JPS59206681A - Dynamic characteristic mechanism - Google Patents

Dynamic characteristic mechanism

Info

Publication number
JPS59206681A
JPS59206681A JP7993183A JP7993183A JPS59206681A JP S59206681 A JPS59206681 A JP S59206681A JP 7993183 A JP7993183 A JP 7993183A JP 7993183 A JP7993183 A JP 7993183A JP S59206681 A JPS59206681 A JP S59206681A
Authority
JP
Japan
Prior art keywords
dynamic
pulley
characteristic
lever
dynamic characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7993183A
Other languages
Japanese (ja)
Inventor
Shinichi Nishimura
伸一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7993183A priority Critical patent/JPS59206681A/en
Publication of JPS59206681A publication Critical patent/JPS59206681A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like

Abstract

PURPOSE:To obtain the suitable mechanical high-output by constituting a dynamic-characteristic mechanism so that the amount of variation of physical linear energy of a dynamic-characteristic member is transmitted and a linear revolution driving output is obtained and connecting said mechanism and a micro mechanism. CONSTITUTION:In a dynamic characteristic mechanism A, a pulley 6 having an arm 7 fixed is installed in the rotatable state onto a shaft 5, and in a micro mechanism M, a lever 8 is installed in rotatable state onto a fulcrum 10, and one edge of the lever 8 and the arm 7 of the dynamic-characteristic mechanism A are mechanically connected in the rotatable state at a force point 61. Therefore, when the dynamic-characteristic member 2 of the dynamic-characteristic mechanism A represents a dynamic characteristic by the air of heat or electricity, for example, when said member linearly expands, said member shifts in the movable direction (m), and the pulley 6 turns in the direction of revolution (r) and brings the arm 7 close to the parallel force point line, and the lever 8 is also directed to the parallel force point. Simultaneously with the pass through the parallel force point, the lever 8 is moved the position of the lever 8' which is shown by the dotted line by the stress of a pushing spring 33, since the idle of the force point 61 is movable, and thus logical operation is permitted.

Description

【発明の詳細な説明】 本発明は動特性機構にかかわるもので、さらに肝しくけ
動特性羽の物理的動作を応用してプーリと機械的連動せ
しめてリニア作動、あるいはプーリの機械的出力をマイ
クロ構造と機械的連動せしめて論理的作動させる動特性
機構に関するものである。
[Detailed Description of the Invention] The present invention relates to a dynamic characteristic mechanism, and more importantly, by applying the physical movement of dynamic characteristic wings to mechanically interlock with a pulley, linear operation or mechanical output of the pulley can be achieved. It concerns a dynamic characteristic mechanism that is mechanically interlocked with a microstructure and operates logically.

従来、直線動作する熱線式と言われる方法はすでに公知
である。これらは高抵尻を有するニクロム線に直接大電
流を通電して赤熱させているため熱的疲労、破壊および
力学的繰返し疲労、伸率、形状回復等に間虜点が有り、
また伸長率を得るために線長が長くなり小型化且つ周囲
温度との感応動性においても細かな熱駆動が出来ない欠
点があった。
Conventionally, a method called a hot wire method that operates in a straight line is already known. These wires have high-resistance nichrome wires that are directly energized with a large current to make them red hot, so there is a certain point in thermal fatigue, fracture, mechanical cyclic fatigue, elongation, shape recovery, etc.
Further, in order to obtain the elongation rate, the wire length is increased, which results in miniaturization and sensitivity to ambient temperature, which has the disadvantage that fine thermal driving is not possible.

本発明はかかる欠点を除くため提案されたもので動特性
梠の低質エネルギ変換をプーリにより機械的連動せしめ
て最適な機械的高出力を得ることを特徴とする。
The present invention has been proposed to eliminate such drawbacks, and is characterized by mechanically interlocking the low-quality energy conversion of the dynamic characteristic lever using a pulley to obtain an optimal high mechanical output.

先に本発明の方法をよりよく理解するため、動特性第2
について述べる。本発明の方法による動特性は熱的、湿
的、電気的変化などにより物性が時間的に膨張または収
縮あるいは体積(春情)変化を示すものを指し、これら
の動特牲羽は天然1.f′AE1.。
First, in order to better understand the method of the present invention, the dynamic characteristic second
Let's talk about. The dynamic characteristics obtained by the method of the present invention refer to those whose physical properties exhibit temporal expansion, contraction, or volume (shunjo) changes due to thermal, moisture, electrical changes, etc., and these dynamic characteristics feathers are natural 1. f′AE1. .

闇分子第2″料、金B羽斜など、いたる所で見出せる。It can be found everywhere, such as the Dark Molecule No. 2'' charge, Kin B Hasha, etc.

最近に至っては、形駅記憶効果(5hape memo
ry effcct )による各種合金が発明され、そ
れらの応用が発表されている。本発明は上記した素材を
用い動特性機構を発明したものであって、本発明に用い
る動特性材は例えば天然材料では絹糸、綿糸1コラーゲ
ン構造をガした皮革、天然ゴム、樹木の繊維、入毛、羊
毛など、高分子化学オオ料ては例えば、ナイロン、ポリ
エステル、ポリスチレン、エポキシ、銅、白金、ステン
レス、ホステレイト、マンガン、など非金属;ig′B
ではガラス繊維、7ム石綿、ファイン・セラミック繊維
なとが有り、これらはほんの−例を示したにすぎない。
Recently, the 5hape memo effect
ry effcct) have been invented, and their applications have been announced. The present invention has invented a dynamic mechanism using the above-mentioned materials. Examples of the dynamic materials used in the present invention include natural materials such as silk thread, cotton thread, leather with collagen structure removed, natural rubber, tree fibers, Hair, wool, etc., polymer chemical materials such as nylon, polyester, polystyrene, epoxy, copper, platinum, stainless steel, hosterite, manganese, etc. non-metals;
These include glass fibers, 7-muth asbestos, and fine ceramic fibers, to name just a few.

従って動特性イ2は制御目的にあったオオ質を適時選択
して用いるもので、例えば電気的変化を要する場合は、
N1−Cr−W合金など、熱的変化を要する居合、Ni
−Ti合金なと?(J凶変化を要するJ8合、フラーゲ
ン構鼎ナイロンーウレタン発ポウ繊維なと、高強度、低
物性変化などを要する場合はマンガン鋼線など力S上げ
られ上記した以外の複合変化なとについても種々選択で
きるものである。
Therefore, dynamic characteristic A2 is to select and use the power quality that suits the control purpose at the appropriate time.For example, when electrical changes are required,
N1-Cr-W alloy, etc., which requires thermal change, Ni
-Ti alloy? (For J8 fibers that require J-heavy changes, nylon-urethane fibers such as fullergen structures, and manganese steel wires that require high strength and low physical property changes, etc., composite changes other than those mentioned above) There are various options to choose from.

以下、本発明の実施例を図面により説明する。Embodiments of the present invention will be described below with reference to the drawings.

図である。図(a) 、(b)において、1.1′は固
定点、1+1は固着点、2は動特性材、3は引バネ、3
1は理バネ、5はプーリの軸、6はプーリ、mは動特性
材(2)の可動方向、rはプーリ(6)の回転方向を示
す。
It is a diagram. In figures (a) and (b), 1.1' is a fixed point, 1+1 is a fixed point, 2 is a dynamic material, 3 is a tension spring, 3
1 is a spring, 5 is an axis of a pulley, 6 is a pulley, m is a moving direction of a dynamic material (2), and r is a rotating direction of a pulley (6).

尚、図示上、わかり易くするため動特性材(2)とプー
リ(6)において接触していないが実際は接触している
。動特性材(2)の形状は線状、テープ仏、チューブ駄
あるいはヨリ線状を有している。引バネ(3)は例えば
ピアノ線、リン青銅、ステンレス鋼、ナイロン、デルリ
ンなとのバネ性を有するコイルバネ、板バネからなる。
Note that in the illustration, for the sake of clarity, the dynamic material (2) and the pulley (6) are not in contact with each other, but they are actually in contact with each other. The dynamic material (2) has a linear shape, a tape shape, a tube shape, or a twisted wire shape. The tension spring (3) is made of a coil spring or a plate spring having spring properties such as piano wire, phosphor bronze, stainless steel, nylon, or Delrin.

押バネ(31)は引バネ(3)と同様のイ2質からなり
弓形形状を有している。プーリ(6)は黄銅、鉄、セラ
ミックなどの脳質から成立っている。
The push spring (31) is made of the same material as the pull spring (3) and has an arcuate shape. The pulley (6) is made of brain matter such as brass, iron, and ceramic.

次に機構について説明する。図(a)において動特性材
(2)の一端は固定点(1)に固着されると共に中間部
が可動可能な駅前でN (5)に取付られたプーリ(6
)に1〜数回巻付られる一方、他端が引バネ(3)の−
fflAtと固着(1’すされてなり、引バネ(3)の
他i1i’71tは固定点(1′)に固着されている。
Next, the mechanism will be explained. In Figure (a), one end of the dynamic material (2) is fixed to the fixed point (1), and the middle part is movable.
) is wrapped one or several times around the tension spring (3), while the other end is wrapped around the tension spring (3).
The tension spring (3) and i1i'71t are fixed to the fixed point (1').

この時、動特性材(2)は・引バネ(3)の応力によっ
て緊張された跋態にてプーリ(6)を会して固定点(1
)〜固着点(1”)〜固定点(I+)間にあらかじめ一
定の張力を有して設定しである。図(b)は図(a)の
引バネ(3)の変りに弓形の押バネ(31)によって動
特性第2(2)の−ffルと押バネ(31)の一端を固
定点(1)に固着させ、他端を一定の張力を有する様に
固着(ill)させたものである。尚、上記したプーリ
をドラムに変えて用いることは匁論である。
At this time, the dynamic material (2) meets the pulley (6) under tension due to the stress of the tension spring (3) and meets the fixed point (1).
) to the fixed point (1") to the fixed point (I+). Figure (b) shows an arcuate pusher instead of the tension spring (3) in figure (a). One end of the dynamic characteristic second (2) -ff spring (31) is fixed to the fixed point (1) by the spring (31), and the other end is fixed (ill) so as to have a constant tension. It should be noted that using the above-mentioned pulley in place of a drum is a no-brainer.

次に物理的、様械的動作を制御目的におおしで説明する
。尚、図(a)、(+1)はバネ構造を除く以外、全く
同−機構を何しているため、同一説明する。
Next, the physical and mechanical operations will be explained for control purposes. Note that FIGS. (a) and (+1) have the same mechanism except for the spring structure, so the explanation will be the same.

(イ)・ん1度変化における動特性動作感湿機能を有す
る動特性屈(2)は例えば絹、麻、綿、皮、シリカ系多
孔質ガラス繊維、ナイロン、ファイン、ファイバ繊維、
コラーゲンHOBナイロン・ウレタン多孔質シートなど
が有り、これらの紫イ2を線状あるいはテープ駄にして
一定の張力をあらかしめ設定する。この時、動特性8(
2)として例えばシリカ系多孔質ガラス繊維を用いる場
合、多孔質の細孔径が少なくとも30〜300A 、好
ましくは100λ以」二、線径を0・2φ〜5φ、好ま
しくは0・63〜1.6φにすると吸着水の運動の束縛
が小さくなる一方、吸着水が3分子層以上になると通常
の水として作用する。この動特性f11’(2)を図(
a)機構に設置して水蒸処零囲気中にさらすと湿度に応
じて物理的に伸長および短縮動作する。この動作は湿度
が晶くなるに従って短縮率が多くなりバネ(3) 、(
31)の張力に打勝って固定点(1)側に可動mする。
(2) Dynamic properties with a humidity sensing function include, for example, silk, hemp, cotton, leather, silica-based porous glass fiber, nylon, fine fiber, fiber fiber, etc.
There are collagen HOB nylon/urethane porous sheets, etc., and these purple sheets are made into a wire or tape and a certain tension is set. At this time, dynamic characteristic 8 (
For example, when using silica-based porous glass fiber as 2), the porous pore diameter is at least 30 to 300A, preferably 100λ or more.2) The wire diameter is 0.2φ to 5φ, preferably 0.63 to 1.6φ. When the amount of adsorbed water is reduced, the movement of the adsorbed water is less constrained, but when the amount of adsorbed water becomes three or more molecular layers, it acts as normal water. This dynamic characteristic f11'(2) is shown in the figure (
a) When it is installed in a mechanism and exposed to the zero atmosphere of water evaporation, it physically expands and contracts depending on the humidity. In this operation, as the humidity becomes crystallized, the shortening rate increases and the spring (3), (
31) and moves toward the fixed point (1).

この可動mによって礪械的に連動するプーリ(6)が回
転rして、動特性材(2)の低質直線可動エネルギを回
転出力に変換させる。逆に湿度が下るに従って、こんと
は伸長動作して、上記し1こ動作と逆に可動させプーリ
(6)を逆回転させる。、普通、高湿度から低温度に容
囲気変化する場合の回転出力の応答性、つまり形状回復
の感応動性は水蒸気の吸脱着性によって決定されるから
感応動性が鈍くなる。この感応動性を高める方法として
、バネ(3) 、(31)のバネ張力を高めることによ
り動特性材(2)の細孔内の水蒸気をしばり出させて感
応動性を高めると共に10%R11以下の湿度検知が出
来る。従ってバネ(3) 、(31)の張力は感応動性
を高める目的である。さらに鋭敏な感応動性を得る方法
として、動特性材(2)の線径を例えば0.63”mm
と小さくするか、フィルム仏のテープとして例えば60
ミクロン厚、幅1.6mInにして水蒸気の発散性をよ
くすることにより感応動性をさらに尚めると共に0%R
1+近くの低湿度から100%団に及ぶ全湿度6n域を
カバーできる。上述した本発明の動特性機構の方法によ
って実験した結果によれば、油やしよう油、その他の何
機物、蒸気、はこり、結露なとのきわめて過酷な条件下
で3.5万時間12i上ても性能が変化することなく動
特性機構がリニアイヤ動した。上記した方法はIII!
1特性拐(2)が高湿に至るに従って短縮するのである
が、これと逆に例えばナイロン・マイクロファイバ0・
001デニールと多孔質ウレタンの配合率を6=4重量
%にしてi′Fli!式方によってコラーゲン構造を形
成させたテープを用いると高湿度に至るに従って膨張し
、低湿度に至って短縮する。この2者の内、とちらてあ
っても!1iIl特性機構はリニア作動する。つまりプ
ーリ(6)の回転方向rが異なるだけであって、同様に
リニア作動することになるから目的に応し工動特性拐(
2)を選択すればよいことになる。動特性機Uηによる
プーリ(6)の綴械的回転出力は、プーリ(6)の円周
」rに金属酸化抵抗を焼結させて、ボリュームA’+’
lj 造をとることにより電気的変換が得られる。また
これ以外に他の製溝と連動させたり、あるいは有接点を
設置することにより直接スイッチング動作させることが
出来るのは匁論てあり何等本発明を制約するものでない
This movement m causes a mechanically interlocked pulley (6) to rotate r, converting the low-quality linear movement energy of the dynamic material (2) into rotational output. On the other hand, as the humidity decreases, the pulley (6) is extended and moved in the opposite direction to the above-mentioned action, causing the pulley (6) to rotate in the opposite direction. Normally, the responsiveness of the rotational output when the ambient temperature changes from high humidity to low temperature, that is, the responsiveness of shape recovery, is determined by the adsorption and desorption of water vapor, so the responsiveness becomes dull. As a method of increasing this responsiveness, by increasing the spring tension of the springs (3) and (31), the water vapor in the pores of the dynamic material (2) is squeezed out, thereby increasing the responsiveness and increasing the spring tension of the springs (3) and (31). The following humidity can be detected. Therefore, the purpose of the tension of the springs (3) and (31) is to increase responsiveness. As a method of obtaining even more acute sensitivity, the wire diameter of the dynamic material (2) may be set to 0.63" mm, for example.
and make it smaller or as a film Buddha tape for example 60
The micron thickness and width of 1.6 mIn improve moisture vapor dissipation, further improving responsiveness and 0% R.
It can cover the entire humidity range of 6N, from low humidity near 1+ to 100% humidity. According to the results of experiments conducted using the above-mentioned method of the dynamic characteristic mechanism of the present invention, it was found that 12i The dynamic characteristics mechanism moved linearly even when the engine was turned up, without any change in performance. The above method is III!
1 characteristic (2) decreases as the humidity increases, but on the other hand, for example, nylon microfiber 0.
The blending ratio of 001 denier and porous urethane is 6=4% by weight and i'Fli! When a tape with a collagen structure formed by a method is used, it expands as the humidity increases and shortens as the humidity decreases. Even if it is between these two! The 1iIl characteristic mechanism operates linearly. In other words, the only difference is the rotational direction r of the pulley (6), and the linear operation is the same, so depending on the purpose, the mechanical characteristics can be improved (
2) should be selected. The mechanical rotational output of the pulley (6) by the dynamic characteristic machine Uη is obtained by sintering a metal oxidation resistor on the circumference ``r'' of the pulley (6), resulting in a volume A'+'
Electrical conversion can be obtained by adopting the lj structure. In addition, it is of course possible to perform a direct switching operation by interlocking with other grooves or by installing a contact point, and this does not limit the present invention in any way.

(ロ)・ガス変化における動特性動作 感ガス機能を有する動特性材(2)は例えばPt、 、
 Pd。
(b) Dynamic behavior during gas changes The dynamic behavior material (2) having a gas function is, for example, Pt,
Pd.

Ni 、 Crなどが有る。これらの内ptもPctは
特に強力な酸化触媒であり炭化水素のC−H結合のM即
[を促進する。この動特性側(2)を図(a)Rtl′
Ijに設置すると共に固定点(1)−固着点(zlつ間
にあらかじめ電気的に一定電流を通電せしめ、鵬特性羽
(2)の融点温度より少なくとも6以下(動特性材(2
)のPtやPdの融点温度より6以−ヒにすると線膨張
による形伏回復力が極度に低下し熱的疲労、破壊、力学
的繰返し疲労の劣下につながる)になるように、つまり
200゜〜600°C1好ましくは300°〜400°
Cになるように自己発熱さゼ熱駆!1ill駅態に置く
。この熱駆動によって動特性a’ (2)は一定の線膨
張をするから、動特性側(2)をあらかじめバネ(3)
 、(31)によって一定の張力をあたえて動特ダ1=
機構に設定する。この図(a) 、(+11の動特性機
構は空気中では動特性s (2)が活性な酸素吸着によ
り高いポテンシャル領域を形成している。この状態て可
熱性ガスに創1れると吸着酸素が消費され動特性側(2
)の抵抗が減少する。この抵抗減少は通電爪を多くさせ
動特性側(2)の自己発熱を高めると共に可熱性ガスの
燃焼によりなおも延払を減少させて通?lJ filを
増す。この抵抗減少は可熱ガスのmによってほぼ比例す
るから動特性第2(2)の自己発熱も当然可熱ガス屓に
従って発熱する。この自己発熱によって動特性材(2)
が物理的に線膨張して固定点(1゛)側に可動mする。
There are Ni, Cr, etc. Among these, pt and Pct are particularly strong oxidation catalysts, and promote the M conversion of C--H bonds in hydrocarbons. This dynamic characteristic side (2) is shown in Figure (a) Rtl'
At the same time, a constant current is applied in advance between the fixed point (1) and the fixed point (zl), and the temperature is at least 6 or lower than the melting point temperature of the dynamic material (2).
If the temperature is 6 or more than the melting point of Pt or Pd (200 °~600°C1 Preferably 300°~400°
Self-heating to become C! Place it in a 1ill station state. Due to this thermal drive, the dynamic characteristic a' (2) undergoes a certain linear expansion, so the dynamic characteristic side (2) is connected to the spring (3) in advance.
, by applying a constant tension according to (31), the dynamic force 1 =
Set to mechanism. In this figure (a), the dynamic characteristic mechanism of (+11) is that in air, the dynamic characteristic s (2) forms a high potential region due to active oxygen adsorption. In this state, when created by a hot gas, the adsorbed oxygen is consumed and the dynamic characteristics side (2
) resistance decreases. This reduction in resistance increases the number of energizing claws, increases self-heating on the dynamic characteristic side (2), and further reduces deferred payments due to combustion of the heat-generating gas. Increase lJ fil. Since this decrease in resistance is approximately proportional to m of the hot gas, the self-heating of dynamic characteristic No. 2 (2) also naturally generates heat according to the hot gas level. Due to this self-heating, the dynamic material (2)
is physically linearly expanded and moves toward the fixed point (1゛).

この可動mによって機械的連動したプーリ(6)をリニ
ア回転rして低質線膨張エネルキを回転出力に変換せし
めるものである。
This movable m causes a mechanically interlocked pulley (6) to linearly rotate r to convert low quality linear expansion energy into rotational output.

上記した本発明の方法は動特性側(2)をあらかじめ予
熱させ可熱性ガスの延払変化と燃焼および通電痩化によ
って動特性機構をリニア作動させるものであるから、予
熱温度、通電電流、バネ張力、動特性材(2)線径など
を変えることによりガス選択性と感応動特性を高めるこ
とが出来、例えば水素やイソブタン、エタノールなどに
対して抵抗変化が大きく、エタノールと一酸化炭素ある
いはメタンは抵J冗変化が小さいからガス選択を得るこ
とが出来る。上記した方法をさらに高感応動させるには
+’tやPdに対して5nOz、Y−FeaO3、σ−
Fe203なとを添加した合金を用いることで達成出来
る。また熱的疲労に対してMo、 Tr、 Cr、Ta
なとを添加した合金を用いて高融点にすると熱的疲労、
破壊、形駄回復力がきわめて長くなるものである。
In the method of the present invention described above, the dynamic characteristic side (2) is preheated in advance and the dynamic characteristic mechanism is linearly operated by the deferred change in heat gas, combustion, and energization thinning. Tension and dynamic properties Material (2) Gas selectivity and sensitive dynamic properties can be improved by changing the wire diameter, etc. For example, the resistance changes greatly against hydrogen, isobutane, ethanol, etc., and when ethanol and carbon monoxide or methane Since the resistance change is small, gas selection can be obtained. To make the above method even more sensitive, add 5nOz, Y-FeaO3, σ- to +'t and Pd.
This can be achieved by using an alloy to which Fe203 is added. In addition, Mo, Tr, Cr, Ta
If an alloy containing Nato is used to make it have a high melting point, thermal fatigue,
The ability to recover from destruction and damage is extremely long.

(ハ)・熱的変化における動特性動作 感熱機能を有する動特性材(2)は例えばAI 、■、
Cu 、 Mg 、 ’Zn 、 Snなと、あるいは
Ni −Cr合金、Nj −T1合金、Cu −Zn 
−A1合金、Cu −Zn −Si合金、Cu−Zn 
−Be合金なとがある。これらの線材あるいは帯第2を
区(a) 、(+1)の動特性機構に設置すると、周囲
温度に応じて線膨張係数が変化する。つまり高温になる
に従って線膨張し低温になるに従って線短縮する。この
動特性材(2)の低質線膨張エネルギーを用い動特性材
(2)を可動用させる。この可動mによって機械的に連
動するプーリ(6)を回転rせしめて回転出力に変換す
るものである。
(c) Dynamic behavior during thermal changes The dynamic material (2) having a heat-sensitive function is, for example, AI, ■,
Cu, Mg, Zn, Sn, Ni-Cr alloy, Nj-T1 alloy, Cu-Zn
-A1 alloy, Cu-Zn-Si alloy, Cu-Zn
-Be alloy. When these wire rods or the second band are installed in the dynamic characteristics mechanism of sections (a) and (+1), the coefficient of linear expansion changes depending on the ambient temperature. In other words, as the temperature increases, it linearly expands, and as the temperature decreases, it linearly shortens. The dynamic material (2) is made movable using the low quality linear expansion energy of the dynamic material (2). This movable m causes a mechanically interlocked pulley (6) to rotate r, which is converted into rotational output.

(ニ)・電気的態化における動特性動作電気釣堀f3F
lを有する動特性(オ(2)はほとんどすべての金属に
有効であり、これ以外に導電性プラスチックなどがある
。これらの層群をあらかじめ回路線」二において固定点
(1)〜固着点(1′′)間を結線して通電せしめる。
(d) Dynamic characteristics behavior in electrical mode Electric fishing pond f3F
The dynamic characteristic (O(2)) having l is effective for almost all metals, and there are also conductive plastics. 1'') to conduct electricity.

この通電によって動特性、II’(2)が自己発熱して
動特性を示す。この励時性変化は通電量が多くなるに従
って大きく通電量が少ないと小さい。この自己発熱によ
る線膨張エネルギーをプーリ(6)によって回転rさせ
回転出方に変換するものである。
Due to this energization, II'(2) self-heats and exhibits dynamic characteristics. This excitability change increases as the amount of energization increases, and decreases as the amount of energization decreases. The linear expansion energy due to this self-heating is converted into rotational output by rotating the pulley (6).

(ホ)・予熱による動特性動作 動特性材(2)を例えばW 、Ni −(r合金を用い
あらかじめ固定点(1)−固若点(1”)間に通電せし
めて予熱をわめて大きくなる。この方法は回転rの出力
を大きくする場合、実に有効な方法である。動特性動作
は上述した方法と全く同様に動作するものである。
(e) Dynamic characteristics due to preheating The dynamic characteristics material (2), for example, is made of W, Ni-(r alloy) and is preheated by passing current between the fixed point (1) and the fixed point (1"). This method is really effective when increasing the output of the rotation r.The dynamic characteristic operation is exactly the same as the method described above.

上述した方法を要約すれば、動特性材(2)に一定の張
力をあたえることにより振度、温度、ガス、電気などに
よって動特性材(2)が膨張または短縮動作して可動m
ぜしめプーリ(6)によって回転rの出力に変換される
ものである。
To summarize the method described above, by applying a constant tension to the dynamic material (2), the dynamic material (2) expands or contracts depending on vibration, temperature, gas, electricity, etc., making it movable.
This is converted into an output of rotation r by a closing pulley (6).

第2図(a> 、(b)は本発明の応用一実施例を示す
機構図である。尚、第1図(a)、(b)と同一の記号
説明はを111δする。121において、ぎは軸、6′
はプーリ、2″は動特件イオ、32は引バネ、がは動特
性材(2)の可動方向、rZrI+はプーリ(6′)の
回転方向を示す。
FIGS. 2(a) and 2(b) are mechanical diagrams showing an applied embodiment of the present invention.The same symbol explanations as in FIGS. 1(a) and (b) are 111δ.In 121, axis, 6'
is the pulley, 2'' is the dynamic characteristic I, 32 is the tension spring, is the movable direction of the dynamic material (2), and rZrI+ is the rotating direction of the pulley (6').

第2図(a)について説明すると、一定の距離を有して
軸(5) 、(5’)が位置してなり、この軸(5) 
、(5’)に回転可動可能な状態でプーリ(6) 、(
6’)が取付られている。動特性材(2)の一端は固定
点(1)に固着され、該動特性材(2)の中間はプーリ
(6)に半回〜数回巻付られて、他のプーリ(6゛)に
至り、該プーリ(6′)にも同様に半回〜数回巻付られ
る一方、動特性材(2)の他端は引バネ(3)の一端と
固着点(1”)で固着されてなり、引バネ(3)の他端
は動特性材(2)に引張応力をあたえて、固定点(1′
)に緊張固着している。この状態で動特性材(2)が第
1図の方法によって線膨張すると、動特性材(2)は線
膨張して可動mする。この可動正によってプーリ(6)
 、(6’)が回転r1rI′シてリニア的に回転出力
となる。この時、プーリ(6)の回転角とプーリ(6つ
の回転角は固定点(1)と動特性+a’(2)が結ばれ
る距離の長い方において線膨張の伸びが大きいためにプ
ーリ(り)側の回転γ1は大きくなる。つまり回転の大
きさは回転】・<r’”の関係になるものであって、プ
ーリ(6)または(6′)の径を変ることにより同一の
回転を得られるのは文論である。上記した、このプーリ
(6)および(6′)の異なる回転出力を直接に利用す
るか、あるいはギヤー、レバーなどを用いて他の機械的
結合させ、異なる2種の回転出力エネルギーを変換して
用いることができるものである。
To explain Fig. 2(a), axes (5) and (5') are located at a certain distance, and this axis (5)
, (5'), the pulley (6) can be rotated to (5').
6') is attached. One end of the dynamic material (2) is fixed to the fixed point (1), and the middle part of the dynamic material (2) is wrapped around the pulley (6) half a turn to several times, and then wrapped around the other pulley (6゛). The pulley (6') is similarly wrapped half to several times, while the other end of the dynamic material (2) is fixed to one end of the tension spring (3) at the fixing point (1"). The other end of the tension spring (3) applies tensile stress to the dynamic material (2) and fixes it at the fixed point (1'
) is tensely fixed. In this state, when the dynamic material (2) is linearly expanded by the method shown in FIG. 1, the dynamic material (2) linearly expands and becomes movable. This movable positive pulley (6)
, (6') rotates r1rI' and becomes a linear rotational output. At this time, the rotation angle of the pulley (6) and the pulley (6 rotation angles) are different from each other because the linear expansion is larger at the longer distance between the fixed point (1) and the dynamic characteristic The rotation γ1 on the What is obtained is literature.The different rotational outputs of the pulleys (6) and (6') mentioned above can be used directly, or other mechanical connections can be made using gears, levers, etc. The rotational output energy of the seeds can be converted and used.

次に第2図(b)について説明すると、プーリ(6)、
(6′)の設定位置は第2図(a)と同様であるが、動
特性第2(2)および(2′)は同一材料あるいは異種
材料か、うなる。一方の動特性材(2)の一端は固定点
(1)に固着され、該画特性制(2)の中間はプーリ(
6)に半回〜数回巻付られて固着点(1”)に至る。他
方の動特性材(2゛)の一端はal動特性材2)の固着
点(1)と同様に固着され、該動特性AiA’ (2’
)の中間はプーリ(6′)に半回〜数回巻付られて固着
点(1”)に至る。この両開着点(]”)、(1”)の
間に引バネ(31)の両端が固着され、2つの動特性材
(2)、(2′)に引張応力をあたえて緊張固着してい
る。この状態で動特性材(2)および(2′)が第1図
の方法によって線膨張あるいは腺短縮すると動特性材(
2)および(2′)は各々動特性を示して可動mおよび
がする。この可動m、 m’によってプーリ(6)およ
び(6′)が各々個別に回転1’%]”Llてリニア的
に回転出力となる。この方法は動特性J@ (2)およ
び(2′)が同一層群の場合は同一回転r:=r’とな
るが、異種椙利の場合は各々の材料に従って回転r≧1
・5が異なるものである。従って異種拐料を組合せてリ
ニア的に多機能動特性作動を行なわせるのに有効な手段
である。
Next, referring to FIG. 2(b), the pulley (6),
The setting position of (6') is the same as that in FIG. 2(a), but the dynamic characteristics No. 2 (2) and (2') vary depending on whether they are made of the same material or different materials. One end of one dynamic material (2) is fixed to a fixed point (1), and the middle of the dynamic material (2) is connected to a pulley (
6) is wound half to several times to reach the fixed point (1"). One end of the other dynamic material (2゛) is fixed in the same way as the fixed point (1) of the Al dynamic material 2). , the dynamic characteristic AiA'(2'
) is wound half to several times around the pulley (6') and reaches the fixed point (1"). A tension spring (31) is inserted between the two fixed points (]") and (1"). Both ends of the dynamic material (2) and (2') are fixed under tension by applying tensile stress.In this state, the dynamic material (2) and (2') are fixed as shown in Figure 1. Depending on the method, linear expansion or glandular shortening results in a dynamic material (
2) and (2') each exhibit dynamic characteristics and are movable. These movable m, m' cause the pulleys (6) and (6') to rotate individually by 1'% and produce a linear rotational output.This method is based on the dynamic characteristics J@ (2) and (2' ) is the same layer group, the same rotation r:=r', but in the case of different types of layers, the rotation r≧1 according to each material.
・5 is different. Therefore, it is an effective means for linearly performing multifunctional dynamic operation by combining different types of particles.

第3図(a) 、(b)、(e)は本発明の第2の応用
一実施例を示す機構図である。尚、第1図と同一の記号
説明は省略する。図において、7はアーム、7′はアー
ム(7)の移動時、8はレバー、8′はレバー(8)の
移動時、10は支点、33は押バネ、33′は押バネ(
33)の移動時、61は力点、6]lは力点(6エ)の
移動時、Aは動特性機構、λ4はマイクロ機構、35お
よび36は押バネ、35゛および36″は押バネ(35
)および(36)の移動時、81はレバー、8]’はレ
バー(81)の移動時、62および63は可動点、62
′および63′は可動点(62)および(63)の移動
時を示す。
FIGS. 3(a), 3(b), and 3(e) are mechanical diagrams showing a second applied embodiment of the present invention. Note that explanations of the same symbols as in FIG. 1 will be omitted. In the figure, 7 is an arm, 7' is a movement of the arm (7), 8 is a lever, 8' is a movement of the lever (8), 10 is a fulcrum, 33 is a push spring, and 33' is a push spring (
33), 61 is the force point, 6]l is the force point (6D), A is the dynamic characteristic mechanism, λ4 is the micro mechanism, 35 and 36 are push springs, 35゛ and 36'' are push springs ( 35
) and (36), 81 is the lever, 8]' is the lever (81), 62 and 63 are movable points, 62
' and 63' indicate when the movable points (62) and (63) are moving.

第3図(a)について説明する。機能は動特性機構Aと
マイクロ機構Mの2要素から構成され(1〕動特性機構
Mは「Il+ (5)に回転可動可能な状態でプーリ(
6)が取(=jられ、プーリ(6)にはアーム(7)が
固着してなり、このプーリ(6)に動特性材(2)が半
回〜数回巻付られてU字型形状を有してなり、動特性材
(2)の一端が固定点(1′)に他端が引バネ(3)の
一端と固着点(1′つで固〒qされている。引バネ(3
)の他端は動特性材(2)に引張応力をあたえて固定点
(1′)に緊張固着してぃ可能な状態で取付られ、該レ
バー(8)の一端とjail記励特性機構Aのアーム(
7)が力点(61)で遊び可動可能な状態で機械的結合
してなり、動特性機構Aの軸(5)の中心とマイクロ機
構Mの支点(1o)の中心を通る平行力点の延長線上の
一点に押バネ(33)の−fl、;が可動可能な状態で
取付られ、該押バネ(33)の他端がレバー(8)を押
バネ応力がかかる様に可動可能なXmでレバー(8)に
取付られている。2礪能における機械的力関係は、少な
くともマイクロ機構Mの押バネ(33)力より動特性機
構Aの引バネ(3)力の方がわずかに強い状態にあらか
じめ初M設定してあり、一方、マイクロ機構M側の平行
力点は軸(5)、支点(1o)の中心を結ぶ延長線上に
位置している。従ってレバー(8)が平行力点上にある
場合の力はマイクロ機構のもつ特性によって0となり、
これよりわずかでも離れると押バネ(33)の応力が働
くものである。
FIG. 3(a) will be explained. The function is composed of two elements: a dynamic characteristic mechanism A and a micro mechanism M.
6) is removed (=j), the arm (7) is fixed to the pulley (6), and the dynamic material (2) is wrapped around the pulley (6) half a turn to several times to form a U-shape. One end of the dynamic material (2) is fixed at the fixed point (1') and the other end is fixed at the fixed point (1') and one end of the tension spring (3). (3
) is attached in such a way that it can be tensioned and fixed to the fixing point (1') by applying tensile stress to the dynamic material (2), and is connected to one end of the lever (8) and the jail excitation characteristic mechanism A. arm (
7) are mechanically connected in a playable movable state at the force point (61), and are on the extension line of the parallel force point passing through the center of the axis (5) of the dynamic characteristic mechanism A and the center of the fulcrum (1o) of the micro mechanism M. -fl,; of a push spring (33) is movably attached to one point, and the other end of the push spring (33) pushes the lever (8) with a movable Xm so that spring stress is applied. (8) is attached. The mechanical force relationship in the second function is set in advance so that the pulling spring (3) force of the dynamic characteristic mechanism A is at least slightly stronger than the pressing spring (33) force of the micro mechanism M, and on the other hand, , the parallel force point on the micromechanism M side is located on an extended line connecting the centers of the axis (5) and the fulcrum (1o). Therefore, when the lever (8) is on the parallel force point, the force becomes 0 due to the characteristics of the micro mechanism.
If the distance is even slightly greater than this, the stress of the push spring (33) will be applied.

2提能の初期設定はアーム(7)とレバー(8)の力点
(6j)が上記平行力点よりわずかに離れて位置してい
る。
In the initial setting of the second function, the force points (6j) of the arm (7) and lever (8) are located slightly apart from the above-mentioned parallel force points.

この状態で動特性機構Aの動特性材(2)が動特性を示
して線膨張すると可動方向mに移励すると共にプーリ(
6)が回転方向rに回転してアーム(7)を平行力点線
上に近すけ、レバー(8)も同様に平行力点に向かう。
In this state, when the dynamic material (2) of the dynamic characteristic mechanism A exhibits dynamic characteristics and linearly expands, it is moved in the movable direction m and the pulley (
6) rotates in the rotational direction r to bring the arm (7) closer to the parallel force dotted line, and the lever (8) similarly moves toward the parallel force point.

この平行力点を通過すると同時に力点(61)の遊び可
動によって、レバー(8)は押バネ(33)の応力によ
って瞬時に点線のレバー(8′)位置に可動せしめて論
理的作動する。逆に動特性材(2)が線短縮すると」二
記した方法と逆の動作により、再ひもとのレバー(8〉
位置に復帰せしめるものである。上記した本発明の方法
は、動特性機構Aのプーリ(6)に取付られたアーム(
7)のリニア的作動をマイクロ機構M(7)レバー(8
)によって論理的作動させるため、レバー(8)の先f
%jに例えば有接点を設置してスイッチング動作させる
ことが出来るものである。
At the same time as passing through this parallel force point, due to the loose movement of the force point (61), the lever (8) is instantaneously moved to the dotted line lever (8') position by the stress of the push spring (33), thereby logically operating. On the other hand, when the dynamic material (2) is shortened, the re-stringing lever (8)
This will allow it to return to its original position. The method of the present invention described above is based on the arm (
The linear operation of the micro mechanism M (7) lever (8)
), the tip of the lever (8) f
For example, a contact point can be installed at %j to perform a switching operation.

第3図(1))は第3図(a)のアーム(7)をなくし
プーリ(6)の円周上に直接遊び溝(61)を有した構
造を設置したものであって、基本動作は第3図(a)と
同様に論理的動作をする。この方法は動特性材(2)の
線膨張(線短縮)エネルギーが大きい場合、特に有効な
手段である。
Fig. 3 (1)) is a structure in which the arm (7) in Fig. 3 (a) is removed and a structure with an idle groove (61) is installed directly on the circumference of the pulley (6), and the basic operation is performs the same logical operation as in FIG. 3(a). This method is particularly effective when the linear expansion (linear shortening) energy of the dynamic material (2) is large.

第3図(C,)は第3図(a)、(b)よりもさらに論
理的応答性をよくしたものであって、U字型の動特性1
機構内にマイクロ機構を設置している。支点(10)は
固定点(1) 、(1’)間に位置してなり、平行力点
は軸(5)と支点(10)の各中心を結ぶ線上にある。
Figure 3 (C,) shows even better logical responsiveness than Figures 3 (a) and (b), and shows the U-shaped dynamic characteristic 1.
A micro mechanism is installed within the mechanism. The fulcrum (10) is located between the fixed points (1) and (1'), and the parallel force point is on the line connecting the axis (5) and each center of the fulcrum (10).

動特性機構の張力方法は第3図(1))と同様である。The tension method of the dynamic characteristic mechanism is the same as that shown in FIG. 3 (1)).

プーリ(6)には平行力点よりわずかに離れて遊び溝(
61)を有してなり、支点(10)には押バネ(35)
の一端が可動可能な状態で取付られ、他端はレバー(8
1)の一端上可動可能の状態で支点(62)に取付られ
ている。レバー(81)には押バネ(36)が可動可能
な状態で支点(63)に取付られ、押バネ(36)の他
端はプーリ(6)の遊び溝(61)に可動可能な状態で
取(=Iられている。初期設定は平行力点よりわずかに
遁れて、1甲バネ(35)および(36)、レバー(8
1)、遊び溝(61)が位置してなり、押バネ(35)
および(36)は相対に即応力している。この状態で第
3図(a)と同様に動特性機構がリニア的作動すると、
プーリ(6)の遊び4”−賢61)が回転移動rして押
バネ(36)を可動させる。この可動によってマイクロ
機構のカバランスが変化し、平行力点をすぎると同時に
点線の押バネ(35’)、(3G’)、レバー(81’
)、支点(62’)、支点(63“)の位置に瞬時に可
働移動せしめて論理的作動するものである。上述した第
3図(a) 、(+1) 、(C)は動特性遊構とマイ
クロ機構を機械的連動しているため、動特性機構の動作
に対してマイクロ機構の動作は少し遅れて瞬時動作する
結果になるが、励特性相の一定の膨張または短縮に対し
て正確に判定して作動することになるから、論理的判定
を用する場合、特に有効な手段である。
The pulley (6) has an idle groove (
61), and a push spring (35) is attached to the fulcrum (10).
One end is movably attached, and the other end is attached to a lever (8
1) One end is movably attached to the fulcrum (62). A push spring (36) is movably attached to the fulcrum (63) on the lever (81), and the other end of the push spring (36) is movably attached to the play groove (61) of the pulley (6). The initial setting is slightly away from the parallel force point, the first spring (35) and (36), and the lever (8).
1) The play groove (61) is positioned and the push spring (35)
and (36) have relatively immediate stress. In this state, if the dynamic characteristic mechanism operates linearly as in Fig. 3(a),
The play of the pulley (6) (4" - 61) rotates and moves the push spring (36). This movement changes the cover balance of the micro mechanism, and at the same time the push spring (36) shown by the dotted line moves past the parallel force point. 35'), (3G'), lever (81'
), the fulcrum (62'), and the fulcrum (63'') are instantaneously movably moved to the positions of the fulcrum (63'') and act logically.The above-mentioned Fig. 3(a), (+1), and (C) are the dynamic characteristics. Since the free mechanism and the micro mechanism are mechanically linked, the micro mechanism operates instantaneously with a slight delay compared to the operation of the dynamic characteristic mechanism. This is a particularly effective means when logical judgment is used, since it makes accurate judgments and operates.

上述した本発明の方法を要約すれば動特性第2の物理的
直線エネルギー変化量をブーりに伝達せしめてリニア的
な回転駆励出力を得て動特性機構を構成すると共に、さ
らに動特性機構とマイクロ機構を機械的結合させて論理
的作動している。また一方において、動特性拐に■αα
逆通電しめて予熱させ動特性相の動特性応答性を高めた
ものである。
To summarize the method of the present invention described above, a dynamic characteristic second physical linear energy change amount is transmitted to the boolean to obtain a linear rotational excitation output to configure a dynamic characteristic mechanism, and furthermore, a dynamic characteristic mechanism is constructed. It operates logically by mechanically coupling micro-mechanisms. On the other hand, due to the dynamic characteristics
The dynamic response of the dynamic phase is enhanced by preheating by reverse energization.

以上、本発明は動特性を示す変化に対して顕著な効果を
奉する一方、出力がリニア的あるいは論理的に作動する
から、挿々の応用が提供できるきわめて有用な発明であ
る。
As described above, the present invention has a remarkable effect on changes in dynamic characteristics, and since the output operates linearly or logically, it is an extremely useful invention that can be used in various applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、(1+)は本発明の一実施例を示す基
本機構図、第2図(n) 、(+])は本発明の第1の
応用実施例を示す機構図、第3図(a) 、(b) 、
(c)は本発明の第2の応用実施例を示す機4i1,1
2図である。 1、I′・−・・・・・・固定点      61・・
・・・・・力点又は遊び満■l+・・・・・・・・・固
着点      6]’・・・・・・力点又は遊び溝の
移動時2.2′・・・・・・・・動特性イ27・・・・
・・・・アーム3.32・・・・・・・・引バネ   
   7′・・・・・・・移動時のアーム31.33.
35.36押バネ      8.81・・・・・レバ
ー33ミ35ミ36灸・−・移動時の押バネ  8之8
1°・・・・移動時のレバー5.5′・・・・・・・・
軸        10,62.63支点6.6′・・
・・−・・・プーリ      62;63’・・・移
動時の支点r 、 r + 、r + +・・・・回1
甑方向     n+、m’・・・・・可動方向へ・・
・・・・・・・励q寺り手製A7η    M・−・・
・・・マイクロ製本1ζ第1図(εI)     第1
図(I])m 第 2 図(a) 第2図(b) Δ               M 第  3  図 (a) 第  3  図 (C)
Figures 1(a) and (1+) are basic mechanical diagrams showing one embodiment of the present invention, Figure 2(n) and (+]) are mechanical diagrams showing a first applied embodiment of the present invention, and Figure 3 (a), (b),
(c) is a machine 4i1,1 showing a second applied embodiment of the present invention.
This is Figure 2. 1, I'---Fixed point 61...
・・・・・・Forcing point or free play ■l+・・・・・・Fixed point 6]'・・・・・・When moving the force point or free groove 2.2′・・・・・・・・・Dynamic characteristics A27...
...Arm 3.32...Tension spring
7'... Arm during movement 31.33.
35.36 Pressing spring 8.81... Lever 33mi 35mi 36 Moxibustion... Pressing spring during movement 8-8
1°... Lever when moving 5.5'...
Axis 10, 62.63 fulcrum 6.6'...
...Pulley 62;63'...Fully point during movement r, r+, r++...Time 1
Koshiki direction n+, m'...Movement direction...
......Handmade A7η M...
...Micro binding 1ζ Figure 1 (εI) 1st
Figure (I]) m Figure 2 (a) Figure 2 (b) Δ M Figure 3 (a) Figure 3 (C)

Claims (3)

【特許請求の範囲】[Claims] (1)動特性材とプーリが機械的連動されてなる動特性
機構がマイクロ撮描と機械的連動せしめて論理的作動す
ることを特徴とする特性機構。
(1) A characteristic mechanism characterized in that a dynamic characteristic mechanism formed by mechanically interlocking a dynamic characteristic material and a pulley operates logically by mechanically interlocking micro imaging.
(2)上記記載中の動特性制とプーリによる動特性機構
の単独リニア的作動のみにて動作させることを含むi>
8記中の特許請求の範囲。
(2) Including operating only with the dynamic characteristic control described above and the independent linear operation of the dynamic characteristic mechanism using a pulley>
8. Claims in Section 8.
(3)前記(1)記載中の動特性拐に通電せしめること
を含む前記域中の特許請求の範囲。
(3) The scope of the claims in the above area includes energizing the dynamic characteristics described in (1) above.
JP7993183A 1983-05-07 1983-05-07 Dynamic characteristic mechanism Pending JPS59206681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7993183A JPS59206681A (en) 1983-05-07 1983-05-07 Dynamic characteristic mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7993183A JPS59206681A (en) 1983-05-07 1983-05-07 Dynamic characteristic mechanism

Publications (1)

Publication Number Publication Date
JPS59206681A true JPS59206681A (en) 1984-11-22

Family

ID=13704052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7993183A Pending JPS59206681A (en) 1983-05-07 1983-05-07 Dynamic characteristic mechanism

Country Status (1)

Country Link
JP (1) JPS59206681A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178565A (en) * 1985-02-04 1986-08-11 Tokieda Naomitsu Actuator made of shape memory alloy
WO2002073033A1 (en) * 2001-03-13 2002-09-19 Toki Corporation Kabushiki Kaisha Shape memory alloy actuator
KR100870067B1 (en) * 2007-05-16 2008-11-24 한양대학교 산학협력단 Shape memory alloy driving apparatus and pentograph robot having the same
KR101032888B1 (en) 2007-05-16 2011-05-09 한양대학교 산학협력단 Driving apparatus for pentograph
JP2016501338A (en) * 2012-11-22 2016-01-18 サエス・ゲッターズ・エッセ・ピ・ア Shape memory alloy actuator device with improved fatigue resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178565A (en) * 1985-02-04 1986-08-11 Tokieda Naomitsu Actuator made of shape memory alloy
JPH0580590B2 (en) * 1985-02-04 1993-11-09 Tokieda Naomitsu
WO2002073033A1 (en) * 2001-03-13 2002-09-19 Toki Corporation Kabushiki Kaisha Shape memory alloy actuator
KR100870067B1 (en) * 2007-05-16 2008-11-24 한양대학교 산학협력단 Shape memory alloy driving apparatus and pentograph robot having the same
KR101032888B1 (en) 2007-05-16 2011-05-09 한양대학교 산학협력단 Driving apparatus for pentograph
JP2016501338A (en) * 2012-11-22 2016-01-18 サエス・ゲッターズ・エッセ・ピ・ア Shape memory alloy actuator device with improved fatigue resistance

Similar Documents

Publication Publication Date Title
JPS59206681A (en) Dynamic characteristic mechanism
KR101956422B1 (en) Shape memory alloy actuating element with improved fatigue resistance
JP2016042783A5 (en)
JP7343546B2 (en) Improvement of artificial muscle actuator
JP2015533521A5 (en)
TWI741150B (en) Continuous production of muscle fibers
JPH0757598A (en) Shape memory alloy relay and switch
WO2002059038A1 (en) Hydrogen purification device and fuel cell power generation system
WO2006090433A1 (en) Hydrogen gas sensor and process for producing the same
US11065101B2 (en) Fast torsional artificial muscles from twisted yarns of shape memory material
JPH04243697A (en) Loading device
EP3191710A1 (en) Heat sensitive actuator device
JPS59205124A (en) Dynamic characteristic switch
JPS59205125A (en) Dynamic characteristic switch
JP2004278495A (en) Tube pump
KR102442460B1 (en) Method of manufacturing shape memory alloy spring
JPH08312705A (en) Two-way shape memory alloy coil spring element
JPS59205122A (en) Method of adjusting linear expansion coefficient in dynamic characteristic mechanism
JP4734638B2 (en) Hydrogen storage alloy actuator
JPH08296682A (en) Microspring
JPH0660628B2 (en) Thermo-mechanical energy converter
JP2021107305A (en) Reforming system
US198799A (en) Improvement in safety-brakes for machinery
JPS63215882A (en) Actuator
JPH0574309A (en) Circuit breaker