JPS5920762B2 - Aromatic polyamide spinning dope preparation method - Google Patents
Aromatic polyamide spinning dope preparation methodInfo
- Publication number
- JPS5920762B2 JPS5920762B2 JP7950076A JP7950076A JPS5920762B2 JP S5920762 B2 JPS5920762 B2 JP S5920762B2 JP 7950076 A JP7950076 A JP 7950076A JP 7950076 A JP7950076 A JP 7950076A JP S5920762 B2 JPS5920762 B2 JP S5920762B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- concentration
- dope
- spinning
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
Description
【発明の詳細な説明】
本発明はパラ配位的全芳香族ポリアミドの紡糸原液の調
製方法に係り、好ましい機械的物性のパラ配位的全芳香
族ポリアミド繊維の製造に適した光学的異方性を示す紡
糸原液の調製方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preparing a spinning stock solution of a para-coordination wholly aromatic polyamide, which has an optical anisotropy suitable for producing a para-coordination wholly aromatic polyamide fiber with preferable mechanical properties. The present invention relates to a method for preparing a spinning dope that exhibits properties.
本発明の方法により調製された紡糸原液はポリパラフェ
ニレンテレフタルアミドまたはそれに類似したパラ配位
的全芳香族ポリアミドの均一性にすぐれた繊維を安定し
て製造を可能にする。芳香族ジアミン、及び、芳香族カ
ルボン酸、又は/及び、芳香族アミノカルボン酸より全
芳香族ポリアミドが誘導されることは公知であり、また
それらより適当な方法によつて繊維が得られることもよ
く知られている。The spinning dope prepared by the method of the present invention makes it possible to stably produce fibers of polyparaphenylene terephthalamide or similar para-coordination wholly aromatic polyamides with excellent uniformity. It is known that fully aromatic polyamides can be derived from aromatic diamines, aromatic carboxylic acids, and/or aromatic aminocarboxylic acids, and fibers can also be obtained from them by appropriate methods. well known.
さらに、ポリパラフェニレンテレフタルアミドまたはそ
れに類似の構造を有するパラ配位的全芳香族ポリアミド
は限られたポリマー濃度のドープを用いて、望ましい機
械的性質を有する有用な繊維を与えることが西独特許公
開1929694に開示されている。Further, it has been shown that polyparaphenylene terephthalamide, or a para-coordinated wholly aromatic polyamide with a similar structure, can be used with limited polymer concentration doping to provide useful fibers with desirable mechanical properties. No. 1,929,694.
これらパラ配位的全芳香族ポリアミド繊維、特にポリパ
ラフェニレンテレフタルアミド系繊維(以下「P−T系
繊維」と略称する)は、良好な耐熱性、耐薬品性、及び
高強度、高初期モジユラスを有することが知られている
。These para-coordination wholly aromatic polyamide fibers, especially polyparaphenylene terephthalamide fibers (hereinafter abbreviated as "P-T fibers"), have good heat resistance, chemical resistance, high strength, and high initial modulus. It is known to have
反面、極めて溶解性に乏しく、通常の方法に従つてポリ
マーと溶媒とを一括に混合、攪拌溶解しても容易に紡糸
原液として好適なドープはえられない。パラ配位的全芳
香族ポリアミドは、通常の溶解操作でよく行なわれるよ
うにポリマーに溶剤を一括して混合、攪拌するとポリマ
ーの溶剤中への分散から溶解するまでの間に巨大ドープ
粘度域を通過し、その後、光学異方性(OA)のあるポ
リマー濃度域になるという特性をもつている。On the other hand, it has extremely poor solubility, and a dope suitable as a spinning dope cannot be easily obtained even if the polymer and solvent are mixed all at once and stirred and dissolved according to a conventional method. For para-coordinated fully aromatic polyamides, when the polymer is mixed with a solvent all at once and stirred, as is often done in normal dissolution operations, a huge dope viscosity region is created between the time the polymer is dispersed in the solvent and the time it is dissolved. It has the characteristic that it passes through the polymer and then becomes a polymer concentration region with optical anisotropy (OA).
この巨大ドープ域を通過するときに溶液の粘度は1方ポ
イズ以上にも達し、その巨大粘度の溶液相が未溶解又は
溶解途中のポリマー粉を粘結せしめて「ままこ」 (固
相の多い粘結凝結塊が生じて結果的に内部が溶け残るポ
リマー塊状物をいう)を多発する。このために、その後
の攪拌でも完全なる溶解状態がえられず、又、完全溶解
させる目的で、高温加熱、及び長時間攪拌を行うとポリ
マー重合度低下が大となり、糸の強度が落ちたり、単糸
切れが頻発する等の工程トラブルが多発する。即ち、従
来の方法では安定した好適な性能を有する条件維持や管
理がむずかしいという欠点があつた。これらのP−T系
ポリマーを高濃度に溶解して、高性能の繊維を得るため
には、該ポリマーに対する溶解力に優れる濃硫酸が用い
られるが、この場合は溶解熱として、ほづ中和反応熱に
等しい大きな発熱を伴うため、「ままこ」部分では、攪
拌による熱の放散がなく、その内部の蓄熱のために、温
度の局部的上昇が大きくなり、ポリマーの分解が顕著と
なつて、紡糸工程上トラブルを発生する。本発明の目的
は、これらP−T系繊維製造上の欠点を克服し、すぐれ
た機械的性質をさらに高め、且つ均質なものを容易に得
る紡糸原液の調製方法を提供することである。本発明は
パラ配位的全芳香族ポリアミドを、95重量%以上の硫
酸を溶剤として、紡糸原液を調整するにあたり、先ず、
第1段階として、0.1〜5重量?のポリマー濃度の溶
液を調製し、次いで、その溶液に該ポリマーを、溶解後
の溶液が光学的異方性を示す臨界濃度以上の濃度になる
所定の量追加して攪拌し、完全に溶解せしめることによ
り、所定濃度の光学的異方性溶液とすることを特徴とす
るパラ配位的全芳香族ポリアミド紡糸原液の調製方法で
ある。When passing through this huge dope region, the viscosity of the solution reaches more than one poise, and the solution phase with this huge viscosity causes the undissolved or half-dissolved polymer powder to coagulate, resulting in "mamako" (a liquid with a large amount of solid phase). This refers to polymer lumps whose insides remain undissolved as a result of the formation of caking and coagulating lumps). For this reason, it is not possible to obtain a completely dissolved state even with subsequent stirring, and if heating at high temperatures and stirring for a long period of time is carried out for the purpose of complete dissolution, the degree of polymerization will decrease significantly, and the strength of the thread will decrease. Process troubles such as frequent single yarn breakage occur frequently. That is, the conventional method has the disadvantage that it is difficult to maintain and manage conditions for stable and suitable performance. In order to obtain high-performance fibers by dissolving these P-T polymers in high concentrations, concentrated sulfuric acid is used, which has excellent dissolving power for the polymers. Because a large amount of heat is generated, which is equivalent to the heat of reaction, there is no heat dissipation through stirring in the "mamako" part, and the local temperature rise becomes large due to heat accumulation inside the "mamako" part, resulting in significant decomposition of the polymer. , causing trouble in the spinning process. The object of the present invention is to overcome these drawbacks in the production of P-T fibers, to further improve the excellent mechanical properties, and to provide a method for preparing a spinning dope that can easily produce homogeneous fibers. In the present invention, in preparing a spinning stock solution for a para-coordinated wholly aromatic polyamide using 95% by weight or more of sulfuric acid as a solvent, first,
As the first step, 0.1 to 5 weight? A solution with a polymer concentration of This is a method for preparing a para-coordinated wholly aromatic polyamide spinning stock solution, which is characterized by forming an optically anisotropic solution with a predetermined concentration.
本発明でいうパラ配位的全芳香族ポリアミドとは、次の
単位、〔土式中、単位(1)及び()は、これがポリマ
ー中に実質的に等モル量で存在し、Ar,,Ar2及び
Ar3は各々2価の芳香族基をあられす。The para-coordination wholly aromatic polyamide as used in the present invention refers to the following units [in the formula, units (1) and () are present in substantially equimolar amounts in the polymer, Ar2 and Ar3 each represent a divalent aromatic group.
ポリマー中の基Ar,,Ar2及びAr,の全体の少く
とも90モルeは、基Ar,,Ar2及びAr3は相互
に直鎖配位されている二価の芳香族残基であつて具体的
にはパラフエニレン基、4,4′−ビフエニレン基、1
,4−ナフチレン基、2,5−ヒリジレン基であり、こ
れら基の芳香族核の水素がニトロ基、ハロゲン基、低級
アルキル基、低級アルコキシ等の非活性基で1又は2以
上置換されていてもよい。P−T系ポリマーは公知のい
ずれによつても容易に合成されるもので、例えば相当す
るジカルボン酸を、酸ハライド、酸イミダゾライド、エ
ステル等に誘導した後、ジアミドと反応させる方法など
が適用でき、本発明を実施する上でいずれの方法も用い
得る。At least 90 moles of the total number of groups Ar, , Ar2 and Ar, in the polymer are such that the groups Ar, , Ar2 and Ar3 are divalent aromatic residues in linear coordination with each other and are specifically Paraphenylene group, 4,4'-biphenylene group, 1
, 4-naphthylene group, and 2,5-hyridylene group, and the hydrogen atoms in the aromatic nucleus of these groups are substituted with one or more inert groups such as nitro group, halogen group, lower alkyl group, and lower alkoxy group. Good too. P-T polymers can be easily synthesized by any known method, such as a method in which a corresponding dicarboxylic acid is induced into an acid halide, acid imidazolide, ester, etc., and then reacted with a diamide. Any method can be used in practicing the invention.
又、これらのポリマーに用いられる紡糸溶剤とこれらの
P−T系ポリマーの溶解に用いられる溶剤としては、P
−T系ポリマーに対する良好なる溶解性及び、安価で入
手しやすい濃硫酸又は発煙硫酸が好ましい。In addition, as the spinning solvent used for these polymers and the solvent used for dissolving these P-T polymers, P
Concentrated sulfuric acid or fuming sulfuric acid is preferred because it has good solubility in -T-based polymers and is inexpensive and easily available.
その濃度は、ポリマー組成や、ポリマーの重合度、原液
のポリマー濃度により異なるが、少くとも95重量?以
上の濃硫酸が用いられるべきで、それ以下では、所望の
溶解能が得られない。又、100重量?以上のいわゆる
発煙硫酸は、あまり高すぎる濃度のものでは、反つて溶
解力が低下し、又、ポリマーのスルホン化等の好ましく
ない副反応や、ポリマーの分解速度が増すため、避けら
れるべきである。The concentration varies depending on the polymer composition, degree of polymerization, and polymer concentration of the stock solution, but is at least 95% by weight? The above concentration of sulfuric acid should be used; if it is less than that, the desired dissolving power cannot be obtained. Also, 100 weight? The so-called fuming sulfuric acid mentioned above should be avoided because if the concentration is too high, it will reduce the dissolving power, cause undesirable side reactions such as sulfonation of the polymer, and increase the decomposition rate of the polymer. .
本発明は、パラ配位的全芳香族ポリアミドすなわちP−
T系ポリマーを溶解するにあたり、先ず第一段階として
、0.1〜5重量%の低ポリマー濃度で予備溶解し、次
いで、残ポリマーを加えて完全に溶解せしめる攪拌を行
なう。The present invention relates to a para-coordinated wholly aromatic polyamide, that is, P-
In dissolving the T-based polymer, first, as a first step, it is preliminarily dissolved at a low polymer concentration of 0.1 to 5% by weight, and then the remaining polymer is added and stirred to completely dissolve.
本発明者らの詳しい研究結果によれば、低ポリマ一濃度
の光学等方性ドープを一旦経てドープから光学異方法の
あるドープに二段階に溶解することの有用性は、P−T
系ポリマーの光学的異方性ドープを調整する際に、ポリ
マー濃度が低く、光学的等方性ドープの領域では、ドー
プ粘度は、ポリマー濃度の増加と共に上昇し、約7〜8
重量?以上では、1万ポイズ以上の極めて高粘度の巨大
ドープ粘度領域を経て、約9〜10重量%の臨界点に達
した後、光学的異方性を示すポリマー濃度領域に入り、
ドープ粘度は低下して流動性を増加するという特異な挙
動を示す為、第1段階の低ポリマー濃度の溶解において
は、最初のポリマー投入量が少い為に塊りが出来にくく
、且つ比較的早く溶解する。According to the detailed research results of the present inventors, the usefulness of dissolving the dope in two steps into a dope with an optically anisotropic method after passing through an optically isotropic dope with a low polymer concentration is that P-T
When adjusting the optically anisotropic doping of the system polymer, in the region of low polymer concentration and optically isotropic doping, the dope viscosity increases with increasing polymer concentration and is approximately 7-8
weight? In the above, after passing through a huge dope viscosity region of extremely high viscosity of 10,000 poise or more and reaching a critical point of about 9 to 10% by weight, it enters a polymer concentration region exhibiting optical anisotropy.
Because the dope exhibits a unique behavior in which the viscosity decreases and the fluidity increases, in the first stage of dissolving low polymer concentrations, the initial amount of polymer input is small, making it difficult to form lumps, and relatively Dissolves quickly.
かくして得られる溶液は希薄濃度であつてもドープ粘度
が高いから、続いてのポリマー投入に際しての剪断効果
が大きく、かつ追加投入されたポリマー粒子に対しても
粘着性を有するため、撹拌によるポリマー粒子の分散を
援け、かつ塊りを小さく壊す作用もあるので、ままこが
発生せずその後の引き続いての攪拌によつて短時間に完
全な溶解状態がえられることである。これはメリケン粉
をシヤブシヤブの水中へ入れて混ぜる場合と、つきたて
のモチの中へ練り込む場合の塊りのできにくさの比較に
例えられる。又、通常方法に比べて溶解時の温度土昇が
低く抑えられ、且つ溶解性が良好な為に、あまり加熱温
度を上げる必要もない。従つて、ポリマー重合度の低下
も少なく、且つ均一な紡糸原液がえられるので、糸切れ
などのトラブルも少なく、機械的性質のすぐれた糸を安
定して製造せしめることができる。尚、第1段階の予備
溶解に於いて、そのポリマー濃度が0.1重量?未満で
は、本発明の効果を発揮するに足るドープ粘度が得られ
ず、すべてのポリマーを一時に加える従来法と同様の問
題を生じる。又、5重量?を超えると、ドープ粘度が過
大となつて、ポリマーを追加して第2段階の溶解を実施
する上で、十分な攪拌効果が得られず、反つて溶解に長
時間を要するために、好ましくない。これらの二段階の
溶解は、各々、回分式に逐次行なわれても良いが、特に
連続的にポリマー及び溶剤が溶解機に供給されて、連続
的に紡糸原液が調整される方法に於いては、特に第2段
の溶解に於いて、添加されたポリマーの分散性が良好で
溶解速度の大きな本発明の力法の効果が有効に発揮でき
る。P−T系繊維の紡糸以降について説明を簡単にすれ
ば、紡糸方法は細孔を経由して直接凝固浴中へ押出す通
常の横型湿式紡糸法でもよいし、紡糸直後、一たん不活
性媒体中を通過させてから、その後適当な凝固浴中へ導
く、いわゆる空中落下式湿式紡糸法でもよい。The solution obtained in this way has a high dope viscosity even at a dilute concentration, so it has a large shearing effect when the polymer is subsequently added, and it also has stickiness to additionally added polymer particles, so the polymer particles can be easily removed by stirring. It also has the effect of assisting in the dispersion of the liquid and breaking up any lumps into small pieces, so that no lumps occur and a complete dissolution state can be obtained in a short period of time with subsequent stirring. This can be compared to the difficulty in forming clumps when kneading rice flour into the water of a shabu shabu and when kneading it into freshly made rice cake. Moreover, since the temperature rise during melting is suppressed to a low level and the solubility is good compared to the usual method, there is no need to raise the heating temperature too much. Therefore, the degree of polymerization decreases little and a uniform spinning dope can be obtained, so troubles such as yarn breakage are reduced, and yarns with excellent mechanical properties can be stably produced. In addition, in the first step of pre-dissolution, the polymer concentration is 0.1 weight? If it is less than that, it will not be possible to obtain a dope viscosity sufficient to exhibit the effects of the present invention, resulting in the same problems as in the conventional method in which all the polymers are added at once. Also, 5 weight? Exceeding this is undesirable because the dope viscosity becomes excessive and a sufficient stirring effect cannot be obtained when adding the polymer and carrying out the second stage of dissolution, and it takes a long time to dissolve the polymer. . Each of these two stages of dissolution may be performed sequentially in a batch manner, but especially in a method in which the polymer and solvent are continuously supplied to a dissolving machine and a spinning stock solution is continuously prepared. Particularly in the second stage of dissolution, the effect of the force method of the present invention, in which the added polymer has good dispersibility and a high dissolution rate, can be effectively exhibited. To simplify the process of spinning P-T fibers, the spinning method may be a normal horizontal wet spinning method in which the fibers are extruded directly into a coagulation bath through pores, or the spinning method may be a conventional horizontal wet spinning method in which the fibers are extruded directly into a coagulation bath immediately after spinning. A so-called aerial drop type wet spinning method may also be used, in which the spinning material is passed through the fiber and then introduced into a suitable coagulation bath.
この様にして紡出された繊維は、引き続いて水洗行程に
導かれ、そこで繊維に含まれる溶剤や無機塩などを実質
的に完全に除き、次いで乾燥し、必要に応じて適当な油
剤を付与したのち、捲きとられる。The fibers spun in this way are subsequently led to a water washing process, where the solvents and inorganic salts contained in the fibers are substantially completely removed, then dried, and a suitable oil is applied as necessary. Afterwards, it is rolled up.
又、場合によつては任意の工程で延伸、熱処理を行うこ
とにより引張強度、ヤング率などの機械的性質もすぐれ
、且つ均質なものが得られ通常法に比べ格段に有利な結
果をもたらすものである。次に実施例に従い、本発明の
内容をより具体的に詳述する。In addition, in some cases, stretching and heat treatment can be carried out in optional steps to obtain homogeneous products with excellent mechanical properties such as tensile strength and Young's modulus, which provides much more advantageous results than conventional methods. It is. Next, the content of the present invention will be described in more detail with reference to Examples.
尚、実施例中、繊維の引張強度、引張伸度、ヤング率は
20℃、65%RH雰囲気下で等速伸長引張試験機によ
り荷重伸長曲線を描きそれたり読みとつた。実施例中百
分率は重量?を示す。実施例 1
パラフエニレンジアミンを含むヘキサメチルホスホルア
ミド/N−メチル−2−ピロリドン混合溶液中に、実質
的に等モルの微粉末状のテレフタル酸クロライドを加え
、強攪拌下に重合を行なわせ、固有粘度*3.0の重合
体を得た。In the examples, the tensile strength, tensile elongation, and Young's modulus of the fibers were determined by drawing a load-elongation curve using a constant-speed elongation tensile tester at 20° C. and 65% RH atmosphere. Do the percentages in the examples mean weight? shows. Example 1 Substantially equimolar amounts of finely powdered terephthalic acid chloride were added to a mixed solution of hexamethylphosphoramide/N-methyl-2-pyrrolidone containing paraphenylenediamine, and polymerization was carried out under strong stirring. A polymer having an intrinsic viscosity of *3.0 was obtained.
このポリマー6009を99.5%硫酸1500CC(
27509)に溶解するにあたり、2通りの方法で実施
比較した。This polymer 6009 was mixed with 99.5% sulfuric acid 1500CC (
27509), two methods were compared.
一方(4)は、3tガラス製フラスコにポリマー109
、硫酸1500CCを入れ、約30分間強力攪拌して、
ポリマーを完全に溶解して0.36%の濃度の稀薄ドー
プとし、次いで、これにポリマー5909を追加して、
引き続き攪拌を90分行なつた。他方(B)はポリマー
6009を3tガラス製フラスコに入れ、攪拌しながら
1500CCの硫酸を注ぎ、そのまま90分攪拌を続け
た。CA),(B)それぞれの方法で得られた18%の
ポリマー濃度の光学的異方性ドープそれぞれを180分
真空脱泡したのち、0.07711!!tφ×250孔
のノズルから空中に押し出し、凝固液はO℃に保つた2
070硫酸水溶液を用い80m/―で捲きとつた。On the other hand (4), polymer 109 was placed in a 3t glass flask.
, add 1500cc of sulfuric acid, stir vigorously for about 30 minutes,
The polymer was completely dissolved to a dilute dope with a concentration of 0.36%, to which polymer 5909 was then added,
Stirring was continued for 90 minutes. On the other hand (B), Polymer 6009 was placed in a 3t glass flask, 1500 cc of sulfuric acid was poured into the flask while stirring, and stirring was continued for 90 minutes. CA) and (B) After each optically anisotropic dope with a polymer concentration of 18% obtained by each method was vacuum degassed for 180 minutes, 0.07711! ! It was extruded into the air through a nozzle with a hole of tφ x 250, and the coagulation liquid was kept at 0°C.
Using 070 sulfuric acid aqueous solution, it was rolled at 80 m/-.
(AXB)のそれぞれの物性は次の通りで、本発明の方
法に従つて得た(4)サンプルの容易性が容易に理解さ
れる。実施例 2
実施例1同様に得たポリマー231<9を99.8%硫
酸50t(91.5kg)に溶解するにあたり、実施例
1同様に2通りの方法で実施比較した。The physical properties of (AXB) are as follows, and the ease of sample (4) obtained according to the method of the present invention can be easily understood. Example 2 In dissolving Polymer 231<9 obtained in the same manner as in Example 1 in 50 tons (91.5 kg) of 99.8% sulfuric acid, two methods were compared in the same manner as in Example 1.
一力囚は、まずポリマー0.51<gを硫酸50t中に
入れ、30分間強力攪拌して、ポリマー濃度が0.54
%の光学的等方性のドープとした後ポリマー22.5k
gを追加し、そのまま90分攪拌を続けた。他方(8)
はポリマー23kg入つた容器中に硫酸50tを注ぎ、
そのまま120分攪拌を続けた。両方法により得られた
ポリマー濃度が20%の光学的異方性のドープをそれぞ
れ180分間真空脱泡したのち、0.061gtφ×5
00孔のノズルから空中に押し出し、凝固液は0℃に保
つた20%硫酸水溶液、紡速は150m/分であり、水
洗、乾燥、給油はネツトコンベア上に紡出繊維を堆積さ
せ、連続的に処理するやり方で行なわれた。この時(4
)の紡出直後の単糸切れの回数を肉眼でかぞえ、単位時
間当りに換算した値は0.4回/時間であり、一方(8
)は0.9回/時間であつた。又、溶解前後のポリマー
、及び紡糸繊維の固有粘度は次の通りであつた。First, put 0.51<g of polymer in 50 tons of sulfuric acid and stir vigorously for 30 minutes until the polymer concentration is 0.54.
% of optically isotropic doping after polymer 22.5k
g was added, and stirring was continued for 90 minutes. On the other hand (8)
pours 50 tons of sulfuric acid into a container containing 23 kg of polymer,
Stirring was continued for 120 minutes. The optically anisotropic dope with a polymer concentration of 20% obtained by both methods was vacuum degassed for 180 minutes, and then 0.061gtφ×5
The coagulating liquid was a 20% aqueous sulfuric acid solution kept at 0°C, the spinning speed was 150 m/min, and the washing, drying, and oiling were performed by depositing the spun fibers on a net conveyor and continuously spinning them. It was done in such a way that it could be processed. At this time (4
) The number of single yarn breaks immediately after spinning was counted with the naked eye, and the value converted per unit time was 0.4 times/hour, while (8
) was 0.9 times/hour. The intrinsic viscosities of the polymer and spun fibers before and after dissolution were as follows.
又、紡糸開始直後、及び紡糸10時間後の物性は次の通
りであつた。Further, the physical properties immediately after the start of spinning and after 10 hours of spinning were as follows.
実施例 3
ポリマーにジアミン成分として、o−トリジン10モル
e含有するパラフエニレンテレフタルアミド共重合体(
固有粘度5.0)を用い、紡糸溶剤として、98.5%
濃硫酸を用い、ポリマー0.95kgを濃硫酸2.23
t(4.05kg)に溶解して、19%のポリマー濃度
の光学的異方性ドープを調整するに当り、本発明の範囲
に含まれる方法として、(4)第1段階のドープとして
、170のポリマー濃度の光学的等方性ドープを調整後
、残りのポリマーを追加、(B)同じく、4%濃度の光
学的等方性ドープを調整後、残りのポリマーを追加、本
発明の効果を示さない例として、0第1段階のドープと
して0.05%濃度のドープを一旦調整後、残りのポリ
マーを追加、(D)6.5%濃度の光学的等方性ドープ
を一旦調整後、残りのポリマーを追加、の4つの方法に
よりドープを調整することを試みた。Example 3 Paraphenylene terephthalamide copolymer containing 10 moles of o-tolidine as a diamine component in the polymer (
(intrinsic viscosity 5.0), 98.5% as spinning solvent
Using concentrated sulfuric acid, 0.95 kg of polymer was dissolved in 2.23 kg of concentrated sulfuric acid.
As a method within the scope of the present invention, in preparing an optically anisotropic dope with a polymer concentration of 19%, (4) as a first stage dope, 170 After adjusting the optically isotropic dope with a polymer concentration of 4%, the remaining polymer was added. (B) Similarly, after adjusting the optically isotropic dope with a concentration of 4%, the remaining polymer was added to obtain the effect of the present invention. As an example not shown, once a dope with a concentration of 0.05% is adjusted as the first stage dope, the remaining polymer is added; (D) After adjusting an optically isotropic dope with a concentration of 6.5%, We attempted to adjust the dope using four methods: adding the remaining polymer.
これらの内、本発明の範囲外の(9)では、6.5%濃
度の第1段階のドープは、粘度が約1万ポイズ又はそれ
以上を示すと思われ、攪拌翼がキヤビテーシヨンを起し
て、全く攪拌の効果を示さず、その為、追加ポリマーの
混合が行なわれない状態となつたので、溶解を断念した
。又、(0は、ポリマーの全量を一時に投入したと同等
に、ままこの多いドープとなつた。Among these, in (9), which is outside the scope of the present invention, the first stage dope with a concentration of 6.5% is thought to have a viscosity of about 10,000 poise or more, and the stirring blade causes cavitation. However, the stirring did not show any effect at all, and as a result, no additional polymer was mixed, so dissolution was abandoned. Also, (0) is equivalent to adding the entire amount of polymer at once, resulting in a large amount of dope.
(A),(B),(0の3ドープを、実施例1に準じて
、脱泡し、紡糸を行つた結果を次表に示す。Three dopes (A), (B), and (0) were defoamed and spun according to Example 1. The results are shown in the following table.
Claims (1)
の硫酸を溶剤として、紡糸原液を調整するにあたり、先
ず、第1段階として、0.1〜5重量%のポリマー濃度
の溶液を調製し、次いで、その溶液に該ポリマーを、溶
解後の溶液が光学的異方性を示す臨界濃度以上の濃度に
なる所定の量追加して攪拌し、完全に溶解せしめること
により、所定濃度の光学的異方性溶液とすることを特徴
とするパラ配位的全芳香族ポリアミド紡糸原液の調製方
法。1. In preparing a spinning stock solution of para-coordinated fully aromatic polyamide using 95% by weight or more of sulfuric acid as a solvent, first, as a first step, a solution with a polymer concentration of 0.1 to 5% by weight is prepared. Next, a predetermined amount of the polymer is added to the solution so that the concentration of the dissolved solution exceeds the critical concentration that exhibits optical anisotropy, and the polymer is stirred and completely dissolved to obtain a predetermined optical concentration. A method for preparing a paracoordination wholly aromatic polyamide spinning stock solution, which is characterized by forming an anisotropic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7950076A JPS5920762B2 (en) | 1976-07-06 | 1976-07-06 | Aromatic polyamide spinning dope preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7950076A JPS5920762B2 (en) | 1976-07-06 | 1976-07-06 | Aromatic polyamide spinning dope preparation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS536620A JPS536620A (en) | 1978-01-21 |
JPS5920762B2 true JPS5920762B2 (en) | 1984-05-15 |
Family
ID=13691635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7950076A Expired JPS5920762B2 (en) | 1976-07-06 | 1976-07-06 | Aromatic polyamide spinning dope preparation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5920762B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4647384B2 (en) * | 2005-04-27 | 2011-03-09 | 帝人株式会社 | Composite fiber composed of wholly aromatic polyamide and thin-walled carbon nanotubes |
-
1976
- 1976-07-06 JP JP7950076A patent/JPS5920762B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS536620A (en) | 1978-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4172938A (en) | Process for producing polyamides with lactam or urea solvent and CaCl2 | |
JP2924633B2 (en) | Lyotropic liquid crystalline solution | |
CN104817687A (en) | High-purity aromatic polyoxadiazole solution and fiber prepared from high-purity aromatic polyoxadiazole solution | |
JPS63288237A (en) | Cord from poly-p-phenylene-terephthalaminde | |
WO2010035834A1 (en) | Easily dyeable meta-form wholly aromatic polyamide fiber | |
JP3856833B2 (en) | Aromatic polyamide, optically anisotropic dope and molded product, and method for producing the same | |
JP2010163506A (en) | Process for producing aromatic copolyamide | |
JPS6128015A (en) | Production of poly(p-phenylenebenzo-bis-thiazole fiber | |
JPH03104921A (en) | Production of fiber of polybenzothiazoles, polybenzoxazoles or polybenzimidazoles | |
JPH04202257A (en) | Wholly aromatic heterocyclic polymer compostion, fiber and film produced therefrom, and production thereof | |
JPH04241111A (en) | Anistropic spinning dope having a low viscosity | |
JPS5920762B2 (en) | Aromatic polyamide spinning dope preparation method | |
JPS62162013A (en) | Production of pulp-like short fiber of poly(p-phenylene terephthalamide) | |
JPH04194022A (en) | Production of fiber of polybenzothiazoles, polybenzoxazoles or polybenzimidazoles | |
JPH03104920A (en) | Production of fiber of polybenzothiazoles, polybenzoxazoles or polybenzimidazoles | |
JPH0284509A (en) | Production of polybenzthizaole fiber, polybenzoxazole fiber or polybenzimidazole fiber | |
US2734040A (en) | Sssstoi | |
EP0240302A2 (en) | Aromatic polybenzimidazole and aromatic polyimide compositions and processes of manufacture | |
JP2017160587A (en) | Manufacturing method of acryl and modacrylic fiber | |
JPS6144963B2 (en) | ||
JP2971335B2 (en) | Method for producing meta-type aromatic polyamide fiber | |
RU2217530C1 (en) | Natural silk solving method | |
JPH06234881A (en) | Liquid-crystalline cellulose solution | |
JP2012241132A (en) | Process for producing para-type wholly aromatic polyamide dope | |
US5084497A (en) | Preparation of articles of manufacture from isotropic and anisotropic polyamide anion solutions |