JPS59207029A - Magnetic recording medium and its manufacture - Google Patents

Magnetic recording medium and its manufacture

Info

Publication number
JPS59207029A
JPS59207029A JP8145883A JP8145883A JPS59207029A JP S59207029 A JPS59207029 A JP S59207029A JP 8145883 A JP8145883 A JP 8145883A JP 8145883 A JP8145883 A JP 8145883A JP S59207029 A JPS59207029 A JP S59207029A
Authority
JP
Japan
Prior art keywords
micropores
magnetic
oxide film
anodic oxide
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8145883A
Other languages
Japanese (ja)
Inventor
Noboru Tsuya
津屋 昇
「湧」井 幸夫
Yukio Wakui
Makoto Shiraki
白木 真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Gakki Co Ltd
Original Assignee
Nippon Gakki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Gakki Co Ltd filed Critical Nippon Gakki Co Ltd
Priority to JP8145883A priority Critical patent/JPS59207029A/en
Publication of JPS59207029A publication Critical patent/JPS59207029A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/858Producing a magnetic layer by electro-plating or electroless plating

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium suitable for high-density recording by vertical magnetic recording by forming an anodic oxide film having many micropores on the surface of Al or an Al alloy and by filling a magnetic body into the micropores. CONSTITUTION:A magnetic body is filled into micropores of 400-1,000Angstrom diameter in an anodic oxide film formed on the surface of Al or an Al alloy to manufacture a magnetic recording medium. Anodic oxidation is carried out by a conventional method. The anodically oxidized Al or Al alloy is immersed in a mixed soln. contg. 1-30wt% sulfamic acid and 0.1-1wt% phosphoric acid at 10-50 deg.C for 5-30min while stirring the soln. to expand uniformly the micropores in the anodic oxide film to 400-1,000Angstrom from the top to the bottom. The magnetic body is filled into the micropores by carrying out electrolysis in an aqueous soln. contg. a salt of a metal as the magnetic body. At this time, peaks in the electric current at the positive and negative sides are adjusted to 0.2-0.5, and a peak in the current density at the negative side is adjusted to 0.5-4A/dm<2> to increase the filling rate of the magnetic body.

Description

【発明の詳細な説明】 この発明はアルミニウムまたはアルミニウム合金の陽極
酸化皮膜の微細孔中に磁性体を充填した垂直磁気記録用
媒体およびその製造方法に関し、陽極酸化皮膜の微細孔
の孔径を400〜l000Xとすることによシ保磁力H
cを10000e以下とし、また陽極酸化処理後にスル
ファミン酸およびリン酸からなる混合液中に浸漬するこ
とによって陽極酸化皮膜の微細孔を前記孔径に拡大させ
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a perpendicular magnetic recording medium in which the fine pores of an anodic oxide film of aluminum or an aluminum alloy are filled with a magnetic material, and a method for manufacturing the same. By setting it to 1000X, the coercive force H
c is set to 10,000e or less, and the fine pores of the anodic oxide film are enlarged to the above-mentioned pore diameter by immersing the film in a mixed solution of sulfamic acid and phosphoric acid after the anodizing treatment.

近年、磁気記録媒体の膜面に対し垂直な方向に磁化させ
て磁気記録を行う垂直磁気記録方式が、高密度記録可能
等の点から注目を浴びている。このような垂直磁気記録
用の媒体の製造方法の一種として、従来から例えば特公
昭51−21562号等に示されるように、アルミニラ
云もしくはアルミニウム合金に陽極酸化処理を施し、そ
の陽極酸化皮膜の微細孔中に磁性体を充填゛する方法が
提案されている。しかしながら従来の方法で得られる陽
極酸化皮膜は微細孔径が100Xからせいぜい200X
程妾と著しく小さく、その微細孔中に磁性体を充填して
得られる垂直磁気記録材料は、膜面に垂直方向の保磁力
(抗磁力)が10000e程度以上と高く、そのため高
密度記録用の狭ギヤノブヘッドで記録、消去を行った場
合にヘッド先端で磁気!@和が起り、実際上高密度記録
が困難となる問題があった。またこのような小さい孔径
の微+111孔中に合金を析出させて得られた1000
0e以ドの保磁力を持つ磁気記録材料では、その容易磁
化方向艙膜面に対して水平となるかまたは垂直方向の異
方性を有していても残留磁化が300G以下となり、再
生が充分とれない問題があり、そのため高密実記・縁片
の垂直磁気記録材料として用いるには不】皓当であった
In recent years, perpendicular magnetic recording methods, in which magnetic recording is performed by magnetizing a magnetic recording medium in a direction perpendicular to its film surface, have attracted attention because of its ability to perform high-density recording. As a method of manufacturing such perpendicular magnetic recording media, as shown in Japanese Patent Publication No. 51-21562, etc., conventionally, an anodic oxidation treatment is applied to aluminum oxide or an aluminum alloy to remove fine particles of the anodic oxide film. A method has been proposed in which the holes are filled with magnetic material. However, the anodic oxide film obtained by conventional methods has a micropore diameter of 100X to 200X at most.
The perpendicular magnetic recording material obtained by filling the microscopic pores with magnetic material has a high coercive force (coercive force) of about 10,000 e or more in the direction perpendicular to the film surface, and is therefore suitable for high-density recording. When recording or erasing with a narrow gear knob head, the tip of the head becomes magnetic! There was a problem in that @sum occurred, making high-density recording difficult in practice. In addition, 1000 pores obtained by precipitating the alloy into such small pores of 111
In a magnetic recording material with a coercive force of 0e or less, even if its easy magnetization direction is parallel to the film surface or has anisotropy in a perpendicular direction, the residual magnetization is less than 300G, and reproduction is sufficient. Therefore, it was not suitable for use as a perpendicular magnetic recording material for high-density recording and edge strips.

ところで陽極酸化皮膜の微細孔を拡大する方法として、
従来、陽極酸化皮膜を生成させたアルミニウムまたはア
ルミニウム合金をリン酸溶液にて再度陽極処理する方法
が特公昭56−23207号において提案されているが
、この場合一段目の陽極酸化処理で生成された陽極酸化
皮1摸が脆弱となること、あるいは微細孔の上部の孔径
のみが拡大され、底部は大きくならないため、その微細
孔に磁性体を充填した場合に磁化容易方向が水平になる
等の欠点があった。
By the way, as a method of enlarging the micropores of the anodic oxide film,
Conventionally, a method has been proposed in Japanese Patent Publication No. 56-23207 in which aluminum or aluminum alloy, on which an anodic oxide film has been formed, is re-anodized using a phosphoric acid solution. Disadvantages include the fact that the anodic oxide skin becomes fragile, or that only the diameter of the upper part of the micropores is enlarged, but not the bottom, so that when the micropores are filled with magnetic material, the direction of easy magnetization becomes horizontal. was there.

以上のような問題を解決するべく、本発明者等は、陽極
酸化皮;:莫の微細孔の適当な孔径について種々検討を
重ねた結果、その孔径を400〜1、000 Xの範囲
内とすることによって保磁力が200〜10’ OOO
eで)摸面に垂直な磁化容易方向を持つ磁気記録媒体が
得られ、またアルミニウムまたはアルミニウム合金に対
する陽極処理後の微細孔拡大処理として、化学溶解力の
弱いスルファミン酸とリン酸との混合液中で浸漬処理を
行うことにより、陽極酸化皮膜を脆弱化することなく上
部から底部にわたってほぼ均一に400〜ioo。
In order to solve the above-mentioned problems, the inventors of the present invention have conducted various studies on the appropriate pore size of the microscopic pores of the anodized skin, and have determined that the pore size is within the range of 400 to 1,000×. By doing so, the coercive force increases from 200 to 10' OOO
(e) A magnetic recording medium with an easy magnetization direction perpendicular to the surface of the image is obtained, and a mixed solution of sulfamic acid and phosphoric acid with weak chemical dissolving power is used as a micropore expansion treatment after anodizing aluminum or aluminum alloy. By performing the immersion treatment in the anodic oxide film, the anodic oxide film is coated almost uniformly from the top to the bottom with an impurity of 400 to ioO without weakening the anodic oxide film.

Xの孔径となった畝凡孔を有する陽極酸化皮膜が得られ
ることを見出し、この発明をなすに至ったのである。
It was discovered that an anodized film having ridges and pores with a pore diameter of X can be obtained, and this invention was completed.

したがってこの発明は垂直磁気記録による高密度記録に
適した、保磁力が10000e以下で膜面に垂直な磁化
容易方向を持つ磁気特性の優れた磁気記録用媒体、およ
びその製造方法を提供することを目的とするものである
。そして第1の発明の磁気記録用媒体はアルミニウムも
しくはアルミニウム合金表面に、4oo−1oooXの
範囲内の孔径の多数の12訓孔k 44する陽極酸化皮
膜が形成され、かつその+i!1.A田孔中に磁性体が
充填されていることをt時数とするものであり、また第
2の発明の磁気記録用媒体製造方法は、アルミニラA−
またはアルミニ°つl合金に1身極醒化処理を行ない、
次いでスルファミン酸、およびリン酸からなる混合液中
で浸漬処」こ1を行った後、陽極酸化皮膜の倣赤田孔中
にイm性体を充填することを特徴とするものである。
Therefore, it is an object of the present invention to provide a magnetic recording medium suitable for high-density recording using perpendicular magnetic recording, which has a coercive force of 10,000 e or less and has an easy magnetization direction perpendicular to the film surface, and has excellent magnetic properties, and a method for manufacturing the same. This is the purpose. The magnetic recording medium of the first invention has an anodic oxide film formed on the surface of aluminum or an aluminum alloy with a large number of 12 holes having a diameter within the range of 4oo-1oooX, and whose +i! 1. The number of hours t is defined as the fact that the magnetic material is filled in the A-hole, and the method for producing a magnetic recording medium of the second invention is characterized in that the magnetic recording medium is filled in the A-hole.
Or, by performing a single-body awakening process on aluminum alloy,
Then, after performing a immersion treatment in a mixed solution consisting of sulfamic acid and phosphoric acid, the immeric material is filled into the imitative Akata holes of the anodic oxide film.

以゛ドこの発明についてさらに詳細に説明する。This invention will now be described in more detail.

第1発明の磁気記録用媒体は、前述のようにアルミニウ
ムもしくはアルミニウム合金の陽極酸化皮膜の微細孔の
孔径を400〜1000Xとし、その微細孔に磁性体を
充填したものである。a細孔の孔径が400X未満では
前述の従来例で説明した問題を解消できず、保磁力が1
000 Oe以上となってしまう。一方tooo久を越
えれば記録媒体上のピント占有面積が増し、磁化容易軸
が水平方向に傾いてくるだめ、高密度記録に不利となる
。微細孔の孔径を400〜100OXとすることによっ
て、垂直磁気記録方式による?;%’a度記録が実記録
に可能となる。
In the magnetic recording medium of the first invention, as described above, the micropores of the anodic oxide film of aluminum or aluminum alloy have a diameter of 400 to 1000X, and the micropores are filled with a magnetic material. If the diameter of the pores a is less than 400X, the problem explained in the conventional example described above cannot be solved, and the coercive force becomes 1.
000 Oe or more. On the other hand, if the distance exceeds too long, the area occupied by the focus on the recording medium increases and the axis of easy magnetization tilts in the horizontal direction, which is disadvantageous for high-density recording. By setting the diameter of the micropores to 400 to 100OX, the perpendicular magnetic recording method can be used. ; %'a degree recording becomes possible in actual recording.

上述のように陽極酸化皮膜微細孔の孔径を400〜10
0OXに拡大するためには、陽極酸化処理によってアル
ミニウムモジくハアルミニウム合金の表面に多数の微細
孔を有する陽極酸化皮膜を生成した後、スルファミノ酸
およびリン酸からなる混合液にて浸漬処理する必要があ
る。
As mentioned above, the pore diameter of the anodic oxide film micropores is 400 to 10.
In order to expand to 0OX, it is necessary to generate an anodized film with many micropores on the surface of the aluminum alloy by anodizing treatment, and then immerse it in a mixed solution consisting of sulfamino acid and phosphoric acid. There is.

ここで第1段目の陽極酸化処理は常法に従って行えば良
く、例えば硫酸、クロム酸等の無機酸、あるいはシーウ
酸等の有機酸の1〜30市量係の水溶液を用い、液温5
−50℃、電解′電圧10〜100vの直流または交直
重畳電圧を使用して、空気攪拌もしくは液循環等により
液攪拌を行ないながら実施すれば良い。
Here, the first stage of anodizing treatment may be carried out according to a conventional method, for example, using an aqueous solution of an inorganic acid such as sulfuric acid or chromic acid, or an organic acid such as shiulic acid with a commercial weight of 1 to 30, and a liquid temperature of 5.
The electrolysis may be carried out at -50 DEG C. using a direct current or AC/DC superimposed voltage of 10 to 100 V for electrolysis, while stirring the liquid by air stirring or liquid circulation.

一方浸漬処理は陽極酸化皮膜の微細孔を拡大するだめの
もので、スルファミン酸1〜30市量係およびリン酸0
1〜1重14 %を含有する混合液中に、液温10〜5
0℃で5〜30分間、空気攪拌もしくは液循環によp液
捜拌しながら陽極酸化処理後のアルミニウムもしくはア
ルミニウム合金を浸漬することが望ましい。この浸漬処
理に使用される混合液におけるリン酸濃度が1重量%を
越えれば微細孔の上部のみが拡大され易く、一方0.1
ノ「縫製未満では処理時間が長くなるから、前述のよう
にリン酸濃度は0.1〜1重量襲の範囲内とすることが
望ましい。またスルファミノ酸は液の安定剤として作用
して孔径を一様にする役割を果たすが、1重量%未満で
はその効果が小さく、30重1i%を越えればスルファ
ミノ酸添加の作用効果が飽和しコスト的に不利となるか
ら、前述のようにスルファミノ酸の譲I更は1〜30市
量係の範囲内とすることが望ましい。このような混合液
を用いて浸漬処理することにより、微細孔がその底部か
ら上部まで一様に孔径400〜1 ooo3に拡大され
る。またこの場合、1−極酸化皮膜が脆弱となることが
有効に防止される。
On the other hand, the dipping treatment is only for enlarging the micropores of the anodic oxide film.
In a mixed liquid containing 1 to 1 weight 14%, the liquid temperature is 10 to 5.
It is desirable to immerse the aluminum or aluminum alloy after anodizing treatment at 0° C. for 5 to 30 minutes while stirring the p-liquid by air stirring or liquid circulation. If the phosphoric acid concentration in the mixed solution used for this immersion treatment exceeds 1% by weight, only the upper part of the micropores tends to be enlarged;
If it is less than sewing, the processing time will be longer, so as mentioned above, it is desirable to keep the phosphoric acid concentration within the range of 0.1 to 1% by weight.In addition, sulfamino acid acts as a stabilizer for the liquid and reduces the pore size. However, if it is less than 1% by weight, the effect is small, and if it exceeds 30% by weight, the effect of adding sulfamino acid will be saturated and it will be disadvantageous in terms of cost. Furthermore, it is desirable that the pore size be within the range of 1 to 30 mm.By immersion treatment using such a mixed solution, the micropores will have a uniform pore diameter of 400 to 1 ooo3 from the bottom to the top. In this case, the 1-polar oxide film is effectively prevented from becoming brittle.

上述のように微細孔拡大のだめの浸漬処理を施した後、
その微細孔に磁性体を充填する。この充填方法としては
、例えば特公昭51−15597号に提案されているよ
うに、ニッケル、コバルトあるいは鉄等の磁性体金属の
塩を含む水溶液中で交流電解析出を行う方法が一般的で
あるが、本発明者等は特に電解に非対称交流を用いて、
89iIllIピーク電流とθ側ピーク′屯流との比お
よびe側ビーク電流密度を特定の範囲とすることによシ
徽細孔中への磁性体の充填率を従来よりも著しく高め得
ることを見出した。このように磁性体の充填率が高くな
るということは、磁気記録媒体として用いた場合に飽和
磁束密度および残留磁束密度が太きくな9、記録の高密
度化やSlN比の向上などに寄与する。本発明者等が電
流条件を種々変化させて陽極酸化皮膜の微細孔へFe 
、 Coも゛しくはNiを電解析出させる実験を行ない
、飽和磁束密度B。
After applying the immersion treatment to expand the micropores as described above,
The micropores are filled with a magnetic material. A common method for this filling is to carry out AC electrolytic deposition in an aqueous solution containing a salt of a magnetic metal such as nickel, cobalt or iron, as proposed in Japanese Patent Publication No. 51-15597. , the present inventors particularly used asymmetric alternating current for electrolysis,
It has been found that by setting the ratio of the 89iIllI peak current to the θ side peak current and the e side peak current density within specific ranges, it is possible to significantly increase the filling rate of the magnetic material into the pores compared to the conventional method. Ta. This higher filling rate of magnetic material means that when used as a magnetic recording medium, the saturation magnetic flux density and residual magnetic flux density become thicker9, which contributes to higher recording density and improved SIN ratio. . The present inventors introduced Fe into the micropores of the anodic oxide film by varying the current conditions.
, conducted an experiment in which Co or Ni was electrolytically deposited, and the saturation magnetic flux density B was obtained.

を調べた結果を第11d 、第2図に示す。但し第1図
は■側ビーク91、流密度A十とθ側ビーク電流密度A
−との比A+/A−を0.3で一定とし、e側ビーク電
流密度A−を変化させた場合の各へ−値での飽和磁束密
度BSを、それらの飽和磁束密度のデータの最大値BS
maXとの比の値(Bs/Bsmax )で示す。また
第2図はe側ピーク電流密度A−を08A/dm2で一
定とし、A+/A−の値を変化させた場合の各A+/A
−値での飽和磁束密度B5の値を、前記同様にB S/
B S nla Xで茂わす。なおFe 、 Co 、
もしくはNiの電解析出には、第1流酸鉄アンモニウム
、硫酸コバルト、硫酸ニッケルのいずれかを50 PA
と、ホウ酸30 vlおよびグリセリン2 f/ljを
含有するmT: M液を用いた。第1図および第2図か
ら明らかなように、他電極に対してθ側ピーク電流1が
0.5〜4A/dm2、■唄すビーク亀流A+がe1則
ピーク電電流−の115〜1/2の範囲め場合に飽和磁
束密度が高く、これらの範囲を満足する場合に磁性体充
填率が高くなることが見出された。
The results of the investigation are shown in Figure 11d and Figure 2. However, in Figure 1, the ■ side peak 91, the current density A0, and the θ side peak current density A
When the ratio A+/A- is constant at 0.3 and the e-side peak current density A- is changed, the saturation magnetic flux density BS at each value is the maximum of the data of those saturation magnetic flux densities. value BS
It is expressed as a ratio value (Bs/Bsmax) to maX. Figure 2 also shows each A+/A when the e-side peak current density A- is constant at 08 A/dm2 and the value of A+/A- is changed.
The value of the saturation magnetic flux density B5 at - value is set to BS/
BS nla X to grow. Note that Fe, Co,
Alternatively, for electrolytic deposition of Ni, use either ammonium iron sulfate, cobalt sulfate, or nickel sulfate at 50 PA.
An mT:M solution containing 30 ml of boric acid and 2 f/lj of glycerin was used. As is clear from Figures 1 and 2, the peak current 1 on the θ side with respect to the other electrodes is 0.5 to 4 A/dm2, and the peak current A+ of the singing beak is 115 to 1 of the e1 law peak current -. It has been found that the saturation magnetic flux density is high in the range of /2, and that the magnetic filling rate is high when these ranges are satisfied.

したがって第2゛発明の方法を実施するにあたっては、
e測ピーク電流密度をA−1e側ビ一ク電流密度をA+
とじ、A−が0.5〜4 A/dm2、A、/A−が0
.2〜05の範囲内となる非対称交流を用いて磁性体を
電解析出により微細孔に充填させることが望ましい。A
−の値およびA+/A−の比が上記範囲を外扛れば、磁
性体充填率がFがり、飽和磁束密度や残留磁束密度が低
rする結果、記録S/′N比等が悪くなるおそれがある
Therefore, in carrying out the method of the second invention,
e Measured peak current density is A-1e side peak current density is A+
Binding, A- is 0.5 to 4 A/dm2, A, /A- is 0
.. It is desirable to fill the micropores with the magnetic material by electrolytic deposition using an asymmetrical alternating current within the range of 2 to 0.5. A
If the value of - and the ratio of A+/A- are out of the above range, the magnetic material filling factor will increase, the saturation magnetic flux density and residual magnetic flux density will become low, and the recording S/'N ratio etc. will deteriorate. There is a risk.

以Fにこの発明の実施例を記す。Examples of the present invention will be described below.

実施例 基体として純度99.99飴、厚さ95μmのアルミニ
ウム薄板を用い、その基体に対し3重量%濃度の7ユウ
酸水溶液によシ陽極散化処理を行ない、次いでスルファ
ミン駿5重量%およびリン酸08重量%を含有する浸a
液にて浸漬処理した。ここで浸漬処理における浸漬時間
を変えることによって鍼糾孔径を土1!々史化させた。
Example A thin aluminum plate with a purity of 99.99 and a thickness of 95 μm was used as the substrate.The substrate was subjected to an anodic dispersion treatment with a 3% by weight aqueous solution of 7-euric acid, and then treated with 5% by weight of sulfamine and phosphorus. Soaking a containing 0.8% by weight of acid
It was immersed in a liquid. By changing the soaking time in the soaking process, the acupuncture hole diameter can be adjusted to 1! It became history.

さらに磁性体充填処理として、第工しにfし鉄アンモニ
ウム50 f7’lJ 。
Furthermore, as a magnetic substance filling treatment, ferrous ammonium 50 f7'lJ was added in the first step.

ホウ1130 ’Jill 、グリセリン2971)を
含有する電解故に−C非対称父冗を用いて微分、山孔中
にIj′cを析出ビーク′電流密度は0.3 Vd+n
 で一定とした。なお市解析出過程でit碌住体金、]
す4は孔底から表面へ向って徐々に析出してゆき、孔が
埋まると皮膜表面は陽・陸改化反捩行・11゛のうし沢
を示すが、磁性体金属が倣KIll孔からあふれて表面
に析出を(・よじめれば光沢が失なわれて表1市が白色
を帯びてくる。そこで各実施例では倣;i、+11孔が
磁性1本金祇で全部埋ったことを目1況で確認して′へ
4屏を打切った。このようにしてFeを微細孔V′C充
填石せた後、膜面に幻し垂直な方向および水平な方向の
保イ芸力Elcおよび・伐函民東琶1fBr、−11℃
直・4く平方間の1砲和磁束′d度BSを調べだ。これ
らの名31吉来および各処理条件を第1表に示す。
Due to the electrolysis containing 1130' Jill, Glycerin 2971), differentiation using -C asymmetric parentheses deposits Ij'c in the mountain pores. The peak current density is 0.3 Vd+n.
It was held constant. In addition, in the process of city analysis, IT-responsible resident gold,]
4 gradually precipitates from the bottom of the hole toward the surface, and when the hole is filled, the surface of the film shows a positive, land-change-reverse-torsional, and 11-degree swamp, but the magnetic metal is deposited from the imitative KIll hole. If it overflows and precipitates on the surface (and twists, the gloss will be lost and the surface of Table 1 will take on a white tinge. Therefore, in each example, the holes i and +11 were completely filled with one magnetic wire). After confirming this with the first eye, we cut off the 4th screen to '.After filling the fine pores V'C with Fe in this way, it appeared on the film surface and the retention effect in the vertical and horizontal directions. Power Elc and Towa 1fBr, -11℃
Find out the sum of magnetic flux 'd degrees BS between the straight and quadrilateral directions. The names of these 31 Yoshirai and each treatment condition are shown in Table 1.

磁性体充填処理において、硫酸コバルト50f/13 
、ホウre 30 P/11 、グリセリン2 viを
含有する電解液を用いてCo f微細孔中に析出させた
点板外は実施例1〜10とほぼ同様にして実施した。
In the magnetic material filling process, cobalt sulfate 50f/13
, 30 P/11 of porosity, and 2 vi of glycerin were used to precipitate the outside of the point plate in the Cof micropores in substantially the same manner as in Examples 1 to 10.

その結果および各条件を第1表に併せて示す。The results and each condition are also shown in Table 1.

実施例16〜20 磁性体充填処理において、硫酸ニッケル509/ハホウ
t(230V/131グリセリン2 ’!−/lを含有
する電解液を用いてNiを微細孔中に析出させた点μ外
は実施例1〜10とほぼ同様に実施した。その結果およ
び各条件を第1表に併せて示す。
Examples 16 to 20 In the magnetic material filling process, Ni was precipitated into micropores using an electrolytic solution containing nickel sulfate 509/hahout (230V/131 glycerin 2'!-/l) except for μ. The experiments were carried out in substantially the same manner as in Examples 1 to 10. The results and conditions are also shown in Table 1.

第1表に示される実施例1〜20について、浸漬処理後
の微細孔径と垂直方向保磁力Hc、垂直方向残留磁束密
度Brとの関係を第3図、第4図に示す。第3図、第4
図に示すように垂直方向の保修力、残留磁束密度は充填
した磁性体金属の種類によっても異なるが、一般に孔径
が大きくなるに従って滑らかに変化しておシ、特に手直
方向保磁力は400〜1000久の孔径で200〜10
000eの値が得られることが明らかである。
For Examples 1 to 20 shown in Table 1, the relationship between the micropore diameter, vertical coercive force Hc, and vertical residual magnetic flux density Br after immersion treatment is shown in FIGS. 3 and 4. Figures 3 and 4
As shown in the figure, the vertical coercive force and residual magnetic flux density vary depending on the type of magnetic metal filled, but generally change smoothly as the hole diameter increases. 200 to 10 with a pore diameter of 1000
It is clear that a value of 000e is obtained.

実施例21 浸漬処理液として、スルフアミノ酸5重量%およびリン
酸3重量係を含有するものを用いた点、および磁性体充
填処理の電解析出時間が異なる点以外は実施例2と同様
にして処理した。その結果および各条件を第2表に示す
Example 21 The procedure was the same as in Example 2, except that the immersion treatment liquid contained 5% by weight of sulfur amino acid and 3% by weight of phosphoric acid, and the electrolytic deposition time of the magnetic material filling treatment was different. Processed. The results and each condition are shown in Table 2.

実施例21の場合、浸漬処理液のリン酸濃度が高いため
皮膜表面に荒れが目立ち、陽極酸化処理で生成された皮
膜も浸漬処理により薄くなった。
In the case of Example 21, since the phosphoric acid concentration of the dipping treatment solution was high, roughness was noticeable on the surface of the film, and the film formed by the anodic oxidation treatment also became thinner due to the dipping treatment.

また孔の上部が比較的拡大された結果、水平磁化成分が
増して垂直方向残留磁束密度Brが低ドした。
Furthermore, as a result of the relatively enlarged upper part of the hole, the horizontal magnetization component increased and the vertical residual magnetic flux density Br decreased.

なおこのほかの各実施例では浸漬処理前後の皮膜厚の変
化はほとんど認められなかった。
In addition, in each of the other Examples, almost no change in film thickness was observed before and after the immersion treatment.

実施例22 浸漬処理後の磁性体充填処理のだめの電解析出において
非対称交流を用いず、通常の対称交流12Vを用いた点
以外は実施例2と同様に処理した。その結果および各条
件を第2表に併せて示す。
Example 22 Processing was carried out in the same manner as in Example 2, except that in the electrolytic deposition of the magnetic material filling treatment after the immersion treatment, asymmetrical AC was not used, but a normal symmetrical AC of 12 V was used. The results and each condition are also shown in Table 2.

この実施例22の場合、電解析出工程までの前工程が実
施例2と同じであるにもかかわらず、実施例2と比較し
て飽和磁束密度が約6割に減少している。このことから
、通常の交流を用いた電解析出よりも、非対称交流を用
いた方が微細孔中にイみ性体を密に充填し得ることが明
らかである。
In the case of Example 22, the saturation magnetic flux density was reduced to about 60% compared to Example 2, although the pre-processes up to the electrolytic deposition step were the same as in Example 2. From this, it is clear that the use of asymmetrical alternating current allows the fine pores to be more densely filled with the invasive material than the electrolytic deposition using normal alternating current.

実施例23 浸漬処理液として、スルファミン酸(15重t %およ
びリン酸0.8重量%を含有するものを用いた点以外は
実施例2と同様に処理した。その結果および各条件を第
2表に併せて示す。
Example 23 The treatment was carried out in the same manner as in Example 2 except that the immersion treatment liquid contained sulfamic acid (15% by weight and 0.8% by weight of phosphoric acid). It is also shown in the table.

この実施例23の場合、浸漬処理液のスルファミン酸濃
度が低く、垂直方向残留磁束密度Brが実施例2の場合
よりも低くなっている。
In the case of Example 23, the concentration of sulfamic acid in the immersion treatment liquid was low, and the vertical residual magnetic flux density Br was lower than in Example 2.

第2表 夷、施例24〜28 浸漬処理液の組成をスルファミン酸濃度は5重量%で一
定とするとともにす/酸濃度は01〜5重量%の範囲で
変化させた。また浸漬処理時間は微細孔の孔径が500
久前後となるように調整した。その他の条件、例えば磁
性体充填処理の電解液の組成等は実施例16〜20と同
じである。その結果および各条件を第3表に示し、また
浸漬処理液のリン酸濃度と垂直方向残留磁束密度、水平
方向残留磁束密度、垂直方向角型比との関係を第5図に
示す。
Table 2, Examples 24 to 28 The composition of the immersion treatment solution was such that the concentration of sulfamic acid was constant at 5% by weight, and the acid concentration was varied within the range of 0.1 to 5% by weight. In addition, the immersion treatment time is
Adjusted so that it takes about a long time. Other conditions, such as the composition of the electrolytic solution in the magnetic material filling process, are the same as in Examples 16-20. The results and conditions are shown in Table 3, and the relationship between the phosphoric acid concentration of the immersion treatment solution, the vertical residual magnetic flux density, the horizontal residual magnetic flux density, and the vertical squareness ratio is shown in FIG.

第5図から、リン酸濃度が01〜1重量%の場合に垂直
方向残留磁度が高く、かつ角型比が1に近いことが明ら
かである。
It is clear from FIG. 5 that when the phosphoric acid concentration is 01 to 1% by weight, the vertical remanence is high and the squareness ratio is close to 1.

実施例29〜33 浸漬処理液の組成をリン酸濃度は0.8重量%で一定と
するとともにスルファミノ酸濃度はO〜30重量係の範
囲で変化させた。また浸漬処理時間は微細孔−の孔径が
500久前後となるように調整した。その他の条件、例
えば磁性体充填処理の電解液の組成等は実施例16〜2
0と同じである。
Examples 29 to 33 The composition of the immersion treatment solution was such that the phosphoric acid concentration was kept constant at 0.8% by weight, and the sulfamino acid concentration was varied in the range of 0 to 30% by weight. The immersion treatment time was adjusted so that the diameter of the micropores was approximately 500 mm. Other conditions, such as the composition of the electrolytic solution for magnetic material filling treatment, are in Examples 16 to 2.
Same as 0.

その結果および各条件を第3表に併せて示し、またα漬
処理液のスルファミノ酸濃度と垂直方向、水平方向残留
始末密度および角型比の関係を第6図に示す。
The results and conditions are also shown in Table 3, and the relationship between the sulfamino acid concentration of the α-soaking solution, the vertical and horizontal residual waste densities, and the squareness ratio is shown in FIG.

第6図から、スルファミノ酸を添加しない場合(濃度0
襲)に比較し、スル7アミノ酸を1〜30重量%添加し
た場゛合には垂直方向残留磁束密度が高く、角型比も1
に近いことが明らかである。
From Figure 6, when sulfamino acid is not added (concentration 0
When 1 to 30% by weight of sul-7 amino acids were added, the vertical residual magnetic flux density was higher and the squareness ratio was 1.
It is clear that it is close to .

以上の説明で明らかなように第1発明の磁気記録媒体は
、磁性体が充填される陽極酸化皮膜の−f1径を400
〜1000Xとすることによって、保磁力が10000
e〜2000Q程度でしかも膜面に垂直な磁化容易方向
を持つようになされたものであり、したがって第1発明
の磁気記録媒体によれば垂直磁気記録方式による高密度
記録が実際的に0T能となる。また第2発明の製法によ
れば、上述のような孔径に底部から上部まで均一に微細
孔を拡大することができ、しかも陽極酸化皮膜を脆弱化
することがなく、前述のように優れた特性の垂直イa気
記録用の媒体を工業的に製造することができる。
As is clear from the above description, in the magnetic recording medium of the first invention, the -f1 diameter of the anodic oxide film filled with the magnetic material is 400 mm.
~1000X, the coercive force is 10000
e~2000Q and has an easy direction of magnetization perpendicular to the film surface. Therefore, according to the magnetic recording medium of the first invention, high-density recording using the perpendicular magnetic recording method can practically achieve 0T performance. Become. In addition, according to the manufacturing method of the second invention, it is possible to uniformly expand the micropores from the bottom to the top to the above-mentioned pore diameter, and the anodic oxide film is not weakened, resulting in excellent properties as described above. A medium for vertical aeration recording can be manufactured industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は磁性体充填のだめの電解析出に使用される非対
称交流のe 1t(11ピ一ク電流密度を変化させた場
合の製品媒体の飽和磁束密度の変化を示すグラフ、 第2図は同じく非対称交流のe側ピーク電流密度A+と
θ側ピーク市1流密度A−との比A+/A−を変化させ
た場合の飽和磁束密度の変化を示すグラフ、第3図は実
施例1〜20における微細孔径と製品媒体の垂直方向保
磁力HCとの関係を示すグラーフ、第4図は実施レリ1
〜20における微細孔径と製品媒体の垂直方向残留磁束
密度Brとの関係を示すグラフ、 第5図は実施例24〜28における浸漬処理用混合液の
リン酸濃度と製品媒体の磁気特性との関係を示すグラフ
、 第6図は実施例29〜33における浸漬処理用混合液の
スルファミンg濃度と製品媒体の磁気特性との関係を示
すグラフである。 出願人 日本楽器製造株式会社 代理人 弁理士 豊 1)武 久 (ほか1名) 手  続  補  正  書  (方式)1.事件の表
示 昭和58年特許願第81458号 2、発明の名称 磁気記録媒体およびその製法 3、補正をする者 事件との関係 特許出願人 住 所   静岡県浜松市中沢町10番1号名 称  
 (407)日本楽器製造株式会社4、代理人 住  所  東京都港区三田3丁目4番18号5、補正
命令め日付 昭和58年8月30日(発送日) 6、補正の対象 図面 7、補正の内容
Figure 1 is a graph showing the change in the saturation magnetic flux density of the product medium when the e 1t (11 peak current density) of the asymmetric alternating current used for electrolytic deposition of a magnetic substance-filled reservoir is changed. Similarly, FIG. 3 is a graph showing the change in saturation magnetic flux density when the ratio A+/A- of the e-side peak current density A+ and the θ-side peak current density A- of the asymmetrical alternating current is changed. A graph showing the relationship between the micropore diameter and the vertical coercive force HC of the product medium in No. 20.
A graph showing the relationship between the micropore diameter and the vertical residual magnetic flux density Br of the product medium in Examples 24 to 20, and FIG. FIG. 6 is a graph showing the relationship between the sulfamine g concentration of the immersion treatment mixture and the magnetic properties of the product medium in Examples 29 to 33. Applicant Nippon Musical Instruments Manufacturing Co., Ltd. Agent Patent Attorney Yutaka 1) Takehisa (and 1 other person) Procedural amendment (method) 1. Display of the case 1981 Patent Application No. 81458 2 Name of the invention Magnetic recording media and its manufacturing method 3 Person making the amendment Relationship to the case Patent applicant Address 10-1 Nakazawa-cho, Hamamatsu City, Shizuoka Prefecture Name
(407) Nippon Gakki Mfg. Co., Ltd. 4, Agent address: 3-4-18-5, Mita, Minato-ku, Tokyo, Date of amendment order: August 30, 1980 (shipment date) 6. Drawings subject to amendment 7. Contents of correction

Claims (4)

【特許請求の範囲】[Claims] (1)  7ivミニウムもしくはアルミニウム合4i
[面に、400〜1.000 Kの範囲内の孔径の多数
の微細孔を有する陽極酸化皮膜が形成され、かつその微
細孔中に磁性体が充填されている磁気記録媒体。
(1) 7iv minium or aluminum alloy 4i
[A magnetic recording medium in which an anodic oxide film having a large number of micropores with a diameter within the range of 400 to 1.000 K is formed on the surface, and the micropores are filled with a magnetic material.
(2)  7#ミニウムもしぐはアルミニウム合金に陽
極酸化処理を行ない、次いでスルファミノ酸およびリン
酸からなる混合液中で浸漬処理を行なった後、陽極酸化
皮膜の微細孔中に磁性体を充填する磁気記録媒体の製法
(2) 7# minium or aluminum alloy is anodized, then immersed in a mixture of sulfamino acid and phosphoric acid, and then the fine pores of the anodic oxide film are filled with magnetic material. Manufacturing method for magnetic recording media.
(3)前記゛浸漬処理のだめの混合液として、スルフア
ミノ酸1〜30重Sk%およびリン酸01〜1重量係を
含有するものを用いる特許請求の範囲第2項記載の製法
(3) The production method according to claim 2, wherein the mixed solution used for the immersion treatment contains 1 to 30 Sk% by weight of sulfur amino acids and 01 to 1% by weight of phosphoric acid.
(4)  AiJ記碌性体を微細孔中に充填するにあた
り、非対称交流を用い、かつその非対称交流の■側ピー
ク電流密度A+とe側ピーク電流密度A−との比A/A
−ヲ0.2〜0.5ノ範IJ’i4 内、e 1111
I ヒータ?M 流’M度八への値を0.5〜4A/d
m  の範囲内の条件として磁性体金属を電解析出させ
る特許請求の範囲第2項記載の製法。
(4) In filling the micropores with the AiJ-recording material, asymmetrical alternating current is used, and the ratio A/A of the peak current density A+ on the ■ side and the peak current density A- on the e side of the asymmetrical alternating current.
-wo 0.2-0.5 range IJ'i4, e 1111
I Heater? M flow 'M degree 8 value 0.5~4A/d
The manufacturing method according to claim 2, wherein the magnetic metal is electrolytically deposited under conditions within the range of m.
JP8145883A 1983-05-10 1983-05-10 Magnetic recording medium and its manufacture Pending JPS59207029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8145883A JPS59207029A (en) 1983-05-10 1983-05-10 Magnetic recording medium and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8145883A JPS59207029A (en) 1983-05-10 1983-05-10 Magnetic recording medium and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP22162885A Division JPS61113136A (en) 1985-10-04 1985-10-04 Manufacturing method of magnetic recording media

Publications (1)

Publication Number Publication Date
JPS59207029A true JPS59207029A (en) 1984-11-24

Family

ID=13746955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8145883A Pending JPS59207029A (en) 1983-05-10 1983-05-10 Magnetic recording medium and its manufacture

Country Status (1)

Country Link
JP (1) JPS59207029A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199271A2 (en) * 1985-04-18 1986-10-29 Aluminum Company Of America Improved magnetic recording member
EP0310031A2 (en) * 1987-09-30 1989-04-05 Noboru Tsuya Substrate for a magnetic disk and process for its production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827297A (en) * 1971-08-13 1973-04-10
JPS4942305A (en) * 1972-04-14 1974-04-20
JPS5015509A (en) * 1973-06-07 1975-02-19
JPS5746320A (en) * 1980-09-01 1982-03-16 Pilot Pen Co Ltd:The Magnetic recording material and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827297A (en) * 1971-08-13 1973-04-10
JPS4942305A (en) * 1972-04-14 1974-04-20
JPS5015509A (en) * 1973-06-07 1975-02-19
JPS5746320A (en) * 1980-09-01 1982-03-16 Pilot Pen Co Ltd:The Magnetic recording material and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0199271A2 (en) * 1985-04-18 1986-10-29 Aluminum Company Of America Improved magnetic recording member
EP0310031A2 (en) * 1987-09-30 1989-04-05 Noboru Tsuya Substrate for a magnetic disk and process for its production

Similar Documents

Publication Publication Date Title
US4548682A (en) Process of producing magnetic recording media
JP4732668B2 (en) Method for producing cobalt iron molybdenum alloy and cobalt iron molybdenum alloy plated magnetic thin film
EP0471946A2 (en) High magnetic moment materials and process for fabrication of thin film heads
US4563397A (en) Process for producing a magnetic recording material and article produced
US4756816A (en) Electrodeposition of high moment cobalt iron
JPS59207029A (en) Magnetic recording medium and its manufacture
US5139884A (en) Magnetic recording medium comprising an aluminum substrate in which pores formed by anodic oxidation contain crystallographicaly discontinuous particles of fe-alloy
JPH0727663B2 (en) Magneto-optical recording medium and manufacturing method thereof
US20080197021A1 (en) Method to make superior soft (low Hk), high moment magnetic film and its application in writer heads
EP0322420B1 (en) Magnetic recording material
JPS6082694A (en) Manufacture of aluminum material for magnetic recording
EP0199271A2 (en) Improved magnetic recording member
US20020192503A1 (en) Thin film magnetic head and method of fabricating the head
JPS61110336A (en) Magnetic recording medium
JPS61113136A (en) Manufacturing method of magnetic recording media
KR20100011463A (en) Manufacturing nano-pillars magnetism-membrane with perpendicular anisotropy
JPH01188695A (en) Method for plating anodic oxide film of aluminum with alloy
JPH01211213A (en) Magnetic recording medium
JPS59221826A (en) Magnetic recording medium
JPH02213489A (en) Production of fine metallic cobalt particle excellent in magnetic characteristic
JPS62291721A (en) Magnetic recording medium and its manufacture
Kolk et al. Magnetic Properties of 97 Fe‐3 Ni Thin Film Electroplate
JPS5827887B2 (en) Magnetic recording medium with photosensitive layer
JPS59229738A (en) Manufacture of aluminum material for magnetic recording
SU827609A1 (en) Electrolyte for precipitating cobalt-tungsten alloy magnetic coatings