JPS59206619A - Method of controlling fuel injection amount in electronically controlled internal-combustion engine - Google Patents

Method of controlling fuel injection amount in electronically controlled internal-combustion engine

Info

Publication number
JPS59206619A
JPS59206619A JP7930583A JP7930583A JPS59206619A JP S59206619 A JPS59206619 A JP S59206619A JP 7930583 A JP7930583 A JP 7930583A JP 7930583 A JP7930583 A JP 7930583A JP S59206619 A JPS59206619 A JP S59206619A
Authority
JP
Japan
Prior art keywords
cylinder
fuel injection
feedback
cylinders
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7930583A
Other languages
Japanese (ja)
Other versions
JPH045819B2 (en
Inventor
Makoto Suzuki
誠 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7930583A priority Critical patent/JPS59206619A/en
Publication of JPS59206619A publication Critical patent/JPS59206619A/en
Publication of JPH045819B2 publication Critical patent/JPH045819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To compensate variation in flow characteristics of fuel injection valves for each cylinder, by taking a mean value of coefficients of A/F ratio feedback in all cylinders and a mean value of coefficients of A/F ratio feedback in cylinders other than a specific cylinder, and computing a correction value of a fuel injection amount of the specific cylinder from both the mean values. CONSTITUTION:An electronical control unit serves to compute and correct output pulses to injectors from suction air amount, rotational speed, throttle opening degree, detection value of a water temperature sensor and detection value of an O2 sensor, etc. In step 62, the electronical control unit judges that warm-up is completed and A/F ratio is in feedback control under a normal running condition, and then in step 64, a first cylinder is determined. In step 66, a mean value Fa of correction coefficients of feedback during feedback control of A/F ratio of all cylinders is taken, and in step 68, a mean value Fb of correction coefficients of feedback during feedback control of A/F ratio of cylinders other than the first cylinder is taken. In step 70, a correction value Kn of a fuel injection amount of the first cylinder is computed from (1-Fb)/4(1- Fb/Fa), and the above steps are sequentially repeated to a fourth cylinder.

Description

【発明の詳細な説明】 本発明は電子制御内燃機関の燃料噴射1−1」制御方法
に係り、特に多気筒電子制御内燃機関の各気筒の空燃比
制御精度を改善する燃わ1層す、j(、i制御方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection 1-1 control method for an electronically controlled internal combustion engine, and particularly to a method for controlling fuel injection 1-1 for an electronically controlled internal combustion engine, and particularly for improving the accuracy of air-fuel ratio control in each cylinder of a multi-cylinder electronically controlled internal combustion engine. j(, i related to the control method.

多気筒電子制御内燃機関では、燃料噴射弁は各気筒ごと
に対応して設けられているが、空燃比センサとしての酸
素(02)センサは仝気筒共通に設けられ、この酸素セ
ンサからのフィードバック信号に基づいて計算されたフ
ィードバック係数に、!1(づいて全気筒の燃料噴射[
11が言1算されている。各燃料噴射弁の流量にはばら
つきが生じるので、従来の多気筒′電子制御内燃機関に
おいて各燃料噴射弁の流量のばらつきを吸収して各気筒
の空燃比を目標値に制御する場合にはフィードバック係
数の計算の定数としてのスキップfl(酸素センサの出
力レベルの反転時に応答性の改善のためにフィードバッ
ク係数を不連続に増減する際のその不連続量)あるいは
傾き(酸素センサの出力レヘルが同一に維持されている
101間のフィードバック係数の増減量)を大きく、す
なわちフィードバック係数の振幅を大きくするしかない
か、これは空燃比の変動を増大させ、運転性能(ドライ
ブアビリティ)の悪化、触姪の浄化能力の低下等の不具
合を伴う。
In a multi-cylinder electronically controlled internal combustion engine, a fuel injection valve is provided for each cylinder, but an oxygen (02) sensor as an air-fuel ratio sensor is provided commonly for all cylinders, and a feedback signal from this oxygen sensor is used. to the feedback coefficient calculated based on,! 1 (Following all cylinder fuel injection [
11 is counted as 1 word. Since variations occur in the flow rate of each fuel injector, feedback is required in conventional multi-cylinder electronically controlled internal combustion engines to absorb the variation in the flow rate of each fuel injector and control the air-fuel ratio of each cylinder to the target value. Skip fl (the amount of discontinuity when the feedback coefficient is increased or decreased discontinuously to improve responsiveness when the output level of the oxygen sensor is reversed) or slope (the output level of the oxygen sensor is the same) as a constant in the calculation of the coefficient There is no choice but to increase the increase/decrease of the feedback coefficient between 101 and 101 maintained at This is accompanied by problems such as a decrease in the purification ability of the water.

特に酸素センサが」JI気系の比較的下流に設けられて
いる多気筒′北子制御内撚機関では、酸素センサへの+
ul気カスの到達遅れがあるので、燃料噴射弁の流量の
ばらつきを吸収して各気筒の空燃比の制flil i+
□l良を改善するためには、スキップ(1tおよび傾き
を増大してフィードバック周波数を大きくする必要があ
るが、前述の不具合のためにスギツブ;11:および傾
きの増大には所定の制限がある。
In particular, in a multi-cylinder Kitako-controlled internal twist engine where the oxygen sensor is installed relatively downstream of the JI gas system, the +
Since there is a delay in the arrival of air scum, it is possible to control the air-fuel ratio of each cylinder by absorbing the variation in the flow rate of the fuel injector.
□In order to improve the quality, it is necessary to increase the feedback frequency by increasing the skip (1t) and the slope, but due to the problems mentioned above, there is a certain limit to the increase in the slope. .

本発明の1ffil的は、各気筒の燃料噴射弁における
流ji1.のばらつきを補償して各気筒の空燃比制イ目
1精度を改善できる多気筒電子制御内燃機関の燃刺咄す
・↑fI)制御力法を提供することである。
The main feature of the present invention is that the flow ji1. It is an object of the present invention to provide a fuel injection control force method for a multi-cylinder electronically controlled internal combustion engine that can improve the accuracy of air-fuel ratio control of each cylinder by compensating for variations in air-fuel ratio control.

この目的を達成するために本発明によれば、燃料噴射弁
が各気筒ことに対応して設けられ、空燃比センサが全気
筒に共通に設けられ、燃料噴射弁における燃料墳射徂が
、空燃比センサがらのフィードバック信号に基づいて計
算されたフィードバック係数に関係して補正される電子
制御内燃機関の燃料噴射量制御方法において、全気筒の
ζ!燃比をフィードバック制御している期間のフィード
バック係数の平均値Paを求め、特定の1つの気筒nの
空燃比はオープンループ制御して残りの全気筒の空燃比
はフィードバック制御している期間のフィードバック係
数の平均値Fhを求め、補正値1(nを次式から言1算
し、−Fll C・(] −Fly/Fa)    ”  (1)ただ
しCは気筒の総数 特定の1つの気@nの燃料噴射量をI(nに)、tづい
て言]算する。
In order to achieve this object, according to the present invention, a fuel injection valve is provided corresponding to each cylinder, an air-fuel ratio sensor is provided in common to all the cylinders, and the fuel injection valve in the fuel injection valve is In a fuel injection amount control method for an electronically controlled internal combustion engine that is corrected in relation to a feedback coefficient calculated based on a feedback signal from a fuel ratio sensor, ζ! of all cylinders is corrected. The average value Pa of the feedback coefficient during the period when the fuel ratio is feedback-controlled is calculated, and the air-fuel ratio of one specific cylinder n is under open-loop control, and the air-fuel ratio of all remaining cylinders is the feedback coefficient during the period when the feedback control is being performed. Calculate the average value Fh of Calculate the fuel injection amount by I(n) and t.

例えば4気筒’FL子制御内燃提関における第1気筒か
ら第4気筒までの各気筒のオープンループ制御時の空燃
比をA/Fl、 A/F2. A/F3.Δ/174と
定義する。各気筒の吸入空気量Qは等しいので、全気筒
の空燃比がフィードバック制御されている191間では
、すなわち容態おIIK5 ”JJ弁における燃お1噴
射;j[をフィードバック係数で補■二している期間で
は、1サイクルにおける全気筒の燃λメ鴫射1,1の合
fi1は Fa−Q(’−+ニー+1  、  ]−)    ・
・・ (2)八/FI  A/F2  A/F3  八
/FMとなる。
For example, the air-fuel ratio during open loop control of each cylinder from the 1st cylinder to the 4th cylinder in a 4-cylinder FL child control internal combustion engine is A/Fl, A/F2. A/F3. It is defined as Δ/174. Since the intake air amount Q of each cylinder is equal, the air-fuel ratio of all cylinders is under feedback control. During the period, the sum fi1 of the fuel injections 1, 1 of all cylinders in one cycle is Fa-Q('-+knee+1, ]-)
... (2) 8/FI A/F2 A/F3 8/FM.

態別、偵す、J (’、tの合計を吸入空気量の合方1
’4Qで割れは目標孕燃比(例えは理論空燃比)の逆数
になるはずであるので、次式が成立する。
type, rectify, J (', the sum of t and the sum of the intake air amount 1
Since the crack in '4Q should be the reciprocal of the target pregnant fuel ratio (for example, the stoichiometric air-fuel ratio), the following equation holds true.

”  (A/Fl+/1/F2+A/F3+A/F4)
= 1.l’、7 ”’  (3)たlごし14.7は
理論空燃比 さらに特定の1つの気筒n1例えは第1錬筒の′−′1
″燃比はオープンループ制御して残りの3つの全気筒の
シ1!燃比はフィードバック制御している期間、すなわ
ち第1気筒の燃料噴射弁における燃料噴射J11はフィ
ードバック係数による補正を行なわず、残りの3つの全
気筒の燃rJ噴射弁における′M、斜噴射量はフィード
バック係数による補正を行なっている期間では1サイク
ルにおりる全気筒の燃料噴射D’にの台別は Q°二刊’l)Q (迭、+H」−△ゼ山(,1)八/
11 となる。
” (A/Fl+/1/F2+A/F3+A/F4)
= 1. l', 7 ''' (3) 14.7 is the stoichiometric air-fuel ratio and the specific one cylinder n1, for example, '-'1 of the first cylinder.
``The fuel ratio is under open-loop control and the fuel ratio of all remaining three cylinders is under feedback control, that is, the fuel injection J11 in the fuel injection valve of the first cylinder is not corrected by the feedback coefficient, and the remaining three cylinders are under feedback control. 'M' in the fuel rJ injectors of all three cylinders, and slant injection amount are corrected by the feedback coefficient.The fuel injection D' of all cylinders in one cycle during the period in which correction is performed using the feedback coefficient is Q°2 'l )Q (迭、+H"−△ze山(,1)8/
11.

(4)式を40で割った値は理論空燃比の逆数にならな
けれはならないから次式が成立する。
Since the value obtained by dividing equation (4) by 40 must be the reciprocal of the stoichiometric air-fuel ratio, the following equation holds true.

A/F I〜Δ/F /lは(3)弐および(5)弐に
おいて一力、1(nを)0人する前の4a終燃料鴫す・
j時間’l’ a uは例えは次式から定義される。
A/F I ~ Δ/F /l is the final fuel drop of 4a before making 1 (n) 0 people at (3) 2 and (5) 2.
j time 'l' a u is defined, for example, from the following equation.

Tdu = Fa゛Fc・Tp +’I’v    −
1・(7)ただしFc:機関冷却水幅度告の機関の他の
J・1(転パラメータにより泪於される補 正係数 r p : (吸入空蛎流爪/様関回転速良)から、j
I算される基本燃料噴射時間 TV:燃′5噴射弁の111(効幀射時間したがってΔ
/PIを理論空燃比14.7にするためには1(1を次
式から定義し、 第1気筒の最終燃料噴射時間Taulを次式から計算す
ればよい。
Tdu = Fa゛Fc・Tp +'I'v −
J
Calculated basic fuel injection time TV: 111 of the fuel injection valve (effective injection time, therefore Δ
In order to make /PI the stoichiometric air-fuel ratio of 14.7, 1 (1) can be defined from the following equation, and the final fuel injection time Taul for the first cylinder can be calculated from the following equation.

Taul−に1−Fa−r;e−Tp +Tv  −=
・(9)(6)および(8)式から1(1は/:に式か
ら定義される。
Taul− to 1−Fa−r; e−Tp +Tv −=
・(9) From equations (6) and (8), 1 (1 is defined from the equation to /:.

って気筒の総数がCである内@遊間のn番目の気筒の補
正値1(nは(1)弐のように定義できる。
The total number of cylinders is C, and the correction value for the nth cylinder among the cylinders is 1 (n can be defined as (1)2).

なお11番目の気筒についての最終燃料噴射時間1’ 
a u nを定義すると、次式のようになる。
Note that the final fuel injection time for the 11th cylinder is 1'
When a u n is defined, it becomes as follows.

’l’;+un = 1(nl’a−Fe−Tp +T
v  ・・・・・(11)この−うに本発明ではフィー
ドバック係数の冗数としてのスキップrl(および傾き
を増大することなく、前述のように定義される補正値K
nを尋人することにより各燃料噴射弁の流]“kのばら
つきを補信し、空燃比制御精度を改善することができる
'l';+un = 1(nl'a-Fe-Tp +T
v (11) Thus, in the present invention, the skip rl as the redundancy of the feedback coefficient (and the correction value K defined as described above without increasing the slope)
By changing n, it is possible to compensate for variations in the flow of each fuel injector (k) and improve the accuracy of air-fuel ratio control.

図面を参1t(i シて本発明を説明する。The present invention will be explained with reference to the drawings.

第1図は4気筒電子制′a機関の概略図である。FIG. 1 is a schematic diagram of a four-cylinder electronically controlled engine.

吸俵通路1には上流から順番にエアフローメータ2、吸
気温センサ3、絞り弁4、サージタンク5、吸気管6が
設けられている。燃′B噴射弁7は各気筒に対応して吸
気管6に取イτ」けられ、吸気系へ燃料を噴射する。燃
焼室11は、点火プラグ12を備え、シリンダヘッド1
3、シリンダブロック14、およびピストン15により
Ilj定され、吸気弁16を経て混合気を供給される。
The suction bale passage 1 is provided with an air flow meter 2, an intake temperature sensor 3, a throttle valve 4, a surge tank 5, and an intake pipe 6 in this order from upstream. A fuel injection valve 7 is installed in the intake pipe 6 in correspondence with each cylinder, and injects fuel into the intake system. The combustion chamber 11 includes a spark plug 12 and a cylinder head 1.
3, Ilj is determined by the cylinder block 14 and the piston 15, and the air-fuel mixture is supplied through the intake valve 16.

燃焼至11で燃焼した混合気は排気弁19を経て排気管
20へ抽出される。酸素センサ21は1)1気中の酸素
濃度を検出し、水温センサ22はシリンダブロック14
に取付けられて冷却水温度を検出する。気筒判別センサ
25および回転角セン−リ°26は配電ia 27の軸
28の回転からクランク角を検出する。気筒判別センサ
25および回転角センサ26はクランク角がそれぞれ7
20゜および30°変化するごとにパルスを発生する。
The air-fuel mixture combusted in the combustion stage 11 is extracted to the exhaust pipe 20 via the exhaust valve 19. The oxygen sensor 21 detects the oxygen concentration in the atmosphere, and the water temperature sensor 22 detects the oxygen concentration in the air.
is installed to detect the cooling water temperature. The cylinder discrimination sensor 25 and the rotation angle sensor 26 detect the crank angle from the rotation of the shaft 28 of the power distribution ia 27. The cylinder discrimination sensor 25 and the rotation angle sensor 26 each have a crank angle of 7.
A pulse is generated every 20° and 30° change.

アイドルスイッチ29は絞り弁4がアイドリンク開tW
にあるか否かを検出する。電子制御装置31は、各種セ
ンサから入力信号を受け、燃料噴射弁7および点火装置
32へ出力信号を送る。
The idle switch 29 causes the throttle valve 4 to open the idle link tW
Detect whether or not there is. The electronic control device 31 receives input signals from various sensors and sends output signals to the fuel injection valve 7 and the ignition device 32.

点火袋1iffl 32の二次点火電流は配電器27を
経て点火プラグ12へ送られる。
The secondary ignition current of the ignition bag 1iffl 32 is sent to the ignition plug 12 via the power distributor 27.

第2図は電子制御装置31の内部のブロック図である。FIG. 2 is a block diagram of the inside of the electronic control device 31. As shown in FIG.

RAM 35、ROM 36、CPIJ 37 、入出
力ボート38,39、出カポ−h 40a 〜40d、
、4]はバス42を介して互いにJl続されている。C
LOCK43はCI’U 37ヘクロツタパルスを送る
。エアフローメータ2および吸気温センサ3のアナログ
出力はバッファ45.46を経てマルチプレクサ47へ
送られる。マルチプレクサ47は入力信号を選択し、選
択された入力信号はA/D (アナログ/デジタル)変
換器48においてA/D変換されてから入出力ボート3
8へ送られる。酸素センサ21の出力はバッファ50お
よびコンパレータ51を経て入出力ボート39へ送られ
、気筒判別センサ25および回転角センサ26の出力は
整形回路53を経て入出力ボート39へ送られ、アイド
ルスイッチ29の出力は直接入出力ボート39へ送られ
る。各燃料噴射弁7a〜7dは出力ボート40a −’
Odから駆動回路55a 〜55dを経て入力信号を受
け、点火装置32は出力ボート41から駆動回路56を
経て入力信号を受ける。
RAM 35, ROM 36, CPIJ 37, input/output boats 38, 39, output capo-h 40a to 40d,
, 4] are connected to each other via a bus 42. C
LOCK43 sends a pulse to CI'U 37. The analog outputs of the air flow meter 2 and intake air temperature sensor 3 are sent to a multiplexer 47 via buffers 45, 46. The multiplexer 47 selects an input signal, and the selected input signal is A/D converted by an A/D (analog/digital) converter 48 and then sent to the input/output port 3.
Sent to 8. The output of the oxygen sensor 21 is sent to the input/output boat 39 via the buffer 50 and the comparator 51, and the output of the cylinder discrimination sensor 25 and rotation angle sensor 26 is sent to the input/output boat 39 via the shaping circuit 53. Output is sent directly to input/output boat 39. Each fuel injection valve 7a to 7d is an output boat 40a-'
The ignition device 32 receives an input signal from the output port 41 via the drive circuit 56. The ignition device 32 receives an input signal from the output boat 41 via the drive circuit 56.

第3図は燃料噴射弁7a〜7dの流量のばらつきを補償
するための補正値Knの計算ルーチンのフローチャート
である。全気筒の空燃比をフィードバック制御している
期間のフィードバック係数Faを求め、特定の1つの気
筒nの空燃比はオープンループ制御して残りの全気筒の
空燃比はフィードバック制御している期間のフィードバ
ック係数の平均値Fbを求め、Fa+Fbから前述の(
1)式に基づいてKnが引算される。
FIG. 3 is a flowchart of a calculation routine for a correction value Kn for compensating for variations in the flow rates of the fuel injection valves 7a to 7d. Calculate the feedback coefficient Fa during the period when the air-fuel ratio of all cylinders is under feedback control, and calculate the feedback coefficient Fa during the period when the air-fuel ratio of one specific cylinder n is under open-loop control and the air-fuel ratio of all remaining cylinders is under feedback control. Find the average value Fb of the coefficients and use Fa + Fb as described above (
1) Kn is subtracted based on the formula.

Knは前述の(+1)Eで示した通り、最終g8料噴射
時間1’ a u nの引算の際に乗算項として用いら
れ、この結果、各燃料噴射弁7a〜7dの流量のばらつ
きにもかかわらず、各気筒の空燃°比は目標空燃比とし
ての理論空燃比に制御される。各ステップを訂述すると
ステップ62では補正値Knのtl′算条件が成立して
いるか杏かを判定し、判定が正であればステゝシブ64
以降へ進む。計算条件としては、暖磯がすでに終了して
いること、空燃比のフィードバック条件が成立している
こと、および定党状態(非過渡時の例えば40に+n 
/ l+ yp行時)であることが挙げられる。ステッ
プ64ではnに初期値としての1を代入する。nは補正
値Knを引算する気筒番号である。
As indicated by (+1)E above, Kn is used as a multiplication term when subtracting the final g8 fuel injection time 1'aun, and as a result, the variation in the flow rate of each fuel injection valve 7a to 7d is Nevertheless, the air-fuel ratio of each cylinder is controlled to the stoichiometric air-fuel ratio as the target air-fuel ratio. To elaborate on each step, in step 62, it is determined whether the tl' calculation condition for the correction value Kn is satisfied or not, and if the determination is positive, the step 64
Proceed to the following. The calculation conditions are that Taniso has already ended, that the air-fuel ratio feedback condition is satisfied, and that the constant state (for example, +n
/l+yp line). In step 64, 1 is assigned to n as an initial value. n is the cylinder number from which the correction value Kn is subtracted.

ステップ66では全気筒の空燃比をフィードバック側布
し、この期間のフィードバック係数の平均値Faを取込
む。フィードバック係数は、酸素センサ21がm(リッ
チ)信号あるいは胛(リーン)信号を維持している期間
では減少あるいは増大し、濃信号から簿信号へあるいは
その逆へ変化した時には応答性改善のためにスキップを
4=J与される。平均値はスキップ直前のフィードバッ
ク係数を複数個取込み、平均化して求めてもよい。ステ
ップ68ではn番目の気筒の空燃比のみをオープンルー
プ制御しくフィードバック制御の中止)、すなわちフィ
ードバック係数により燃料噴射量を補正せず、n番目の
気筒以久の他の残りの気筒の燃料@射量はフィードバッ
ク制御し、この期間のフィードバック係数の平均値Fb
を取込む。ステップ70では仮のKnを前述の(1)式
に従って計算する。ステップ72ではステップ70の仮
のKnを真のKnに代入する。ステップ70の仮のKn
を真のKnに直接代入しないで、今までの真のKnとス
テップ70の仮のKnとの平均値を真のKnに代入して
もよい。なお真のI(nの初期値は1.0に設疋されて
いる。ステップ74ではn +1をnに代入する。ステ
ップ76ではn > 4か否かを判定し、判定が否であ
ればステップ66へ戻り、判定が正であればこのルーチ
ンを終了する。こうして旧〜に4がti算される。  
In step 66, the air-fuel ratios of all cylinders are subjected to feedback processing, and the average value Fa of the feedback coefficients during this period is taken. The feedback coefficient decreases or increases during the period when the oxygen sensor 21 maintains an m (rich) signal or a lean signal, and when the oxygen sensor 21 changes from a rich signal to a low signal or vice versa, it is used to improve responsiveness. 4=J skips are given. The average value may be obtained by taking in a plurality of feedback coefficients immediately before skipping and averaging them. In step 68, only the air-fuel ratio of the n-th cylinder is subjected to open-loop control (feedback control is stopped), that is, the fuel injection amount is not corrected by the feedback coefficient, and the fuel injection amount of the remaining cylinders after the n-th cylinder is is feedback controlled, and the average value Fb of the feedback coefficient during this period is
take in. In step 70, a temporary Kn is calculated according to the above-mentioned equation (1). In step 72, the temporary Kn in step 70 is substituted into the true Kn. Temporary Kn of step 70
Instead of directly assigning to the true Kn, the average value of the true Kn up to now and the temporary Kn of step 70 may be substituted to the true Kn. Note that the initial value of true I (n is set to 1.0. In step 74, n + 1 is assigned to n. In step 76, it is determined whether n > 4, and if the determination is negative, Returning to step 66, if the determination is positive, this routine is terminated.In this way, 4 is added to old.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される電子制御機関の概略図、第
2図は第1図の電子制御装置のブロック図、第3図は各
燃料@側弁の流量のはらつきを補償するための補正値の
計算ルーチンのフローチャートである。 7.7a〜7d・・・燃f1.噴射弁、11・・・燃焼
室、21・・・酸紫センサ、31・・・電子制御装置。
Fig. 1 is a schematic diagram of an electronically controlled engine to which the present invention is applied, Fig. 2 is a block diagram of the electronic control device shown in Fig. 1, and Fig. 3 is a diagram for compensating for variations in the flow rate of each fuel @ side valve. 2 is a flowchart of a correction value calculation routine. 7.7a-7d... fuel f1. Injection valve, 11... Combustion chamber, 21... Acid purple sensor, 31... Electronic control device.

Claims (1)

【特許請求の範囲】 燃料噴射弁が各気筒ごとに対応して設けられ、空燃比セ
ンサが全気筒に共通に設けられ、燃料噴射弁における燃
料噴射量が、空燃比センサがらのフィードバック信号に
基づいて計算されたフィードバック係数に関係して補正
される電子制御内燃機関の燃′B@射量制御方法におい
て、全気筒の空燃比をフィードバック制御している期間
のフィードバック係数の平均値Faを求め、特許の1つ
の気筒nの空燃比はオープンループ制御して残りの全気
筒の空燃比はフィードバック制御している期間のフィー
ドバック係数の平均値Fbを求め、補正値Knを次式か
らtI算し、−Fb (−(] −Fb/Fa ) ただしCは気筒の総数 特許の1つの気筒nの燃料広射蛍をKnに基づいて計算
することを特徴とする、電子制御内燃機関の燃料噴射量
制御方法。
[Claims] A fuel injection valve is provided correspondingly to each cylinder, an air-fuel ratio sensor is provided commonly to all cylinders, and the fuel injection amount in the fuel injection valve is determined based on a feedback signal from the air-fuel ratio sensor. In the fuel injection amount control method for an electronically controlled internal combustion engine that is corrected in relation to the feedback coefficient calculated by The average value Fb of the feedback coefficient during the period in which the air-fuel ratio of one cylinder n in the patent is under open-loop control and the air-fuel ratio of all remaining cylinders is under feedback control is determined, and the correction value Kn is calculated by tI from the following formula, -Fb (-(] -Fb/Fa) where C is the fuel injection amount control of an electronically controlled internal combustion engine, characterized in that the fuel injection amount of one cylinder n of the total number of cylinders is calculated based on Kn. Method.
JP7930583A 1983-05-09 1983-05-09 Method of controlling fuel injection amount in electronically controlled internal-combustion engine Granted JPS59206619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7930583A JPS59206619A (en) 1983-05-09 1983-05-09 Method of controlling fuel injection amount in electronically controlled internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7930583A JPS59206619A (en) 1983-05-09 1983-05-09 Method of controlling fuel injection amount in electronically controlled internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS59206619A true JPS59206619A (en) 1984-11-22
JPH045819B2 JPH045819B2 (en) 1992-02-03

Family

ID=13686128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7930583A Granted JPS59206619A (en) 1983-05-09 1983-05-09 Method of controlling fuel injection amount in electronically controlled internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS59206619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758049A2 (en) * 1995-08-08 1997-02-12 Hitachi, Ltd. Controller for multi-cylinder engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758049A2 (en) * 1995-08-08 1997-02-12 Hitachi, Ltd. Controller for multi-cylinder engine
US5687699A (en) * 1995-08-08 1997-11-18 Hitachi, Ltd. Controller for multi-cylinder engine
EP0758049A3 (en) * 1995-08-08 1999-02-17 Hitachi, Ltd. Controller for multi-cylinder engine

Also Published As

Publication number Publication date
JPH045819B2 (en) 1992-02-03

Similar Documents

Publication Publication Date Title
US5088318A (en) Determining device for determining a failure in an engine cylinder
JP3498817B2 (en) Exhaust system failure diagnosis device for internal combustion engine
JPS58152147A (en) Air-fuel ratio control method for internal combustion engine
JPH04128535A (en) Electronically controlled fuel injection of internal combustion engine
EP0490392B1 (en) Apparatus for controlling a torque generated by an internal combustion engine
JPH06117291A (en) Air-fuel ratio control device for internal combustion engine
JP3593742B2 (en) Engine combustion control device
EP0160949A2 (en) Method and apparatus for controlling air-fuel ratio in sequential injection type internal combustion engine
JPS59206619A (en) Method of controlling fuel injection amount in electronically controlled internal-combustion engine
JPS6181532A (en) Fuel feed controlling method of multicylinder internal-combustion engine
JPS63124842A (en) Electronic control fuel injection device
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JPH0777145A (en) Engine control device
JPH01110852A (en) Air-fuel ratio controller for internal combustion engine
JP2855383B2 (en) Interrupt injection control device for electronically controlled fuel injection type internal combustion engine
JPH0480226B2 (en)
JPS58152148A (en) Air-fuel ratio control method for internal combustion engine
JPS63159646A (en) Fuel supply controller for internal combustion engine
JP2920262B2 (en) Control device for multi-cylinder internal combustion engine
JPH0429855B2 (en)
JPS61185631A (en) Control unit for engine
JP2581046B2 (en) Fuel injection method for internal combustion engine
JPH0893527A (en) Electronic fuel injection system
JPS63162951A (en) Control method for ignition timing and air-fuel ratio of internal combustion engine
JPH0336142B2 (en)