JPS59207703A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPS59207703A
JPS59207703A JP8098683A JP8098683A JPS59207703A JP S59207703 A JPS59207703 A JP S59207703A JP 8098683 A JP8098683 A JP 8098683A JP 8098683 A JP8098683 A JP 8098683A JP S59207703 A JPS59207703 A JP S59207703A
Authority
JP
Japan
Prior art keywords
dielectric plate
dielectric
plate
radiation conductor
microstrip antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8098683A
Other languages
Japanese (ja)
Inventor
Toshikazu Hori
俊和 堀
Nobuo Nakajima
信生 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8098683A priority Critical patent/JPS59207703A/en
Publication of JPS59207703A publication Critical patent/JPS59207703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Abstract

PURPOSE:To obtain a microstrip antenna excellent in weather resistant property by interposing the third dielectric plate a specified thickness between a radial conductor element and a passive element and arranging the first and the second dielectric plates thinner than wavelength at the outside. CONSTITUTION:A radial conductor element 1 and a passive element 2 of nearly same shape [radius (a), (b)] are formed opposite to a face of the first and the second dielectric plates 4, 4' which are thinner compared with wavelength. The third dielectric plate 5 of specified length (h) is interposed between the elements 1 and 2. The dielectric plate 5 is bonded to the dielectric plates 4, 4' with an adhesive. The face of the dielectric plate 4' on which the element 2 is not formed faces to outside. Accordingly, the elements 1 and 2 are kept at a specified distance (h) by the dielectric plate 5 and shut off from outside air by dielectric plates 4, 4'. As the elements 1 and 2 are not exposed directly to air or moisture by such a structure, they are hardly oxidized and do not generate exfoliation etc., the weather resistant property is improved.

Description

【発明の詳細な説明】 本発明は、不平衡平面回路共振型のマイクロストリ・ノ
ブアンテナに関し、特に耐候性を改善するための構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an unbalanced planar circuit resonant type microstriped knob antenna, and particularly to a structure for improving weather resistance.

銅帳槓層板をエツチングして製作できるマイクロストリ
ップアンテナは、簡単な構成で量産性があるが、使用可
能な周波数帯域が狭い。このため第1図に示すように1
表面に放射導体素子1をエツチング等により形成し、裏
面に接地導体板3が形成された第1の誘電体板4と、片
面に前記放射導体素子1とほぼ同形状の導体板からなる
無給電索子2が前記放射導体素子1に対向する位置に形
成された第2の誘電体板4′とを所定間隔りで保持する
ようにして広帯域化を図った平面(ロ)路共振型のマイ
クロストリップアンテナも知られている。
Microstrip antennas, which can be manufactured by etching a copper laminate, have a simple structure and can be mass-produced, but the usable frequency band is narrow. Therefore, as shown in Figure 1, 1
A parasitic device consisting of a first dielectric plate 4 on which a radiation conductor element 1 is formed by etching or the like on the front surface and a ground conductor plate 3 formed on the back surface, and a conductor plate having approximately the same shape as the radiation conductor element 1 on one side. A planar resonant type micro in which a second dielectric plate 4' formed at a position facing the radiation conductor element 1 is held at a predetermined interval so that the cable 2 is held at a predetermined interval to achieve a wide band. Strip antennas are also known.

−上記第1および第2の誘′市体板4,4′は、いずれ
も波長に比して薄い誘′暇体板であり、前記放射導体素
子1の半径aおよび無給電素子2の半径すは、はV等し
い。なお、放射導体素子1には図示されない同軸ケーブ
ルの中心導体からマイクロ電力が供給される。
- The first and second dielectric plates 4, 4' are dielectric plates thinner than the wavelength, and the radius a of the radiation conductor element 1 and the radius of the parasitic element 2 are is equal to V. Note that micropower is supplied to the radiation conductor element 1 from a center conductor of a coaxial cable (not shown).

上述の従来のマイクロストリップアンテナは。The conventional microstrip antenna mentioned above.

紫外線、風雨、温度変化等に弱く、金属部分が酸化した
り誘電体から剥離したりすることによってアンテナ特性
が劣化するという欠点がある。このため、レドーム等を
用いてアンテナを保−する必要がある。レドーム等を用
いるとマイクロストリップ線路の特徴である平面構成が
損なわれて立体的になり、設置スペース等を大きくしな
ければならない。壕だ、放射導体素子1と無給電素子2
とを所定間隔に保持するためには、第1および第2の誘
電体板を金属ビス等によって固定する必要があり、これ
によって電気特性に悲影響を及ぼし、またアンテナが重
くなる等多くの欠点がある。
It is vulnerable to ultraviolet rays, wind and rain, temperature changes, etc., and has the disadvantage that antenna characteristics deteriorate when the metal part oxidizes or peels off from the dielectric. Therefore, it is necessary to protect the antenna using a radome or the like. If a radome or the like is used, the planar structure, which is a feature of the microstrip line, will be lost and the line will become three-dimensional, requiring a larger installation space. It's a trench, radiating conductor element 1 and parasitic element 2
In order to keep the first and second dielectric plates at a predetermined distance, it is necessary to fix the first and second dielectric plates with metal screws, etc., which has a negative effect on the electrical characteristics and has many disadvantages such as making the antenna heavier. There is.

本発明の目的は、上述の従来の欠点を解決し、耐候性に
すぐれたマイクロストリップアンテナを提供することに
ある。捷た、本発明の他の目的は。
An object of the present invention is to solve the above-mentioned conventional drawbacks and provide a microstrip antenna with excellent weather resistance. Another object of the present invention is to.

簡単な構成で軽量のマイクロストリップアンテナを提供
することにある。
The object of the present invention is to provide a lightweight microstrip antenna with a simple configuration.

本発明のマイクロストリップアンテナは、波長に比べて
薄い第1の誘電体板の裏面に接地導体板を形成し表面に
放射導体素子を形成し、該放射導体素子から所定距離に
該放射導体素子とほぼ同形状の導体板からなる無給電素
子を配設した不平衡平面回路共振型のマイクロストリッ
プアンテナにおいて、@艶無給電素子は波長に比べて薄
い第2の誘電体板の一面に形成され、該無給電素子と前
記放射導体素子間に所定厚さの第3の誘電体板を介装し
たことを特徴とする。
In the microstrip antenna of the present invention, a ground conductor plate is formed on the back surface of a first dielectric plate that is thinner than the wavelength, a radiating conductor element is formed on the front surface, and the radiating conductor element is placed at a predetermined distance from the radiating conductor element. In an unbalanced planar circuit resonant microstrip antenna in which a parasitic element made of a conductive plate of approximately the same shape is arranged, the glossy parasitic element is formed on one surface of a second dielectric plate that is thinner than the wavelength, A third dielectric plate having a predetermined thickness is interposed between the parasitic element and the radiation conductor element.

上記放射導体素子および無給電索子をそれぞれ複数個配
列することは勿論可能である。−また、前記放射導体素
子等をエツチングによって形成すれば製造が容易である
。さらに前記第3の誘電体板は比誘電率が低いことが望
ましく、発泡ウレタン。
Of course, it is possible to arrange a plurality of each of the radiation conductor elements and parasitic cables. -Furthermore, manufacturing is easy if the radiation conductor elements and the like are formed by etching. Furthermore, it is desirable that the third dielectric plate has a low dielectric constant, and is made of urethane foam.

ハニカム等を使用すれは比誘電率が1に近く、かつ軽量
に構成することが可能である。
If a honeycomb or the like is used, the dielectric constant is close to 1, and the structure can be made lightweight.

次に、本発明について1図面を診照して詳細に説明する
Next, the present invention will be explained in detail with reference to one drawing.

第2図(a)は本発明の一実施例を示す斜視図であり、
同図(b)はその断面図である。すなわち、はぼ同形状
(半径α、b)の放射導体素子1.無給電素子2を、波
長に比べて薄い第1および第2の誘電体板4.4′の一
面にそれぞれ対向する位置に形成する。第1の誘電体板
4の裏面には接地導体板3が形成されている。これらは
、@張積層板をエツチングすることによって容易に形成
することができる。そして、所定厚さ五の第3の誘電体
板5を放射導体素子1と無給電素子2との間に介装させ
る。誘電体板5と、第1および第2の誘電体板4゜4′
とは接着剤によって接治されている。上記第25− の誘電体板4′は、無給電素子2が形成されていない方
の面を外側にしでいる。従って、放射導体素子1および
無給電素子2は誘導体5によって所定間隔んに保持され
、かつ外気とは第1および第2の誘電体板4,4′によ
って遮断されている。上記構造によれば、放射導体素子
1および無給電素子2が直接空気や水分にさらされ々い
ため酸化し難く、また剥離等を生じないから耐候性が向
上するという効果がある。また、所定間隔に保持するた
めに金属ビス等を必要としないから7れ気菌特性の劣化
を防止できる。第3の誘電体板5は発泡ウレタン等の低
誘電率(比誘電率が1に近い)の材料によって構成する
ことが望ましいことは勿論である。この場合は軽量であ
り、かつ電気特性も優れている。
FIG. 2(a) is a perspective view showing an embodiment of the present invention,
Figure (b) is a sectional view thereof. That is, radiating conductor elements 1. of radiating conductor elements having approximately the same shape (radii α, b). Parasitic elements 2 are formed at positions facing each other on one side of first and second dielectric plates 4.4' which are thinner than the wavelength. A ground conductor plate 3 is formed on the back surface of the first dielectric plate 4. These can be easily formed by etching @ tension laminates. Then, a third dielectric plate 5 having a predetermined thickness of 5 is interposed between the radiation conductor element 1 and the parasitic element 2. Dielectric plate 5, first and second dielectric plates 4°4'
and are glued together. The twenty-fifth dielectric plate 4' has the surface on which the parasitic element 2 is not formed facing outward. Therefore, the radiation conductor element 1 and the parasitic element 2 are held at a predetermined distance by the dielectric 5, and are shielded from the outside air by the first and second dielectric plates 4, 4'. According to the above structure, since the radiation conductor element 1 and the parasitic element 2 are often directly exposed to air and moisture, they are difficult to oxidize, and since peeling does not occur, the weather resistance is improved. Further, since no metal screws or the like are required to maintain the predetermined spacing, deterioration of bacterial properties can be prevented. It goes without saying that the third dielectric plate 5 is desirably made of a material with a low dielectric constant (relative dielectric constant close to 1) such as urethane foam. In this case, it is lightweight and has excellent electrical properties.

第3図は、第3の誘電体板5を発泡ポリウレタンで構成
したマイク・ロストリップアンテナと、同形状の従来ア
ンテナの反射電力−周波数特性を示す図である。実線の
曲線Aは誘電体板5を発泡ウレタンとした実施例の特性
を示し1点線の曲緑B6一 は同形状の匠米アンテナの特性を示す。同図から。
FIG. 3 is a diagram showing the reflected power-frequency characteristics of a micro-rostrip antenna in which the third dielectric plate 5 is made of polyurethane foam and a conventional antenna of the same shape. A solid curve A shows the characteristics of an embodiment in which the dielectric plate 5 is made of foamed urethane, and a one-dot curve curve B6 shows the characteristics of a craft antenna having the same shape. From the same figure.

発泡ウレタンによる影@は殆んどないことが理解される
。ttこ、放射指向特性についての試験も行なったが変
化は認められなかった。誘電率が高い誘電体を用いた場
合においても放射導体素子等の寸法形状を適当に設計す
れば艮好な特性を侍ることが可能である。
It is understood that there is almost no shadow @ caused by the urethane foam. We also conducted a test on the radiation directional characteristics, but no change was observed. Even when a dielectric material with a high permittivity is used, excellent characteristics can be achieved by appropriately designing the dimensions and shape of the radiation conductor element, etc.

第4図に11本発明の他の実施例を示す斜摺1図であり
、放射導体素子1および無飽軍素子2かそれぞれ対向す
る位1aに籾数個配列されている。籾数の放射導体素子
1間は給電分配回路6によって接続される。その他の点
については前述と同様であり、同一参照数字は同一の構
成部材を示す。この場合も前述と同様に耐候性が良いこ
とは勿論である0 以上のように1本発明においてd5、放射導体素子と無
給電素子間に所定厚さの第3の誘電体板を介装させ、外
側に波長に比べて薄い第1および第2の誘電体板を配置
した構成としたから、簡単な構造によって広帯域化が達
成され、かつ耐候性に優れたアンテナを提供することが
できる。複数個の放射導体素子等を配列形成することも
勿論可能である。放射導体素子と無給電素子間を所定間
隔に保持するだめの金属ビス等は不要である。さらにI
′l)1記第3の誘電体板を発泡ポリウレタン等によっ
て構成すれば極めてc量となり、電気的特性への影響も
殆んど問題と々らないから極めて好都合である。
FIG. 4 is a perspective view showing another embodiment of the present invention, in which several rice grains are arranged in a position 1a where a radiation conductor element 1 and an insatiable force element 2 face each other. The radiation conductor elements 1 of the number of rice grains are connected by a power supply distribution circuit 6. Other points are the same as above, and the same reference numerals indicate the same components. In this case as well, it goes without saying that the weather resistance is good as described above.As described above, in the present invention, in d5, a third dielectric plate of a predetermined thickness is interposed between the radiation conductor element and the parasitic element. Since the first and second dielectric plates, which are thinner than the wavelength, are arranged on the outside, a wide band can be achieved with a simple structure, and an antenna with excellent weather resistance can be provided. Of course, it is also possible to form a plurality of radiation conductor elements in an array. There is no need for metal screws or the like to maintain a predetermined distance between the radiation conductor element and the parasitic element. Further I
'l) If the third dielectric plate (1) is made of foamed polyurethane or the like, the amount of c will be extremely high, and the influence on the electrical characteristics will hardly be a problem, which is extremely convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、(b)は広帯域化を図った従来のマイ
クロストリップアンテナの一例を示す斜楕1図および断
面図、第2図(a) 、 (b)は本発明の一実施例を
示す斜視図および断面図、第3図は上記実施例の反射電
力−周波数特性の一例を示す図、第4図は本発明の他の
実施例を示す斜視図である。 図において、1・・・放射導体素子  2・・・無給電
素子  3・・・接地導体板  4・・・第1の誘電体
板4′・・・第2の誘電体板  5・・・第3の誘電体
板6・・・給電分配回路。 2151図 傳20 (a) 市)
FIGS. 1(a) and (b) are an oblique elliptical diagram and a sectional view showing an example of a conventional microstrip antenna with a wide band, and FIGS. 2(a) and (b) are an embodiment of the present invention. FIG. 3 is a diagram showing an example of reflected power-frequency characteristics of the above embodiment, and FIG. 4 is a perspective view showing another embodiment of the present invention. In the figure, 1...radiation conductor element 2...parasitic element 3...ground conductor plate 4...first dielectric plate 4'...second dielectric plate 5...th Dielectric plate 6 of 3...Power distribution circuit. 2151 Picture Den 20 (a) City)

Claims (1)

【特許請求の範囲】 (1)波長に比べて薄い第1の誘電体板の裏面に接地導
体板を形成し表面に放射導体素子を形成し、該放射導体
素子から所定距離に該放射導体素子とほぼ同形状の導体
板からなる無給電素子を配設した不平衡平面回路共振型
のマイクロストリップアンテナにおいて、前記無給電素
子は波長に比べて薄い第2の誘電体板の一面に形成され
、該無給電素子と前記放射導体素子間に所定厚さの第3
の誘電体板を介装したことを特徴とするマイクロストリ
ップアンテナ。 (2、特許請求の範囲第1項記載のマイクロス) IJ
ツブアンテナにおいて、前記放射導体素子は前記第1の
誘電体板上に複数個形成され、該複数個の放射導体素子
間は給電分配回路で接続され、前記無給電素子は前記第
2の誘電体板上に上記複数個の放射導体素子に対向して
複数個形成されたことを特徴とするもの。 (3)特許請求の範囲第1項または第2項記載のマイク
ロストリップアンテナにおいて、前記放射導体素子およ
び前記無給電素子は誘電体板上に形成された導体板をエ
ツチングして形成されたことを特徴とするもの。 (4)特許請求の範囲第1項、第2項または第3項記載
のマイクロストリップアンテナにおいて、前記第3の誘
電体板は発泡ウレタン等の低諦電率の誘電体で構成され
たことを特徴とするもの。
[Claims] (1) A grounded conductor plate is formed on the back surface of the first dielectric plate, which is thinner than the wavelength, and a radiating conductor element is formed on the front surface, and the radiating conductor element is placed at a predetermined distance from the radiating conductor element. In an unbalanced planar circuit resonant microstrip antenna in which a parasitic element made of a conductor plate having approximately the same shape as is arranged, the parasitic element is formed on one surface of a second dielectric plate that is thinner than the wavelength, A third layer having a predetermined thickness is provided between the parasitic element and the radiation conductor element.
A microstrip antenna characterized by interposing a dielectric plate. (2. Micros according to claim 1) IJ
In the tube antenna, a plurality of the radiation conductor elements are formed on the first dielectric plate, the plurality of radiation conductor elements are connected by a feeding distribution circuit, and the parasitic element is connected to the second dielectric plate. A plurality of radiation conductor elements are formed on a plate to face the plurality of radiation conductor elements. (3) In the microstrip antenna according to claim 1 or 2, the radiation conductor element and the parasitic element are formed by etching a conductor plate formed on a dielectric plate. Features. (4) In the microstrip antenna according to claim 1, 2, or 3, the third dielectric plate is made of a dielectric material with a low electric yield rate such as urethane foam. Features.
JP8098683A 1983-05-11 1983-05-11 Microstrip antenna Pending JPS59207703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8098683A JPS59207703A (en) 1983-05-11 1983-05-11 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8098683A JPS59207703A (en) 1983-05-11 1983-05-11 Microstrip antenna

Publications (1)

Publication Number Publication Date
JPS59207703A true JPS59207703A (en) 1984-11-24

Family

ID=13733818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8098683A Pending JPS59207703A (en) 1983-05-11 1983-05-11 Microstrip antenna

Country Status (1)

Country Link
JP (1) JPS59207703A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533765A1 (en) * 1982-09-27 1984-03-30 Rogers Corp MICROBAND ANTENNA
JPS63120502A (en) * 1986-11-10 1988-05-24 Nippon Telegr & Teleph Corp <Ntt> Broad band microstrip antenna
JPS63120658A (en) * 1986-11-10 1988-05-25 Toshiba Corp Ink recording system
US4835538A (en) * 1987-01-15 1989-05-30 Ball Corporation Three resonator parasitically coupled microstrip antenna array element
JPH01205603A (en) * 1987-11-05 1989-08-18 Alcatel Thomson Espace Exciter of circularly polarized waveguide with plane antenna
US4980693A (en) * 1989-03-02 1990-12-25 Hughes Aircraft Company Focal plane array antenna
JPH0332203A (en) * 1989-06-29 1991-02-12 Toshiba Corp Reflecting mirror antenna
JPH0362604A (en) * 1989-07-31 1991-03-18 Nec Corp Plane antenna
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
US5061938A (en) * 1987-11-13 1991-10-29 Dornier System Gmbh Microstrip antenna
JPH0423603A (en) * 1990-05-18 1992-01-28 Dx Antenna Co Ltd Planar antenna
US5243353A (en) * 1989-10-31 1993-09-07 Mitsubishi Denki Kabushiki Kaisha Circularly polarized broadband microstrip antenna
JPH1051227A (en) * 1996-07-31 1998-02-20 Nec Corp Planar antenna
US5798734A (en) * 1995-10-06 1998-08-25 Mitsubishi Denki Kabushiki Kaisha Antenna apparatus, method of manufacturing same and method of designing same
JP2011087215A (en) * 2009-10-19 2011-04-28 Nippon Dengyo Kosaku Co Ltd Antenna
JP2019009543A (en) * 2017-06-22 2019-01-17 Tdk株式会社 Dual band patch antenna
WO2019116718A1 (en) * 2017-12-11 2019-06-20 株式会社村田製作所 Substrate with antenna, and antenna module
JP2019103037A (en) * 2017-12-05 2019-06-24 日本無線株式会社 Circular polarization shared planar antenna

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533765A1 (en) * 1982-09-27 1984-03-30 Rogers Corp MICROBAND ANTENNA
JPS63120502A (en) * 1986-11-10 1988-05-24 Nippon Telegr & Teleph Corp <Ntt> Broad band microstrip antenna
JPS63120658A (en) * 1986-11-10 1988-05-25 Toshiba Corp Ink recording system
JP2602817B2 (en) * 1986-11-10 1997-04-23 株式会社東芝 Ink recording method
US5005019A (en) * 1986-11-13 1991-04-02 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
US4835538A (en) * 1987-01-15 1989-05-30 Ball Corporation Three resonator parasitically coupled microstrip antenna array element
US5010348A (en) * 1987-11-05 1991-04-23 Alcatel Espace Device for exciting a waveguide with circular polarization from a plane antenna
JPH01205603A (en) * 1987-11-05 1989-08-18 Alcatel Thomson Espace Exciter of circularly polarized waveguide with plane antenna
US5061938A (en) * 1987-11-13 1991-10-29 Dornier System Gmbh Microstrip antenna
US4980693A (en) * 1989-03-02 1990-12-25 Hughes Aircraft Company Focal plane array antenna
JPH0332203A (en) * 1989-06-29 1991-02-12 Toshiba Corp Reflecting mirror antenna
JPH0362604A (en) * 1989-07-31 1991-03-18 Nec Corp Plane antenna
US5243353A (en) * 1989-10-31 1993-09-07 Mitsubishi Denki Kabushiki Kaisha Circularly polarized broadband microstrip antenna
JPH0423603A (en) * 1990-05-18 1992-01-28 Dx Antenna Co Ltd Planar antenna
US5798734A (en) * 1995-10-06 1998-08-25 Mitsubishi Denki Kabushiki Kaisha Antenna apparatus, method of manufacturing same and method of designing same
JPH1051227A (en) * 1996-07-31 1998-02-20 Nec Corp Planar antenna
JP2011087215A (en) * 2009-10-19 2011-04-28 Nippon Dengyo Kosaku Co Ltd Antenna
JP2019009543A (en) * 2017-06-22 2019-01-17 Tdk株式会社 Dual band patch antenna
JP2019103037A (en) * 2017-12-05 2019-06-24 日本無線株式会社 Circular polarization shared planar antenna
WO2019116718A1 (en) * 2017-12-11 2019-06-20 株式会社村田製作所 Substrate with antenna, and antenna module
US11658405B2 (en) 2017-12-11 2023-05-23 Murata Manufacturing Co., Ltd. Antenna-attached substrate and antenna module

Similar Documents

Publication Publication Date Title
JPS59207703A (en) Microstrip antenna
US5448252A (en) Wide bandwidth microstrip patch antenna
US4287518A (en) Cavity-backed, micro-strip dipole antenna array
Yang et al. Photonic band-gap materials for high-gain printed circuit antennas
JP4856078B2 (en) Reflective antenna
US5181042A (en) Microstrip array antenna
US5278569A (en) Plane antenna with high gain and antenna efficiency
JPH09307342A (en) Antenna system
JPS61140203A (en) Resisting loop angle filter
JP2846081B2 (en) Triplate type planar antenna
JPH0799409A (en) Duplex polarized wave dipole group antenna
GB1574196A (en) Microstrip radiator with folded resonant cavity
Kashanianfard et al. Vehicular optically transparent UHF antenna for terrestrial communication
EP0825676B1 (en) Complementary bowtie antenna
US5559523A (en) Layered antenna
JP3006867B2 (en) Broadband planar antenna
US4015263A (en) Dual polarized blade antenna
JPH06112730A (en) Microstrip antenna
JPH02252304A (en) Planer antenna
WO2001015270A1 (en) A compact antenna for multiple frequency operation
Zeppettella et al. Conformal load-bearing antenna structure for MIMO applications
US3302207A (en) Traveling wave strip line antenna
JPH0983241A (en) Semiconductor device
JPS58130605A (en) Microstrip antenna
JP4511499B2 (en) Planar antenna