JPS5920727B2 - Method for adjusting composition of molten steel - Google Patents

Method for adjusting composition of molten steel

Info

Publication number
JPS5920727B2
JPS5920727B2 JP13300778A JP13300778A JPS5920727B2 JP S5920727 B2 JPS5920727 B2 JP S5920727B2 JP 13300778 A JP13300778 A JP 13300778A JP 13300778 A JP13300778 A JP 13300778A JP S5920727 B2 JPS5920727 B2 JP S5920727B2
Authority
JP
Japan
Prior art keywords
molten steel
ladle
alloy
components
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13300778A
Other languages
Japanese (ja)
Other versions
JPS5558318A (en
Inventor
貴一 成田
隆資 森
研三 綾田
武久 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13300778A priority Critical patent/JPS5920727B2/en
Publication of JPS5558318A publication Critical patent/JPS5558318A/en
Publication of JPS5920727B2 publication Critical patent/JPS5920727B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 本発明は溶鋼の成分調整法に関し、詳細には、溶鋼の一
部を、取鍋と混合容器との間で往復若しくは循環させ、
混合容器部分で合金成分を配合して成分調整を行なう方
法において、合金成分の歩留りを高めて正確に成分調整
し得る様に改善された方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting the composition of molten steel.
The present invention relates to an improved method of blending alloy components in a mixing container and adjusting the components so that the yield of alloy components can be increased and the components can be adjusted accurately.

転炉、電気炉、平炉等で溶解精錬した溶鋼を成分調整す
る方法として、溶鋼を取鍋に移した後これにMnt、C
r5Ws Vt Nbt At、TL Si 、等の合
金成分を添加する方法がある。
As a method of adjusting the composition of molten steel melted and refined in a converter, electric furnace, open hearth, etc., after transferring the molten steel to a ladle, Mnt and C are added to it.
There is a method of adding alloy components such as r5Ws Vt Nbt At and TL Si.

このとき合金成分を溶鋼内に均等に溶融分散させるだめ
には、合金添加工程で溶鋼を十分に攪拌すべきは当然で
あり、現在量も一般的に実施されているのは、第1図に
示す如く真空脱ガス工程で同時に成分調整する方法であ
る。
At this time, in order to melt and disperse the alloy components evenly in the molten steel, it is natural that the molten steel should be sufficiently stirred in the alloy addition process, and the current amount generally practiced is shown in Figure 1. As shown, this is a method in which components are adjusted simultaneously during the vacuum degassing step.

即ち第1図はRH法として知られた真空脱ガス法の実施
工程で成分調整を行なう場合を説明する概略断面図で、
図中1は取鍋、2は混合容器、3は溶鋼上昇管、4は溶
鋼下降管、5は不活性ガス(一般にAr )送給管、
6は真空吸引口、7は合金成分容器、Aは溶鋼、Bは合
金成分を夫々示している。
That is, FIG. 1 is a schematic cross-sectional view illustrating the case where component adjustment is performed in the implementation step of the vacuum degassing method known as the RH method.
In the figure, 1 is a ladle, 2 is a mixing container, 3 is a molten steel rising pipe, 4 is a molten steel down pipe, 5 is an inert gas (generally Ar) feed pipe,
6 is a vacuum suction port, 7 is an alloy component container, A is molten steel, and B is an alloy component.

図示の方法を実施する場合、取鍋1の上方に混合容器2
を配置して上昇管3及び下降管4を取鍋1内の溶鋼A中
に浸漬し、真空吸引口6から吸引して混合容器2内を真
空状態にする。
When carrying out the illustrated method, a mixing vessel 2 is placed above the ladle 1.
are placed, the rising pipe 3 and the descending pipe 4 are immersed in the molten steel A in the ladle 1, and the inside of the mixing container 2 is brought into a vacuum state by suction from the vacuum suction port 6.

すると混合容器2内の圧力と取鍋1の圧力との間に約1
気圧の圧力差ができ、溶鋼Aは混合容器2内に吸上げら
れる(このときの吸上げ高さhは、前記圧力差が1気圧
のとき約1.48 mとなる)。
Then, the difference between the pressure in the mixing container 2 and the pressure in the ladle 1 is approximately 1
A pressure difference is created, and the molten steel A is sucked up into the mixing vessel 2 (the suction height h at this time is about 1.48 m when the pressure difference is 1 atmosphere).

ここで不活性ガス送給管5から上昇管3内にアルゴンガ
ス等の不活性ガスを送給すると、エアリフトポンプの原
理によって溶鋼Aは混合容器2内に押し上げられ、一方
前記吸上げ高さhを越えると逐次下降管4から取鍋1内
に流下する。
When an inert gas such as argon gas is fed into the riser pipe 3 from the inert gas feed pipe 5, the molten steel A is pushed up into the mixing vessel 2 by the principle of an air lift pump, while the above-mentioned suction height h When the amount exceeds 1, the liquid gradually flows down from the downcomer pipe 4 into the ladle 1.

即ち溶鋼Aは取鍋1と混合容器2との間で循環するが、
混合容器2内は常時減圧状態に維持されているから、こ
の部分で溶鋼A中に溶解している。
That is, the molten steel A circulates between the ladle 1 and the mixing container 2,
Since the inside of the mixing container 2 is always maintained in a reduced pressure state, the molten steel A is melted in this portion.

02.N2゜N2等の脱ガスが行なわれる。02. Degassing with N2°N2, etc. is performed.

この工程で合金成分容器7から合金成分Bを添加すると
、これは混合容器2内の溶鋼Aと共に取鍋1内の溶鋼A
に混合され、所定時間循環させることにより合金成分B
は溶鋼A中に均一に分散される。
When alloying component B is added from the alloying component container 7 in this step, it is added to the molten steel A in the ladle 1 along with the molten steel A in the mixing container 2.
Alloy component B
is uniformly dispersed in molten steel A.

即ちこの方法では溶鋼A及び合金成分Bを循環させるこ
とによって両者を均一に混合することができ、成分調整
法として優れた方法ということができる。
That is, in this method, by circulating the molten steel A and the alloy component B, both can be mixed uniformly, and it can be said to be an excellent method for adjusting the components.

ところが上記の方法では、不活性ガスの送給に起因して
下記の様な難点が生じ、実用化に当って大きな問題とな
っている。
However, in the above method, the following difficulties arise due to the supply of inert gas, which poses a major problem in practical application.

即ち送給管5から上昇管3を経て吹込まれた不活性ガス
は、混合容器2内の溶鋼Aの湯面から逸出した後逐次吸
引ロ6方向へ吸引排出されるが、容器7から投下された
微粉状の一部の合金成分Bがこの不活性ガス流によって
吸引口6方向に流されて壁面に付着し、或は不活性ガス
と共に吸引ライン方向に流失することがある。
That is, the inert gas blown from the feed pipe 5 through the riser pipe 3 escapes from the surface of the molten steel A in the mixing container 2 and is then suctioned and discharged in the direction of the suction chamber 6, but is not discharged from the container 7. A part of the alloy component B in the form of fine powder may be flowed toward the suction port 6 by this inert gas flow and may adhere to the wall surface, or may be washed away along with the inert gas toward the suction line.

そうなると実質的な合金添加量が減少して所定の成分調
整が行なわれず、或は不活性ガスと共に吸引排出された
合金粉が吸引ラインに付着堆積したり、更には真空ポン
プに悪影響を及ぼす等、装置保全の観点からしても種々
の難点が派生してくる。
If this happens, the actual amount of alloy added will decrease and the specified composition adjustment will not be carried out, or the alloy powder that was sucked and discharged together with the inert gas will accumulate on the suction line, or even have a negative effect on the vacuum pump. Various difficulties arise from the viewpoint of equipment maintenance as well.

加えてRH法及びDH法の何れにしても循環処理過程で
溶鋼の温度が徐々に降下し、それに伴なって合金成分の
溶解速度が極端に低下してくるから、循環サイクルを短
縮してみても成分調整時間(合金成分を均一に溶解する
だめに要する時間)を短縮することはできない。
In addition, in both the RH method and the DH method, the temperature of the molten steel gradually decreases during the circulation treatment process, and the dissolution rate of the alloy components drops accordingly, so try shortening the circulation cycle. However, it is not possible to shorten the component adjustment time (the time required to uniformly dissolve the alloy components).

このほか特公昭47−15561号公報に示されている
如く、溶鋼を取鍋から真空容器へ吸上げる手段として電
磁ポンプを利用し、真空容器頂部から合金成分を投下し
て成分調整する方法も提案されている。
In addition, as shown in Japanese Patent Publication No. Sho 47-15561, a method has also been proposed in which an electromagnetic pump is used as a means to suck up molten steel from a ladle into a vacuum vessel, and alloy components are dropped from the top of the vacuum vessel to adjust the composition. has been done.

しかし上記公報所載の方法をそのま捷実施してみても、
必ずしも満足な結果は得られない。
However, even if you directly implement the method listed in the above publication,
Satisfactory results are not always obtained.

しかして前記公報所載の方法では、取鍋−真空容器間の
溶鋼の循環に電磁ポンプを利用したというだけのことで
、成分調整時間の短縮効果は殆んど発揮されない。
However, in the method described in the above-mentioned publication, an electromagnetic pump is simply used to circulate the molten steel between the ladle and the vacuum vessel, and the effect of shortening the component adjustment time is hardly exhibited.

殊に前記公報所載の方法では、電磁ポンプの電源として
0.9〜16サイクルという低周波数を採用し、溶鋼を
極力加熱しない様にしているから、循環による溶鋼温度
の降下は避けられず、合金成分の完全溶解には相当長時
間を要する。
In particular, in the method described in the above publication, a low frequency of 0.9 to 16 cycles is used as the power source for the electromagnetic pump to avoid heating the molten steel as much as possible, so a drop in molten steel temperature due to circulation is unavoidable. Complete melting of the alloy components takes a considerable amount of time.

しかも前記の様な特殊な周波数を採用しなければならな
いから、商用周波数をそのまま使用できる装置に比べて
電源コストが2〜3倍になる不利があり、総合的にみて
その工業的規模での実用化は困難である。
Moreover, since the above-mentioned special frequency must be used, there is a disadvantage in that the power supply cost is two to three times higher than that of equipment that can use the commercial frequency as is, and overall, it is difficult to put it into practical use on an industrial scale. It is difficult to

本発明者等は前述の様な事情に着目し、殊に不活性ガス
使用に伴なう前述の様な難点を解消するためにはりニア
モータを利用するのが有利であろうと考え、リニアモー
タを利用した成分調整法の改善を期して鋭意研究を進め
てきた。
The inventors of the present invention focused on the above-mentioned circumstances, and thought that it would be advantageous to use a linear motor in order to overcome the above-mentioned difficulties associated with the use of inert gas. We have been conducting intensive research in hopes of improving the ingredient adjustment method used.

その結果、Cリニアモータの作動源として周波数を50
〜60サイクルにしてやれば、溶鋼を同時に加熱するこ
とができ、合金成分の溶解速度を大幅に促進できること
、Cリニアモータによって加熱されつつ真空容器内に吸
上げられた溶鋼に合金成分を添加し、これを真空容器で
しばらく保持する方法を採用すれば、合金成分を一層効
率的に溶解できること、■50〜60サイクルの周波数
であれば商用電力をそのまま利用できるから、設備面で
の負担も少なくてすむこと、を知った。
As a result, the frequency was increased to 50% as the operating source for the C linear motor.
By doing ~60 cycles, the molten steel can be heated simultaneously and the dissolution rate of the alloy components can be greatly accelerated.The alloy components are added to the molten steel that is sucked up into the vacuum vessel while being heated by the C linear motor. If you adopt a method of holding this in a vacuum container for a while, the alloy components can be melted more efficiently.■ If the frequency is 50 to 60 cycles, you can use commercial electricity as is, so there is less burden on equipment. I knew that I was going to live.

本発明はこれらの知見を基にしてなされたものであって
、その構成とは、取鍋内の溶鋼の一部を少なくとも1本
の溶鋼通過管を経て取鍋より高位置に配置された混合容
器に吸上げ、該混合容器内で合金成分を配合した後、少
なくとも1本の溶鋼通過管を経て取鍋容器内に流し戻す
溶鋼の成分調整法において、溶鋼を吸上げる前記通過管
の外周にリニアモータを配置し、該モータを50〜60
サイクルの周波数で作動することによって溶鋼を加熱し
つつ前記混合容器内に所定量以上吸上げて保持し、これ
に合金成分を添加して溶鋼中に混合させた後、混合物を
前記溶鋼通過管を経て取鍋に流し戻すところに要旨が存
在する。
The present invention was made based on these findings, and has a structure in which a part of the molten steel in the ladle is passed through at least one molten steel passage pipe to a mixing pipe located at a higher position than the ladle. In a method for adjusting the composition of molten steel that is sucked up into a container, mixed with alloy components in the mixing container, and then flowed back into the ladle container through at least one molten steel passage pipe, the outer periphery of the said passage pipe that sucks up the molten steel is Arrange a linear motor and drive the motor to 50~60
A predetermined amount or more of molten steel is sucked up and held in the mixing vessel while heating the molten steel by operating at a cycle frequency, and alloy components are added to the molten steel and mixed into the molten steel, and then the mixture is passed through the molten steel passage pipe. The gist lies in the fact that it is then poured back into the ladle.

即ち本発明では、リニアモータを50〜60サイクルの
周波数で作動し溶鋼を加熱しつつ吸上げるところに1つ
の特徴があり、それによって循環による溶鋼の温度降下
を防止し、合金成分の溶解を著しく促進させることがで
きる。
In other words, one feature of the present invention is that the linear motor is operated at a frequency of 50 to 60 cycles to heat and suck up the molten steel, thereby preventing the temperature of the molten steel from dropping due to circulation and significantly reducing the melting of alloy components. It can be promoted.

たとえば温度1670〜1680℃の溶鋼に合金成分を
添加する場合、本発明によって溶鋼温度を10℃高める
と合金成分の溶解速度を約2倍に高めることができ、こ
れに逆比例して成分調整時間を約1/2に短縮できる。
For example, when adding alloying components to molten steel at a temperature of 1670 to 1680°C, increasing the molten steel temperature by 10°C according to the present invention can approximately double the dissolution rate of the alloying components, and the composition adjustment time is inversely proportional to this. can be shortened to about 1/2.

また本発明では合金成分添加後の溶鋼を真空容器内でし
ばらく保持するところに今1つの特徴があり、それによ
って一層効率的な成分調整を可能にしている。
Another feature of the present invention is that the molten steel after addition of alloying components is held for a while in a vacuum vessel, thereby making it possible to adjust the components more efficiently.

即ち、リニアモータによって加熱された溶鋼に合金成分
を添加し所定時間(通常は10〜30分程)真空容器中
で保持すると、この間に合金成分は溶鋼中にほぼ完全に
溶解するから、比較的短時間で均一な成分調整を行なう
ことができる。
That is, when alloy components are added to molten steel heated by a linear motor and held in a vacuum container for a predetermined period of time (usually about 10 to 30 minutes), the alloy components are almost completely dissolved in the molten steel during this time, so it is relatively Uniform component adjustment can be performed in a short time.

これに対し、単なる循環工程で合金成分を添加する方法
では、合金成分が真空容器内でまだ溶解しきれないまま
で取鍋に流し戻される結果、処理系全体としての合金成
分の溶解速度が相当遅くなり、本発明の目的を達成でき
なくなる。
On the other hand, in the method of adding alloy components through a simple circulation process, the alloy components are poured back into the ladle without being fully dissolved in the vacuum container, resulting in a considerable dissolution rate of the alloy components as a whole in the processing system. This would make it too late to achieve the purpose of the present invention.

以下実施例たる図面に基づいて本発明の構成及び作用効
果を説明するが、下記は代表例にすぎず前・後記の趣旨
に徴して適宜変更して実施することも可能であり、それ
らは何れも本発明技術の範祷に含まれる。
The configuration and effects of the present invention will be explained below based on the drawings which are examples, but the following are only representative examples, and it is possible to carry out the invention with appropriate changes in accordance with the spirit of the preceding and following. Also included in the scope of the technology of the present invention.

第2,3図は本発明の成分調整法を例示する概略断面説
明図で、装置全体の構成は第1図の例とほぼ同様に構成
されている。
2 and 3 are schematic cross-sectional views illustrating the component adjustment method of the present invention, and the overall structure of the apparatus is substantially the same as the example shown in FIG. 1.

但し本例では溶鋼通過管3’、 4’の外周適所にリニ
アモータ8が配置されており、これを50〜60サイク
ルの周波数で作動させることにより、その推進力によっ
て取鍋1内の溶鋼Aを加熱しつつ混合容器2へ持ち上げ
る様にしている。
However, in this example, a linear motor 8 is disposed at a suitable position on the outer circumference of the molten steel passing pipes 3' and 4', and by operating this at a frequency of 50 to 60 cycles, the molten steel A in the ladle 1 is is heated and lifted into the mixing container 2.

そして混合容器2内へ所定量の溶@Aを持ち上げつつ、
或は持ち上げた後、合金成分容器7から合金成分Bを投
入しく第2図)、所定時間保持して合金成分Bを溶鋼中
に混合させた後、リニアモータ8の駆動を停止させ或は
リニアモータ8の推進力を下向きに切換えて混合物を取
鍋1内へ流し戻しく第3図)、取鍋1内の溶鋼Aに混合
させる。
Then, while lifting a predetermined amount of melt @A into the mixing container 2,
Alternatively, after lifting the alloy component B from the alloy component container 7 (Fig. 2), hold it for a predetermined time to mix the alloy component B into the molten steel, and then stop driving the linear motor 8 or The propulsive force of the motor 8 is switched downward to flow the mixture back into the ladle 1 (Fig. 3) and mix it with the molten steel A in the ladle 1.

この操作を繰り返し実施して所定量の合金成分を添加し
た後、更に適当回数溶鋼の持上げ・流し戻しを繰り返す
ことにより、合金成分Bを溶鋼A中に均一に混合させる
ことができる。
After repeating this operation to add a predetermined amount of alloy component, alloy component B can be uniformly mixed into molten steel A by repeating lifting and pouring back the molten steel an appropriate number of times.

このとき本発明では、溶鋼Aの持ち上げに不活性ガスを
使用せずリニアモータ8の推進力を利用しているから、
第1図の例のグロく合金粉が真空吸引口6の近辺に付着
したり吸引ライン等に排出される恐れがなく、投下した
合金成分Bはすべて溶鋼A中に混合される。
At this time, in the present invention, the propulsive force of the linear motor 8 is used to lift the molten steel A without using an inert gas.
There is no fear that the loose alloy powder in the example of FIG. 1 will adhere to the vicinity of the vacuum suction port 6 or be discharged into the suction line, etc., and all of the dropped alloy component B is mixed into the molten steel A.

従って成分調整を極めて正確に行なうことができ、更に
は吸引ラインや真空ポンプ等に合金成分Bが侵入して不
慮の事故を起こす恐れも皆無になる。
Therefore, the components can be adjusted extremely accurately, and furthermore, there is no possibility that the alloy component B will enter the suction line, vacuum pump, etc. and cause an unexpected accident.

尚この工程で混合容器2内を減圧状態に維持しておけば
、同時に溶鋼Aの脱ガスを行なうこともできるが、本発
明では溶鋼Aの持ち上げにリニアモータ8の推進力を利
用しており、真空吸引力がなくても持ち上げが可能であ
るから、場合によっては混合容器2内を常圧に保持した
状態で成分調整することも可能である。
If the inside of the mixing container 2 is maintained in a reduced pressure state during this step, the molten steel A can be degassed at the same time, but in the present invention, the propulsive force of the linear motor 8 is used to lift the molten steel A. Since lifting is possible even without a vacuum suction force, it is also possible to adjust the components while maintaining the inside of the mixing container 2 at normal pressure depending on the case.

但しこの場合は混合容器2内の空間をアルゴン等の不活
性ガスで置換し、溶鋼A及び合金成分Bの酸化変質を防
止することが望まれる。
However, in this case, it is desirable to replace the space inside the mixing vessel 2 with an inert gas such as argon to prevent oxidative deterioration of the molten steel A and the alloy component B.

第4,5図は本発明の他の実施例で、1本の溶鋼通過管
3′を用い、溶鋼Aを混合容器2内に持ち上げるときは
りニアモータ8によって溶鋼Aに上昇方向の推進力を付
与しつつ加熱し、容器2内で合金成分を添加して所定時
間保持した後、次は通過管3′を下降管として用い、リ
ニアモータ8を止め(或は同−若しくは異なるリニアモ
ータで下向の推進力を与え)て混合物を取鍋1に流し戻
しく第5図)、これを繰り返し行なって成分調整する。
Figures 4 and 5 show another embodiment of the present invention, in which a single molten steel passage pipe 3' is used, and when molten steel A is lifted into the mixing container 2, a near motor 8 applies an upward driving force to the molten steel A. After adding alloy components in the container 2 and holding for a predetermined time, the passage pipe 3' is used as a descending pipe, and the linear motor 8 is stopped (or the same or a different linear motor is used to move downward). The mixture is poured back into the ladle 1 (Fig. 5), and this process is repeated to adjust the ingredients.

この様に本発明では、溶鋼Aの混合容器2−\の持ち上
げにリニアモータ8を利用し、持ち上げと同時に溶鋼A
を加熱すると共に、合金成分を添加した後溶鋼Aを所定
時間混合容器2内で保持することにより、合金成分を可
及的速やかに溶鋼A中に溶解・分散させる様にしたとこ
ろに最大の特徴がある。
In this way, in the present invention, the linear motor 8 is used to lift the mixing container 2-\ of the molten steel A, and the molten steel A is lifted at the same time as the molten steel A.
The biggest feature is that the alloy components are melted and dispersed in the molten steel A as quickly as possible by heating the molten steel A and holding the molten steel A in the mixing vessel 2 for a predetermined period of time after adding the alloy components. There is.

従ってかかる特徴を有効に発揮し得る限り、図例のほか
種々変更して実施することができ、たとえば混合容器2
の形状・構造・大きさ等、或は溶鋼上昇管及び下降管を
構成する溶鋼通過管の大きさや形状、付設数等は、作業
現場の状況に応じて適宜変更することができる。
Therefore, as long as such characteristics can be effectively exhibited, various modifications can be made in addition to the illustrated example. For example, the mixing container 2
The shape, structure, size, etc., or the size, shape, number, etc. of the molten steel passing pipes constituting the molten steel rising pipe and the descending pipe can be changed as appropriate depending on the situation at the work site.

本発明は概略以上の様に構成されており、その効果を要
約すれば下記の通りであって、取鍋での溶鋼の成分調整
法として実用に即した諸効果を享受できる。
The present invention is roughly constructed as described above, and its effects can be summarized as follows, and various effects suitable for practical use can be enjoyed as a method for adjusting the composition of molten steel in a ladle.

■ リニアモータで使用する周波数を50〜60サイク
ルに設定することにより溶鋼を同時に加熱できるから、
合金成分の溶解速度を常時高度に維持することができ、
成分調整時間を大幅に短縮できる。
■ By setting the frequency used by the linear motor to 50 to 60 cycles, molten steel can be heated at the same time.
The dissolution rate of alloy components can be maintained at a high level at all times,
Component adjustment time can be significantly reduced.

■ 合金成分を添加した後の溶鋼を混合容器内で所定時
間保持し、合金成分を完全に溶解させた後取鍋に流し戻
す方法であるから、極めて均一な成分調整が行なえる。
(2) Since this method involves holding the molten steel in a mixing vessel for a predetermined period of time after adding the alloying components and pouring it back into the ladle after the alloying components have been completely dissolved, extremely uniform composition adjustment can be achieved.

■ 成分調整と同時に脱ガスを行なう場合でも、溶鋼を
混合容器に持ち上げる為の不活性ガスが年弱であるから
、常に高い真空度を維持できる。
■ Even when degassing is performed at the same time as component adjustment, a high degree of vacuum can be maintained at all times because the inert gas used to lift the molten steel into the mixing container is less than a year old.

しかも吸引ラインや真空ポンプ等に合金粉が侵入する恐
れがない(合金成分のロスがない)から、成分調整を正
確に行なうことができる。
Furthermore, there is no risk of alloy powder entering the suction line, vacuum pump, etc. (there is no loss of alloy components), so the components can be adjusted accurately.

■ リニアモータの作動源として50〜60サイクルの
商用周波数をその丑ま利用できるから、0.9〜16サ
イクルの周波数を利用する従来法に比べて電力コストを
1/2〜1/3に減スることができる。
■ Since the commercial frequency of 50 to 60 cycles can be used as the operating source for the linear motor, electricity costs can be reduced to 1/2 to 1/3 compared to conventional methods that use frequencies of 0.9 to 16 cycles. You can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の成分調整法を示す概略断面説明図、第2
〜5図は本発明の成分調整法を例示する概略断面説明図
である。 1・・・取鍋、2・・・混合容器、3,4・・・溶鋼通
過管、5・・・不活性ガス送給管、6・・・真空吸引口
、7・・・合金成分容器、8・・・リニアモータ、A・
・・溶鋼、B・・・合金成分。
Figure 1 is a schematic cross-sectional explanatory diagram showing the conventional component adjustment method;
5 are schematic cross-sectional explanatory diagrams illustrating the component adjustment method of the present invention. DESCRIPTION OF SYMBOLS 1... Ladle, 2... Mixing container, 3, 4... Molten steel passage pipe, 5... Inert gas feed pipe, 6... Vacuum suction port, 7... Alloy component container , 8... linear motor, A.
... Molten steel, B... Alloy component.

Claims (1)

【特許請求の範囲】[Claims] 1 取鍋内の溶鋼の一部を、少なくとも1本の溶鋼通過
管を経て取鍋より高位置に配置された混合容器に吸上げ
、該混合容器内で合金成分を配合した後、少なくとも1
本の溶鋼通過管を経て取鍋容器内に流し戻す溶鋼の成分
調整法において、溶鋼を吸上げる前記通過管の外周側に
リニアモータを配置し、該モータを50〜60サイクル
の周波数で作動することによって溶鋼を加熱しつつ前記
混合容器内に所定量以上吸上げで保持し、これに合金成
分を添加して溶鋼中に混合させた後、混合物を前記溶鋼
通過管を経て取鍋に流し戻すことを特徴とする溶鋼の成
分調整法。
1 A portion of the molten steel in the ladle is sucked up through at least one molten steel passage pipe into a mixing container located at a higher position than the ladle, and after blending alloy components in the mixing container, at least 1
In this method of adjusting the composition of molten steel flowing back into a ladle container through a molten steel passage pipe, a linear motor is placed on the outer circumferential side of the passage pipe that sucks up molten steel, and the motor is operated at a frequency of 50 to 60 cycles. By heating the molten steel, a predetermined amount or more is held in the mixing container by suction, and after adding alloying components to this and mixing it into the molten steel, the mixture is poured back into the ladle through the molten steel passage pipe. A method for adjusting the composition of molten steel.
JP13300778A 1978-10-27 1978-10-27 Method for adjusting composition of molten steel Expired JPS5920727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13300778A JPS5920727B2 (en) 1978-10-27 1978-10-27 Method for adjusting composition of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13300778A JPS5920727B2 (en) 1978-10-27 1978-10-27 Method for adjusting composition of molten steel

Publications (2)

Publication Number Publication Date
JPS5558318A JPS5558318A (en) 1980-05-01
JPS5920727B2 true JPS5920727B2 (en) 1984-05-15

Family

ID=15094596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13300778A Expired JPS5920727B2 (en) 1978-10-27 1978-10-27 Method for adjusting composition of molten steel

Country Status (1)

Country Link
JP (1) JPS5920727B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573876B2 (en) * 1989-06-29 1997-01-22 新日本製鐵株式会社 RH vacuum degassing method and apparatus

Also Published As

Publication number Publication date
JPS5558318A (en) 1980-05-01

Similar Documents

Publication Publication Date Title
US3272619A (en) Apparatus and process for adding solids to a liquid
US2528208A (en) Process of smelting metals
CN110144472B (en) Vacuum induction melting method of manganese-copper vibration-damping alloy
CN101280366B (en) Cold smelt process for secondary aluminium
US3650311A (en) Method for homogeneous refining and continuously casting metals and alloys
JP7158587B2 (en) Die casting method of filter cavity
JP2018066030A (en) Manufacturing method of high cleanliness steel
CN108676962A (en) A kind of high performance alloys ultra-pure purification vacuum induction melting system and its application method
JP2621106B2 (en) Melting and degassing of bulk materials composed of metallic materials
CN105886809B (en) A kind of high-strength heat-resistant magnesium alloy method of smelting and melting structure
JPS5920727B2 (en) Method for adjusting composition of molten steel
US4298376A (en) Method for treating molten steel and apparatus therefor
CN104357673B (en) Metal electric slag refusion and smelting method
US20040135297A1 (en) Electromagnetic induction apparatus and method of treatment of molten materials
JPS5920726B2 (en) Vacuum degassing method for molten steel
JPS5887234A (en) Refining method by vacuum melting
CN105803252A (en) Manufacturing method for high-strength and high-conductivity copper alloy wire used for electronic cable
JP6911590B2 (en) Steel melting method
RU128530U1 (en) MELTING AND FILLING PLANT FOR PRODUCING INGOTS FROM COMPOSITE MATERIALS
CN207103773U (en) The device of mechanical agitation continuous casting homogeneous fine crystal ingots
JP2000301320A (en) Method for dissolving clogging of porous plug in ladle refining furnace
JP6445557B2 (en) Method and apparatus for refining molten metal
CN107297476A (en) The apparatus and method of mechanical agitation continuous casting homogeneous fine crystal ingots
JPH01142016A (en) Continuous vacuum degassing apparatus for molten copper
JP2002520162A (en) Method and apparatus for continuously degassing molten metal