面積を大きく損うことなく有害光を除去することがで
きる。
Furthermore, as in the embodiment, the light projected from the rear of the imaging lens is made into a small diameter parallel light beam centered on the optical axis,
By forming the blind portion into an elliptical shape, harmful light can be removed without significantly impairing the light-receiving area of the light-receiving element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を用いた自動焦点調節式−眼レフレック
スカメラを示す図、第2図はそのレンズ面反射光の光路
を示す図、第3図は本発明一実施例の焦点検出装置の受
光光学系を示す図、第4図は従来装置の欠点を示す為の
図、第5図はレンズ面反射光によるスポット像の位置を
示す図、第6図は該位置及びスポット像の拡がりを数値
で示す為の座標を示す図、第7図は本発明一実施例の受
光素子対を示す図、第8図及び第9図は更に別の実施例
の受光素子対を示す図、第10図及び第月図はそれぞれ
更に別の実施例を示す図である。 (2);結像レンズ、(8)(1oa) ;投光手段、
0;焦点検出対象、圀);微小光学部材、(’26a)
(26b) ;受光素子対、(B)(C)i不感部、(
30a)(30t)) i受光素子対。 出願人 ミノルタカメラ株式会礼 18− 絽5図 第6図 第7図 LLl) 絽lO図 県11図 第1頁の続き 9発 明 者 石川典夫 大阪市東区安土町2丁目30番地 大阪国際ビルミノルタカメラ株 式会社内 0発 明 者 松井徹 大阪市東区安土町2丁目30番地 大阪国際ビルミノルタカメラ株 式会社内
Fig. 1 is a diagram showing an automatic focusing type eye reflex camera using the present invention, Fig. 2 is a diagram showing the optical path of light reflected from the lens surface, and Fig. 3 is a focus detection device according to an embodiment of the present invention. Figure 4 is a diagram showing the drawbacks of the conventional device, Figure 5 is a diagram showing the position of a spot image due to light reflected from a lens surface, and Figure 6 is a diagram showing the position and spread of the spot image. FIG. 7 is a diagram showing a pair of light receiving elements according to one embodiment of the present invention. FIGS. 8 and 9 are diagrams showing a pair of light receiving elements according to another embodiment. 10 and 10 are diagrams each showing still another embodiment. (2); Imaging lens, (8) (1oa); Light projecting means,
0; Focus detection target, country); Microscopic optical member, ('26a)
(26b); Light receiving element pair, (B) (C) i dead area, (
30a) (30t)) i Photodetector pair. Applicant: Minolta Camera Co., Ltd. 18- Figure 5, Figure 6, Figure 7 LLl) Figure 1, Figure 11, page 1 continued 9 Inventor: Norio Ishikawa Osaka Kokusai Building, 2-30 Azuchi-cho, Higashi-ku, Osaka City Minolta Inside Camera Co., Ltd. 0 Inventor Toru Matsui Inside Osaka Kokusai Building Minolta Camera Co., Ltd. 2-30 Azuchi-cho, Higashi-ku, Osaka

Claims (1)

【特許請求の範囲】 1、結像レンズの後方に配列された多数の微小光学部材
と、各微小光学部材ごとにそれぞれその後方に互いに隣
接して配列された一対の受光素子とを有し、それら多数
の受光素子対の出力に基づいて結像レンズの焦点検出を
行う焦点検出装置において、結像レンズの後方から該結
像レンズを介して焦点検出対象に向けて光束を発する投
光手段を設けるとともに、上記各受光素子対を構成する
一対の受光素子の間に、」二記投光手段から発せられて
結像レンズによって反射された光束を該一対の受光素子
が受光しない為の形状及び大きさの不感部を設けたこと
を特徴とする焦点検出装置。 2、」−記投光手段は、結像レンズの光軸を中心とする
小径の平行光束を結像レンズ後方から発するよう構成さ
れていることを特徴とする特許請求 1− の範囲第1項記載の焦点検出装置。 3、 上記投光手段は赤外光束を発するものであること
を特徴とする特許請求の範囲第1項又は第2項記載の焦
点検出装置。 4、 上記不感部は、」二記一対の受光素子にまたがる
ように配置された円形形状を有することを特徴とする特
許請求の範囲第1項から第6項までのいずれかに記載の
焦点検出装置。 5、 上記不感部は、」−記一対の受光素子にまたがる
ように配置され、かつ、受光素子対の配列方向に延びる
長円形形状を有することを特徴とする特許請求の範囲第
1項から第3項までのいずれかに記載の焦点検出装置。 6、 各受光素子対の不感部にはそれぞれ一対の第2の
受光素子が配置されており、投光手段の消灯時には該第
2の受光素子対の出力も焦点検出に用いられることを特
徴とする特許請求の範囲第1項から第5項までのいずれ
かに記載の焦点検出装置。
[Scope of Claims] 1. It has a large number of micro optical members arranged behind the imaging lens, and a pair of light receiving elements arranged adjacent to each other behind each micro optical member, In a focus detection device that detects the focus of an imaging lens based on the outputs of a large number of light-receiving element pairs, a light projector is provided that emits a light beam from behind the imaging lens toward the focus detection target via the imaging lens. In addition, between the pair of light-receiving elements constituting each of the light-receiving element pairs, there is a shape and a shape so that the pair of light-receiving elements do not receive the light beam emitted from the light projecting means and reflected by the imaging lens. A focus detection device characterized by having a blind portion of a certain size. 2. The light projecting means is configured to emit a small diameter parallel light beam centered on the optical axis of the imaging lens from behind the imaging lens. The focus detection device described. 3. The focus detection device according to claim 1 or 2, wherein the light projecting means emits an infrared beam. 4. The focus detection according to any one of claims 1 to 6, wherein the dead part has a circular shape arranged to span the pair of light receiving elements. Device. 5. Claims 1 to 5, characterized in that the dead part is arranged to span the pair of light receiving elements and has an oval shape extending in the arrangement direction of the pair of light receiving elements. The focus detection device according to any one of items 3 to 3. 6. A pair of second light-receiving elements is disposed in the dead part of each light-receiving element pair, and the output of the second light-receiving element pair is also used for focus detection when the light projecting means is turned off. A focus detection device according to any one of claims 1 to 5.
JP8362183A 1983-05-12 1983-05-12 Focus detecting device Pending JPS59208515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8362183A JPS59208515A (en) 1983-05-12 1983-05-12 Focus detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8362183A JPS59208515A (en) 1983-05-12 1983-05-12 Focus detecting device

Publications (1)

Publication Number Publication Date
JPS59208515A true JPS59208515A (en) 1984-11-26

Family

ID=13807552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8362183A Pending JPS59208515A (en) 1983-05-12 1983-05-12 Focus detecting device

Country Status (1)

Country Link
JP (1) JPS59208515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129677A1 (en) * 2005-05-30 2006-12-07 Nikon Corporation Image formation state detection device
WO2007011026A1 (en) * 2005-07-22 2007-01-25 Nikon Corporation Imaging element, focal point detecting device, and imaging system
US7805067B2 (en) 2007-02-27 2010-09-28 Nikon Corporation Focus detection device for image forming optical system, imaging apparatus, and focus detection method for image forming optical system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006129677A1 (en) * 2005-05-30 2006-12-07 Nikon Corporation Image formation state detection device
US7745772B2 (en) 2005-05-30 2010-06-29 Nikon Corporation Image forming state detection device
WO2007011026A1 (en) * 2005-07-22 2007-01-25 Nikon Corporation Imaging element, focal point detecting device, and imaging system
US7812299B2 (en) 2005-07-22 2010-10-12 Nikon Corporation Image sensor having two-dimensionally arrayed pixels, focus detecting device using the sensor, and imaging system including the sensor
JP4858443B2 (en) * 2005-07-22 2012-01-18 株式会社ニコン Digital camera
US7805067B2 (en) 2007-02-27 2010-09-28 Nikon Corporation Focus detection device for image forming optical system, imaging apparatus, and focus detection method for image forming optical system

Similar Documents

Publication Publication Date Title
JP2950546B2 (en) Eye gaze detecting device and camera having eye gaze detecting device
JPS6344639A (en) Camera equipped with active type automatic focus detecting device
US5459551A (en) Light emission device for focus detection having a chart and an illuminator
JPS59208515A (en) Focus detecting device
US4549802A (en) Focus detection apparatus
US5850578A (en) Light-projecting system for automatic focus detection
JPH0225487B2 (en)
JP2002365523A (en) Auxiliary light projecting device for af camera
JP2503519Y2 (en) Information display device
JP2625722B2 (en) Illumination device for focus detection
JPS63291042A (en) Projection pattern for detecting focus
JPH03107909A (en) Optical device provided with line of sight detector
JP2920665B2 (en) Display device in camera viewfinder
JP3448617B2 (en) Focus detection device
JPH0694979A (en) Camera provided with device for detecting
JP5665506B2 (en) Imaging device
JPS59152423A (en) Photometric device of single-lens reflex camera
JPS58156910A (en) Detector for focusing state
JPH0762730B2 (en) Projection optics
JPH0886954A (en) Light projection system for automatically detecting focus
JPH01116609A (en) Multipoint focus detecting device
JPS6263924A (en) Autofocusing device
JPS6332509A (en) Projecting system for automatic focus detection
JPS61295523A (en) Focus detector
JPS58208732A (en) Method for transmitting focusing information of photographing lens