JPS5920655A - Composite board for low-temperature heat insulation - Google Patents

Composite board for low-temperature heat insulation

Info

Publication number
JPS5920655A
JPS5920655A JP57130849A JP13084982A JPS5920655A JP S5920655 A JPS5920655 A JP S5920655A JP 57130849 A JP57130849 A JP 57130849A JP 13084982 A JP13084982 A JP 13084982A JP S5920655 A JPS5920655 A JP S5920655A
Authority
JP
Japan
Prior art keywords
foam
test
axis
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57130849A
Other languages
Japanese (ja)
Other versions
JPH0346304B2 (en
Inventor
殿川 紘史
康 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP57130849A priority Critical patent/JPS5920655A/en
Publication of JPS5920655A publication Critical patent/JPS5920655A/en
Publication of JPH0346304B2 publication Critical patent/JPH0346304B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ンカーの断熱用として好適な低温断熱用複合板に関する
。その目的は極低温となしても、クラックの発生や、目
地間が拡大せず寸法、形状の安定性が高く、曲面にも添
付けできる低温、断熱用複合板を提案するにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite plate for low-temperature insulation suitable for insulation of a car. The purpose is to propose a low-temperature, heat-insulating composite board that does not develop cracks or expand the joint space even at extremely low temperatures, has high stability in size and shape, and can be attached to curved surfaces.

従来、硬質ポリウレタン発泡体に合板等を積層した複合
板が低温用断熱Uとして用いられていた。ところが−1
00℃以下の極低温となると発泡体が収縮し合板の木目
に沿い目割れを生じ、これが内部の発泡体のクラックを
誘発させ、断熱性の低下をもたらす欠点があった。また
、この欠点を防止する次めに発泡体と合板との間に繊維
層を介装し合板の目割れを防止する提案(実開昭56−
110925号)もある。しかし、この方法によっても
発泡体内部の収縮応力の吸収が不充分で発泡体内のクラ
ック発生を完全に防止することはできない。また、合板
を積層した複合板は曲面とすることが国難で、球形、筒
形等の断熱面を形成できない欠点があった。
Conventionally, a composite board in which plywood or the like is laminated on a hard polyurethane foam has been used as a low-temperature insulation U. However, -1
When the temperature reaches an extremely low temperature of 00°C or lower, the foam shrinks and cracks occur along the grain of the plywood, which induces cracks in the internal foam, resulting in a reduction in heat insulation. In addition, in order to prevent this drawback, a proposal was made to interpose a fiber layer between the foam and the plywood to prevent cracks in the plywood (1983-1998).
110925) is also available. However, even with this method, the absorption of shrinkage stress within the foam is insufficient and it is not possible to completely prevent cracks from occurring within the foam. In addition, it is difficult to form a curved surface of a composite board made by laminating plywood, and there is a drawback that it is not possible to form a heat-insulating surface in a spherical or cylindrical shape.

この発明鉱上記問題点に着目してなされたものであシ、
その要旨は硬質合成樹脂発泡体の少なくとも片表面に接
着剤を介し薄層体を積層一体化して構成してなシ、該発
泡体は密度が65〜i 00 Kf/m’、厚さ方向を
Y軸、巾、長さ方向をX、z軸としたときY軸方向の水
蒸気透過率PV≦1.5 [11An” −hr〕、X
軸、Y軸方向の破断伸び率EZ 、 Ey  が60≧
Era≧8.6o≧El≧8(チ)の発泡体層が設けで
ある低温断熱用複合板である。
This invention was made by focusing on the above-mentioned problems.
The gist of this is that a thin layer is integrally laminated on at least one surface of a hard synthetic resin foam via an adhesive, and the foam has a density of 65 to i00 Kf/m' in the thickness direction. When the Y-axis, width, and length directions are the X and Z axes, the water vapor permeability in the Y-axis direction PV≦1.5 [11An” -hr], X
The elongation at break in the axial and Y-axis directions EZ, Ey is 60≧
This is a composite plate for low-temperature heat insulation provided with a foam layer satisfying Era≧8.6o≧El≧8 (H).

この複合板は硬質合成樹脂発泡体を断熱層とするが、巾
、長さ方向の伸度が8〜60%の高伸度の発泡体層を設
は積層板となして極低温となしても、その収縮応力は高
伸度発泡体層内で吸収緩和しクラックが発生しないし、
その収縮は積層した薄層体の収縮能に拘束されて低減し
被断熱体の線膨張係数に近づくため敷設したc合目地が
開き難く、欠陥がない断熱層を形成できる。薄層体とし
て反応型合成樹脂(例えばウレタン系2液屋接着剤ンを
発泡体に塗付して、押圧又は挾持状態で成形、硬化を行
うならば、円筒形1球面形等の曲面にも成形でき、硬化
した合成樹脂層の剛性も加わって、保形性も優れている
ので、曲面の断熱が容易かつ確実となる。
This composite board uses a hard synthetic resin foam as a heat insulating layer, but a high elongation foam layer with an elongation of 8 to 60% in the width and length directions is used as a laminated board at extremely low temperatures. However, the shrinkage stress is absorbed and relaxed within the high elongation foam layer and no cracks occur.
The shrinkage is restricted by the shrinkage ability of the laminated thin layer bodies and is reduced, approaching the coefficient of linear expansion of the body to be insulated, so that the laid C-joints are difficult to open and a heat insulating layer without defects can be formed. If a reactive synthetic resin (for example, a urethane-based two-component adhesive) is applied to a foam as a thin layer and molded and cured under pressure or clamping, it can be applied to curved surfaces such as cylindrical and spherical shapes. It can be molded, and in addition to the rigidity of the cured synthetic resin layer, it also has excellent shape retention, making it easy and reliable to insulate curved surfaces.

また同時に軽量であpながら圧縮強度が高く取付施工性
が優れ、クリープ抵抗が高く長期高荷重の負荷に耐える
ことができるので、特にLNGタンク底部や側壁等大面
積の断熱層形成に好適である。
At the same time, it is lightweight, has high compressive strength, has excellent installation workability, has high creep resistance, and can withstand long-term high loads, so it is particularly suitable for forming heat insulating layers on large areas such as the bottom and side walls of LNG tanks. .

以下、この複合板を図面を用い説明する。This composite plate will be explained below using the drawings.

第1図において、ポリスチレンからなる硬質合成樹脂発
泡体1(以下単に発泡体と略称する)の片表面に薄層体
2が接着剤3を介し積層一体化し低温断熱用複合板4(
以下単に複合板と略称する)が構成されている。
In FIG. 1, a thin layer 2 is laminated and integrated on one surface of a hard synthetic resin foam 1 made of polystyrene (hereinafter simply referred to as foam) via an adhesive 3, and a composite board 4 for low-temperature insulation (
(hereinafter simply referred to as a composite board) is constructed.

第2図においては、発泡体1の両表面に薄層体2.2を
接着剤3,3を介し積層一体化し複合板4が構成されて
いる。
In FIG. 2, a composite plate 4 is constructed by laminating thin layers 2.2 on both surfaces of a foam 1 via adhesives 3, 3.

この2つの複合板4を構成する発泡体1は密度が65〜
100に9/m“、厚み方向をY軸方向とし次場合、こ
れに直交するX、z軸方向の破断伸び率Ee 、 Ex
はそれぞれ、896〜60チの範囲にあシ、Y軸方向の
水蒸気透過率py≦1.51J/m”・hr〕、でなく
てはならない。密度が35Km/m°未満では低温断熱
用として充分な耐圧縮特性。
The foam 1 constituting these two composite plates 4 has a density of 65~
100 to 9/m", the thickness direction is the Y-axis direction, and the elongation at break in the X- and Z-axis directions perpendicular to this is Ee, Ex
must be in the range of 896 to 60 cm, respectively, and the water vapor permeability in the Y-axis direction py≦1.51 J/m”・hr].If the density is less than 35 Km/m°, it must be used for low-temperature insulation. Sufficient compression resistance.

耐クリープ性、断熱性および耐透湿性をイー1与するこ
とかできない。100 Ky/m@以上は剛性が高くな
l)、Ez、Egを8%以上とすることが円難となる。
It is only possible to provide creep resistance, thermal insulation properties, and moisture permeation resistance. If it is 100 Ky/m or more, the rigidity is high (l), and it becomes difficult to set Ez and Eg to 8% or more.

耐圧縮特性から密度は4o隔へ6以上がよシ好ましい。From the viewpoint of compression resistance, it is preferable that the density be 4 to 6 or more.

水蒸気透過率PVは1.5以下であろう長期的な断熱性
能の維持を重視するならばpyは1.0以下であれば一
層好適である。伸び率E2+。
The water vapor permeability PV will be 1.5 or less.If maintaining long-term heat insulation performance is important, it is more preferable that py be 1.0 or less. Elongation rate E2+.

Egは8〜6096である。8チ未満では低温時の収縮
力の吸収緩和が不充分であり、6ots以上は水蒸気透
過率や発泡体の機械的性能の低下が大きくな少好ましく
ない。通常40%以下の伸び率があればこの発明の目的
を達成できる。薄層体としては、5〜20絹の合板、ガ
ラスIIA維又は合成繊維からなるネット等で補強をさ
れた合成樹脂(0,3〜2 m111 )等が使用でき
、目的に応じ選択される。発泡体と合板の接着剤として
は接着力と低温特性にすぐれるポリウレタン系。
Eg is 8-6096. If it is less than 8 ots, absorption and relaxation of shrinkage force at low temperatures is insufficient, and if it is 6 ots or more, water vapor permeability and mechanical performance of the foam will be greatly reduced, which is not preferable. Generally, the object of the present invention can be achieved if the elongation rate is 40% or less. As the thin layer, 5 to 20 silk plywood, a synthetic resin (0.3 to 2 m111) reinforced with a net made of glass IIA fiber or synthetic fiber, etc. can be used, and the material is selected depending on the purpose. Polyurethane-based adhesives for foam and plywood have excellent adhesive strength and low-temperature properties.

エポキシ系等が用いられ、合成樹脂層も上記系統の発泡
体と接着力を有するものを用いるのがよい。
Epoxy or the like is used, and the synthetic resin layer is preferably one that has adhesive strength with the above-mentioned foams.

この複合板は以上の構成であり、第1図の複合板4を発
泡体1を断熱すべき低温物体に添付け、あるいは@2図
の複合板4を片面の薄層体2を低温物体に添付けて断熱
施工される。複合板には、低温物体側が低温で反対側が
外気温度の温度勾配が生じる。従って低温側と高温側と
の間に収縮差が生じ発泡体1層に歪応力が作用するが、
この歪応力はEx 、 Kgによシ吸収緩和され、発泡
体のクラック発生が防止される。また同時に薄層体との
界面剥離も起らない。
This composite plate has the above-mentioned structure, and the composite plate 4 shown in Fig. 1 can be attached to a low-temperature object to which the foam 1 is to be insulated, or the composite plate 4 shown in Fig. 2 can be attached to a thin layer 2 on one side of the low-temperature object. It is attached and insulated. A temperature gradient occurs in the composite plate, with the low temperature on the cold object side and the outside air temperature on the opposite side. Therefore, a shrinkage difference occurs between the low temperature side and the high temperature side, and strain stress acts on one layer of the foam.
This strain stress is absorbed and relaxed by Ex and Kg, thereby preventing the occurrence of cracks in the foam. At the same time, interfacial peeling with the thin layer does not occur.

この複合板の薄層体2に繊維補強樹脂等を用いる。なら
ば、発泡体のX軸、z軸弁に高い伸び率を有しているた
めに例えば、第1図、第2図の複合板を第3図、#g4
図のごとく断面円弧形の曲面となし、円筒形タンク等の
断熱面が形成できるし、第5図のごとく球殻形の曲面と
なし球形タンク等の断熱面を形成できる。
A fiber-reinforced resin or the like is used for the thin layer body 2 of this composite plate. For example, since the foam has a high elongation rate in the X-axis and Z-axis valves, the composite plate shown in Figs.
As shown in the figure, a curved surface with an arcuate cross section can be used to form a heat insulating surface for a cylindrical tank, etc., and as shown in FIG.

第6図は、片面に補強薄層体2を有し、発泡体層が第1
図の如く一層では、断熱性能が不足する場合、複数層(
発泡体層lα、1b)とした実施態様を示したものであ
る。被断熱体の温度と断熱材の性能および要求される断
熱条件に応じて、発泡層を接着剤で積層一体化して厚い
断熱層を形成できる。接着剤は、低温特性にすぐれた例
えばウレタン系やエポキシ系のものが好ましい。各発泡
体層間には必要に応じ、ガラスM維等メツシュを挿入し
て接着層を補強して使うこともできる。
FIG. 6 shows a structure having a reinforcing laminate 2 on one side and a foam layer on the first side.
As shown in the figure, if the insulation performance is insufficient with one layer, multiple layers (
This figure shows an embodiment in which the foam layer lα, 1b) is used. Depending on the temperature of the object to be insulated, the performance of the insulation material, and the required insulation conditions, a thick insulation layer can be formed by laminating and integrating the foam layers with an adhesive. The adhesive is preferably a urethane-based or epoxy-based adhesive that has excellent low-temperature properties. If necessary, a mesh such as glass M fiber may be inserted between each foam layer to reinforce the adhesive layer.

本発明でいう硬質合成樹脂発泡体とは、ポリスチレン、
メチルメタクリレート6.塩化ビニル等で代表される硬
質合成樹脂を素材とする発泡体をいう。
The hard synthetic resin foam used in the present invention refers to polystyrene,
Methyl methacrylate6. A foam made from a hard synthetic resin such as vinyl chloride.

中でも発泡体そのものに圧縮強度及び長期の耐圧縮クリ
ープ性を要求したいときは、スチレン系樹脂を用い、そ
れを公知の押出発泡方法で発泡した発泡体を用いた方が
有益である。
In particular, when compressive strength and long-term compression creep resistance are required of the foam itself, it is more beneficial to use a foam made by using a styrene resin and foaming it by a known extrusion foaming method.

ポリスチレン系押出発泡体を構成するポリスチレンは、
スチレンを生成分とする樹脂であるが、スチレンの代シ
にα−メチルスチレン、ビニルトルエン、り目ルスチレ
ン等他のスチレン系モノマーであってもよい。
The polystyrene that makes up the extruded polystyrene foam is
Although the resin contains styrene as a product, other styrenic monomers such as α-methylstyrene, vinyltoluene, and ruby styrene may be used instead of styrene.

また上記スチレン系モノマーに共重合可能なモノマー、
例えばアクリロニトリル、メタクリロニトリル、アクリ
ル酸メチル、メタクリル酸メチル、無水マレイン酸、ア
クリルアミド、ビニルピリジン、アクリル酸、メタクリ
ル酸等を共重合したコポリマーが含まれる。
In addition, a monomer copolymerizable with the above styrenic monomer,
Examples include copolymers of acrylonitrile, methacrylonitrile, methyl acrylate, methyl methacrylate, maleic anhydride, acrylamide, vinylpyridine, acrylic acid, methacrylic acid, and the like.

更に上記スチレン系ポリマーにその特性が損われない程
度に他のポリマーをブレンドし次ものも差し支えない。
Furthermore, the following may be used by blending other polymers with the above-mentioned styrenic polymer to the extent that its properties are not impaired.

スチレンを主成分とするポリスチレン系押出発泡体は、
独立気泡に富み、断熱性、透湿抵抗。
Polystyrene extruded foam whose main component is styrene is
Rich in closed cells, insulation and moisture permeation resistance.

圧縮強度、長期耐圧縮クリープにすぐれ、水蒸気透過率
も小さい特徴を有するが一般に破断伸び率は5%以下で
あり、本発明の複合板に用いるためには、Er8.Eg
力方向8〜60チの伸度を付与しなくては、極低温下で
の熱応力を吸収したり、円筒形や球面形状への成形が困
難である。
Although it has excellent compressive strength, long-term compression creep resistance, and low water vapor permeability, the elongation at break is generally 5% or less. Eg
Unless it is given an elongation of 8 to 60 inches in the force direction, it is difficult to absorb thermal stress at extremely low temperatures or to form it into a cylindrical or spherical shape.

本発明の複合板用の断熱板は以下の如く、X軸(長沁方
回)、z軸(rlj方向)に圧縮することによって達成
できる。
The heat insulating board for the composite board of the present invention can be achieved by compressing it in the X axis (Changminfang rotation) and the Z axis (rlj direction) as described below.

第7図に示すごとく2組の」二下対をなす挾持駆動ベル
ト6.7及び8,9との間に、駆動速度差を設け、この
間に発泡体10を送シ込み、その速度差で搬送方向、例
えばX軸方向に圧縮加工を施こす。
As shown in FIG. 7, a drive speed difference is provided between the two pairs of clamp drive belts 6, 7 and 8, 9, and the foam 10 is fed between them. Compression processing is performed in the transport direction, for example, in the X-axis direction.

駆動速度差と加工の回数によp18〜60q6の伸度を
付与できる。同様に2軸方向にも圧縮して大きい伸度の
発泡体を得る。
Elongation of p18 to 60q6 can be imparted depending on the drive speed difference and the number of processing. Similarly, the foam is compressed in two axial directions to obtain a foam with high elongation.

この伸度によシ、低温下における発泡層中に発生する熱
歪の吸収と被断熱体の形状にそって円筒又は球面形状に
抑圧成形が可能となる。
This elongation makes it possible to absorb thermal strain generated in the foam layer at low temperatures and to suppress molding into a cylindrical or spherical shape along the shape of the object to be insulated.

この複合板(第1及び2図)を円筒形あるいは、球形の
複合板として使用する場合の加工手段につき以下に記載
する。
Processing means for using this composite plate (FIGS. 1 and 2) as a cylindrical or spherical composite plate will be described below.

薄層体として、発泡体との接着性にすぐれ低温の機械的
特性のすぐれた反応型合成樹脂をガラス繊維メツシ二で
補強したものを選択する。
The thin layer is selected from a reactive synthetic resin that has excellent adhesion to the foam and excellent mechanical properties at low temperatures, reinforced with glass fiber mesh.

第7図の装置で抑圧加工した発泡体(条件例示;ポリス
チレン系)にウレタン系2液型接着剤を全面に塗付し次
いで、補強層を置き、その上から同様の接着剤を塗付し
て上記補強層を埋め、この補強接着層が未硬化の状態で
、複合板を被断熱体の曲率と同様の曲率の円筒あるいは
球面形の型表面に押圧あるいは挾持して60〜90℃好
ましくは70℃〜80℃に加熱した条件で合成樹脂を硬
化完了させた後冷却して脱型する。
A urethane-based two-component adhesive is applied to the entire surface of the foam (example of conditions; polystyrene type) that has been subjected to compression processing using the apparatus shown in Figure 7. Next, a reinforcing layer is placed, and the same adhesive is applied over it. The reinforcing layer is filled with the reinforcing layer, and while the reinforcing adhesive layer is uncured, the composite board is pressed or clamped onto a cylindrical or spherical mold surface having a curvature similar to that of the heat-insulating body, and heated at preferably 60 to 90°C. After curing the synthetic resin under heating conditions of 70° C. to 80° C., it is cooled and demolded.

合成樹脂層の硬化条件によっては、これを冷間で行ない
曲面形成することもできる。しかし60〜90℃に加熱
する方が硬化時間も短かく、発泡体の曲げ歪の緩和も完
全に行われ、よシ好適である。
Depending on the curing conditions of the synthetic resin layer, this can be performed cold to form a curved surface. However, heating at 60 to 90° C. is more suitable because the curing time is shorter and the bending strain of the foam is completely relaxed.

本発明でいう各特性の測定方法及び評価は、以下のよう
にし”〔行った。
The measurement method and evaluation of each characteristic in the present invention were carried out as follows.

(1)  密度:(Kt/m”) 発泡体から5 an x 5 cm x 5 cmの立
方体を採取し、1董り1体積(1から界出し、5個の平
均値を密度(Kf/m”)とする。
(1) Density: (Kt/m") A cube of 5 an x 5 cm x 5 cm was taken from the foam, and one volume of one cube was determined from 1, and the average value of the five pieces was calculated as the density (Kf/m"). ”).

(2)  圧縮強度:(”t/etA)密度を測定した
5 crn x 5 cm x 5 cmの試験片の厚
さ方向(Y軸方向)で、ASTM D1621  に基
づき圧縮強度を測定し5個の平均値で表す。
(2) Compressive strength: ("t/etA) The compressive strength was measured based on ASTM D1621 in the thickness direction (Y-axis direction) of the 5 crn x 5 cm x 5 cm test piece whose density was measured. Expressed as an average value.

圧縮歪率は5%とする。但し5チ以内に降伏現象が発生
する場合は、降伏値を圧縮強度とし、以下の基準で評価
する。
The compression strain rate is 5%. However, if a yield phenomenon occurs within 5 inches, the yield value is taken as the compressive strength and evaluated according to the following criteria.

(3)  破断伸び率(イ) 引張強度測定法、ASTM 01625 B法に基づき
指定の方向(X、及び2)に、試験片を引張シ、破断し
た時の歪量(伸びり!瘤を測定し以下の式で計算し評価
する。
(3) Elongation at break (a) Tensile strength measurement method, based on ASTM 01625 B method, tensile the test piece in the specified directions (X and 2), and measure the amount of strain (elongation! bumps) when it breaks. Calculate and evaluate using the following formula.

試験片は各方向毎に合*1−5個を採取。Collect 1-5 test pieces in each direction.

試験片; 50 m x 50 srr x 50 m
(4) 水蒸気透過率* WVT R(1/m” ・h
 r )25111X80φの試験片6ケを採取し、A
STMC355に準じで測定する。25mm厚さでのW
VTRは次式で計算する。但し蒸留水を用いる方法で行
う。
Test piece; 50 m x 50 srr x 50 m
(4) Water vapor transmission rate * WVT R (1/m”・h
r) Take 6 test pieces of 25111 x 80φ, and
Measure according to STMC355. W at 25mm thickness
VTR is calculated using the following formula. However, it is carried out using a method using distilled water.

WvTR(1/rn” ・hr〕=− −t a:Xik変化凹 t:tt    Gの生じた時間巾(hr )へ朋面f
it(m”) (5)熱伝導率の経時変化率 第8図に示すように抑圧加工した製品を上部より厚さ2
51+1.中200間、長さ200flの試験片を採取
し、第9図に示す装置を用いて測定する。
WvTR (1/rn" ・hr) = - -t a: Xik change concavity t: tt
it (m”) (5) Rate of change in thermal conductivity over time As shown in Figure 8, the suppressed product is
51+1. A test piece with a length of 200 fl is taken during the middle 200 minutes and measured using the apparatus shown in FIG.

断熱材12で囲んた温度vM節機13を備えた容器11
に27℃の水14を入れ、該容器の開口部側を、前記の
試料片15により、パツキン16 t−介L テM塞す
る。この際、試料片の下面と容器内の水面との間鉱約3
0鴎の距離を設けるように配置する。また、試験片15
の上面は、循環水口17及び18から循環される冷却水
によって2℃に冷却されている冷却板19に密着してい
る。このような状態を保って14日間放置したのち、試
料片の表面をガーゼで軽くふきとシ、ASTM C51
8に従ってこのものの熱伝導率λ′を測定し、あらかじ
め試験前に同じ条件下で測定した熱伝導率λとの変化の
割合λ′/λを求め、次表に従つ゛て評(6)  パネ
ル極低温抵抗性 5011m1X300111X3001111の試験板
を採少、上゛下面を切削仕上後、第10図のようにX軸
A container 11 equipped with a temperature vM moderator 13 surrounded by a heat insulating material 12
Water 14 at 27° C. is poured into the container, and the opening side of the container is sealed with the sample piece 15 described above. At this time, the distance between the bottom surface of the sample piece and the water surface in the container is approximately 3
Arrange them so that there is a distance of 0. In addition, test piece 15
The upper surface of the cooling plate 19 is in close contact with a cooling plate 19 which is cooled to 2° C. by cooling water circulated from circulating water ports 17 and 18. After leaving this condition for 14 days, wipe the surface of the sample piece with gauze and clean it according to ASTM C51.
Measure the thermal conductivity λ' of this material according to 8, calculate the rate of change λ'/λ from the thermal conductivity λ measured under the same conditions before the test, and evaluate it according to the following table (6). A test plate with cryogenic resistance of 5011 m1 x 300111 x 3001111 was taken, and after cutting and finishing the top and bottom surfaces, the X-axis was cut as shown in Figure 10.

z軸方向を明示した試験発泡体21上下面に12鴎×3
00絹×300鰭の合板(JAS規格品)23゜24を
ポリウレタン系2液型極低温用接着剤(住友ベークライ
ト社製:スミタツクEA90177)22で接着し24
時間×23℃の条件で0.5 Kfi肩の加圧下で熟成
硬化させて、試験用ノくネル20とし、6枚を製作、試
験する。
12 seaweeds x 3 on the upper and lower surfaces of the test foam 21 with the z-axis direction clearly specified
Glue 00 silk x 300 fin plywood (JAS standard product) 23° 24 with polyurethane two-component cryogenic adhesive (manufactured by Sumitomo Bakelite Co., Ltd.: Sumitaku EA90177) 22.
It was aged and hardened under a pressure of 0.5 Kfi shoulder at 23° C. to prepare test nonel 20, and six pieces were manufactured and tested.

1)極低温ニー160℃テスト 第11図に示すように上記試験用パネル20を一り60
℃±5℃に内部を温調した極低温槽25の中に急激に入
れ、5時間放置後常温に急激に取ル出し1時間放置する
。この操作を繰返し、4回行い、4回目に極低温槽25
から試験パネル20を取シ出した直後試験発泡板21の
4つの面を観察しクラックの有無と発生した方向を確認
する。1時間後に合板23,24、試験発泡板21の境
界面にそって1コ歯型スライサーでスライスし、更に試
験発泡板21の内部に同って約10*lI厚さで5分割
したスライスサンプルを調整し、各々のスライスサンプ
ル面に界面活性剤と着色用インクを混合した水を臆付し
、サンプル表面のクラックの有無と方向を調査記録する
1) Cryogenic knee 160°C test As shown in FIG.
It is rapidly placed into a cryogenic chamber 25 whose internal temperature is controlled to ±5°C, and after being left for 5 hours, it is quickly taken out to room temperature and left to stand for 1 hour. This operation is repeated 4 times, and the cryogenic chamber 25 is heated for the fourth time.
Immediately after removing the test panel 20 from the test foam board 21, the four sides of the test foam board 21 are observed to confirm the presence or absence of cracks and the direction in which they have occurred. After 1 hour, a slice sample was sliced along the interface between the plywood boards 23 and 24 and the test foam board 21 using a single-tooth slicer, and was further divided into 5 slices with a thickness of about 10*lI inside the test foam board 21. Then, apply water mixed with a surfactant and coloring ink to the surface of each slice sample, and record the presence or absence and direction of cracks on the sample surface.

なお、極低温4v!25内の温度コントロールは、液体
窒素ボンベ26から液体窒素配v27を介して槽内頂部
の噴出ノズル29に導き、ここで有孔ジャマ板30に接
触しながら気化し、ガスは排出口32から出て槽内の温
度を下げる。液体窒素は槽内の温度耐31とタイマーを
連動させたコントロール装置によシ流量自動詞節介詔の
開閉で液体窺累流量が調節される。
In addition, extremely low temperature 4V! The temperature inside the tank 25 is controlled by guiding the gas from the liquid nitrogen cylinder 26 through the liquid nitrogen distribution pipe 27 to the jet nozzle 29 at the top of the tank, where it is vaporized while coming into contact with the perforated baffle plate 30, and the gas is discharged from the exhaust port 32. to lower the temperature inside the tank. The cumulative flow rate of the liquid nitrogen is adjusted by opening and closing the flow rate intransitive clause by a control device that interlocks the temperature resistance 31 in the tank and a timer.

2)極低温ニー196℃テスト W112図に示すように、上記の試験用パネル20を断
熱材33で密閉され次液体窒素浸漬装[34で試験する
2) Cryogenic knee 196°C test W112 As shown in Figure 112, the above test panel 20 is sealed with a heat insulating material 33 and then tested in a liquid nitrogen immersion device [34].

ステンレス製の深底トレー35に液体窒236を液体窒
素ボンベから直接、液体窒素配管27と液体窒素導入弁
37を介して導入後、上記試験用パネル20を急激に液
体窒素36内に充分浸漬するように入れ、鉄製ザボート
39の上にあらかじめ液体窒素中で冷却済の鉄製i錘3
8をのせ、30分間連続浸漬した後、上記試験パネル2
0をふん囲気中に取p出し、通風しながら1時間放置す
る。この操作を4回行い、極低温−160℃のテストで
行ったと同様の装置と方法で発泡体外面、内面のクラッ
クの有無と方向を調査記録する。
After introducing liquid nitrogen 236 directly from the liquid nitrogen cylinder into the stainless steel deep-bottom tray 35 via the liquid nitrogen piping 27 and liquid nitrogen introduction valve 37, the test panel 20 is rapidly and sufficiently immersed in the liquid nitrogen 36. Place the iron weight 3, which has been cooled in liquid nitrogen in advance, on the iron sabot 39.
8, and after continuous immersion for 30 minutes, the above test panel 2
0 into an atmosphere and leave it for 1 hour with ventilation. This operation was repeated four times, and the existence and direction of cracks on the outer and inner surfaces of the foam were investigated and recorded using the same equipment and method as in the cryogenic -160°C test.

各々のテスト温度条件について、3ケの試験パネルの調
査記録の結果をもとに以下の基準に従って評価する。
Each test temperature condition will be evaluated according to the following criteria based on the results of the investigation records of the three test panels.

(7)  耐クリープ性 試験発泡体から50ynx50*mx50tmの試験片
を8ケ採取する。その中から5ケを選び、厚さ方向(Y
軸)の圧縮強度t−AsTM D 1621に従って測
定し、平均圧縮強度(Kv/CI/l)を求めこれをσ
、とする。残った3ケをクリープ測定用試験片45とし
、第16図に示すように厚さ方向の上下面に厚さ5闘の
合板41 、42を接着剤43 、44を介して加圧接
着硬化したものをクリーク゛演IJ定用複合体40とす
る。クリープ1fflJ定用試験バ45の厚さ方向(Y
軸)の厚さを正確に17100111の単位まで計測し
この寸法をTOとする。
(7) Creep resistance test Eight test pieces of 50ynx50*mx50tm were taken from the foam. Select 5 from among them and
Compressive strength t-axis) is measured in accordance with AsTM D 1621, and the average compressive strength (Kv/CI/l) is determined and calculated as σ
, and so on. The remaining three specimens were used as test specimens 45 for creep measurement, and as shown in FIG. 16, plywood sheets 41 and 42 with a thickness of 5mm were bonded and cured by pressure on the upper and lower surfaces in the thickness direction via adhesives 43 and 44. Let it be a clique performance IJ regular complex 40. Creep 1fflJ regular test bar 45 thickness direction (Y
The thickness of the shaft (shaft) is accurately measured to the unit of 17100111, and this dimension is defined as TO.

第14図に示すようにクリーン゛測定用複合体40をク
リープ測定装置46の重錘架台48と装置架台50の間
に静かにセットし、次いで上鱈己で求めたσ 平均圧縮強度 Cの1/3の値’V3 ;6λら求めら
れる5 x 5 x ’必Ktから重錘架台48の重量
Wlを差引いた重fiV/l(W2e= 25 x’c
AWl)を衝撃を与えぬように静かに載荷する。載荷直
後に夕゛イヤルゲージ47の目盛をゼロにセットする。
As shown in FIG. 14, the clean measurement complex 40 is gently set between the weight mount 48 of the creep measurement device 46 and the device mount 50, and then the average compressive strength C is 1 as determined by the /3 value 'V3; Weight fiV/l (W2e = 25 x'c
AWl) gently to avoid shock. Immediately after loading, the scale of the dial gauge 47 is set to zero.

23’Cx 1000時間経過後の夕°イヤルゲージ4
7の目盛T1すなわち1000時間のクリープ量(al
l)をl/100  j1ml単位で読み取υ、以下の
式に従ってクリープ量(チ)を求め、下B己の基準で耐
クリープ性を評価する。
23'Cx Evening degree after 1000 hours ear gauge 4
7 scale T1, that is, the amount of creep for 1000 hours (al
1) is read in units of 1/100 ml, the creep amount (chi) is determined according to the following formula, and the creep resistance is evaluated using the following criteria.

クリープ量(%)=−1−・100 T。Creep amount (%) = -1-・100 T.

実施例、比較製1 密度が35〜1ooKt/77L′s厚さ100111
1のポリスチレン押出発泡板(旭ダウ四社製;スタイロ
アオーム[株])及びポリ塩化ビニル発泡板を第7図に
示す抑圧装置で本文記載の製造方法に準じて、初めにX
軸方向(長さ方向ン次いで、Z軸方向(巾方向)に抑圧
加工した。この際第3表に示す抑圧加工条件の中、圧縮
率とカロエ回数のみを適宜選択し、他は同一条件で行い
、高伸度を有する発泡板を作成した。(実験陽1〜14
)比較のために、密度が28〜100 K17m”のポ
リスチレン押出発泡板(旭ダウ■社製;スタイロアオー
ム■)並びにポリ塩化ビニル発泡板の未加工のもの及び
X軸方向のみ加工したもの、X、z軸弁に加工したもの
も作成し念。
Example, comparative product 1 Density is 35-1ooKt/77L's Thickness 100111
A polystyrene extruded foam board (manufactured by Asahi Dow Shisha Co., Ltd.; Styro Ohm Co., Ltd.) and a polyvinyl chloride foam board were first subjected to
Suppression processing was carried out in the axial direction (length direction) and then in the Z-axis direction (width direction). At this time, only the compression ratio and number of caroes were selected as appropriate among the suppression processing conditions shown in Table 3, and the other conditions were the same. (Experiments 1 to 14).
) For comparison, extruded polystyrene foam boards with densities of 28 to 100 K17 m'' (manufactured by Asahi Dow ■; Styro Ohm ■) and unprocessed polyvinyl chloride foam boards and those processed only in the X-axis direction were used. I also made a machined version of the X and Z axis valves.

各々の発泡体について、本文記載の方法で、密度X軸及
びzIIl]方向の破断伸び率、Y軸方向の水蒸気透過
率、熱伝導率の経時変化及び極低温抵抗性(−160℃
)に着目し、本文記載の方法と基準で評価し、各々の結
果とそれらを総合評価した結果を11表に示した。総合
評価の基準は以下で行った。
For each foam, the elongation at break in the density
), the results were evaluated using the methods and criteria described in the text, and Table 11 shows the results of each and the comprehensive evaluation of the results. The criteria for comprehensive evaluation were as follows.

◎;すべての特性が○印のもの(最高水準を満たすもの
) ○;Δ印はあるが、O印が多いもの (本発明の目的を満たすもの) ×;×印が1つでもあるもの(目的を達しないもの) 181表の結果によるとLNGタンク等の低温断熱用発
泡体は、硬質合成樹脂発泡体で密度が35〜100Kr
/7FL’、X軸、2軸方向(DME断伸び率が8〜6
0%、Y軸方向の水蒸気透過率が1.5# /m@・h
r以下でなければならないことがわかる。
◎: All characteristics are marked with ○ (satisfying the highest standards) ○: There are Δ marks, but many O marks (satisfying the purpose of the present invention) ×: Those with at least one × mark ( According to the results in Table 181, low-temperature insulation foams for LNG tanks, etc. are hard synthetic resin foams with a density of 35 to 100 Kr.
/7FL', X axis, biaxial direction (DME breaking elongation rate is 8 to 6
0%, water vapor transmission rate in Y-axis direction is 1.5#/m@・h
It can be seen that it must be less than or equal to r.

実施例、比較例2 この対比は、極低温下で高荷重の負荷が長期に渉ってか
かる場合の用途、例えばLNG地下タンク内側断熱材の
具備すべき特性を究明するという観点からなされた実験
例である。即ち、密度が35〜100Kf/maセルザ
イズ0.6〜0.11111厚さ100關のポリスチレ
ン押出発泡板(旭ダウ■社製;スタイロフオーノ・■)
を第7図に示す抑圧装置で本文記載の製造方法に準じて
、初めにX軸方向(長さ方向)次いでz軸方向(巾方向
)に抑圧加工し次。この際、IJc3表に示す抑圧加工
条件の中圧縮率と加工回数のみを適宜選択し、他は同一
条件で行い、密度、圧縮強度。
Example, Comparative Example 2 This comparison was conducted from the viewpoint of investigating the characteristics that should be provided for the insulation material inside an LNG underground tank, for example, in applications where high loads are applied for a long period of time at extremely low temperatures. This is an example. That is, an extruded polystyrene foam board with a density of 35 to 100 Kf/ma, a cell size of 0.6 to 0.11111, and a thickness of 100 mm (manufactured by Asahi Dow ■; Stylofono ■)
was first compressed in the X-axis direction (length direction) and then in the Z-axis direction (width direction) using the suppression device shown in FIG. 7 according to the manufacturing method described in the text. At this time, only the medium compression ratio and the number of processing times of the suppression processing conditions shown in Table IJc3 were selected as appropriate, and the other conditions were the same, and the density and compressive strength were determined.

破断伸び率、水蒸気透過率、熱伝導率の経時変化率、パ
ネル極低温抵抗性、耐クリープ性等の評価を行うための
素材を作成した。(実験Na15〜28) 比較のために、密・度が28〜100 Ktt/m”の
ポリスチレン押出発泡板(旭ダウ■;スタイロアオーム
■)の未加工のもの及びXll11方向のみ加工したも
の、X、z軸弁に加工したものも製造した。又発泡体素
材の比較のため、市販のポリスチレンビーズ発泡板、ポ
リ塩化ビニル押出発泡板及び成型板(厚さ: 2 Q 
m )ポリメチルメタクリル酸押出発泡板(旭ダウ■試
作品;厚さ20u)の加工したものとしないもの及び一
般用硬質ポリウレタン(N1147)  LNG地下タ
ンク断熱材料として処方された半硬質ポリウレタン(直
48〜50)を加えて評価材料とした。
Materials were created to evaluate elongation at break, water vapor permeability, rate of change in thermal conductivity over time, panel cryogenic resistance, creep resistance, etc. (Experiment Na15-28) For comparison, unprocessed extruded polystyrene foam boards (Asahi Dow ■; Styro Ohm ■) with a density and degree of 28 to 100 Ktt/m" and those processed only in the Xll11 direction, We also manufactured products processed into X- and Z-axis valves.For comparison of foam materials, commercially available polystyrene bead foam boards, polyvinyl chloride extrusion foam boards, and molded boards (thickness: 2Q) were also manufactured.
m) Polymethyl methacrylic acid extruded foam board (Asahi Dow prototype; thickness 20u) with and without processing and general-purpose rigid polyurethane (N1147) Semi-rigid polyurethane formulated as LNG underground tank insulation material (straight 48 mm) ~50) were added to serve as evaluation materials.

各々の発泡体にりいで、本文記載の方法で、密度X軸及
びz軸方向の破断伸び率、Y軸方向の水蒸気透過率、熱
伝導率の経時変化、Y軸方向の圧廊強度と耐クリープ性
、及び極低温抵抗性<−1<50℃と一196℃)に着
目し、本文記載の方法と基準で評価し、各々の結果とそ
れらを総合評価した結果を第2表に示した。総合評価の
基準は、以下で行つIF:、。
Using the methods described in the text, we measured the density, water vapor permeability, and thermal conductivity over time in the X-axis and Z-axis directions, as well as the gallery strength and durability in the Y-axis direction, for each foam. Focusing on creep property and cryogenic resistance (<-1<50°C and -196°C), evaluations were made using the methods and criteria described in the text, and the results for each and the comprehensive evaluation are shown in Table 2. . The criteria for comprehensive evaluation are as follows: IF:.

◎:すべ°Cの特性が○印のもの(最高水準を満たすも
の) 0;Δ印はあるが、Q印の多いもの (本発明の目的を満たすもの) ×;×印が1つでもあるもの(目的を達しないものン 第2表の結果によると、本発明のLNG等のタンクの内
側断熱材用とする目的を満たす発泡体は、ポリスチレン
系押出発泡体で密度が35〜100 (Kf/m’)、
X軸、z@方同の破断伸び率が8〜60チ、Y軸方向の
水蒸気透過率が1.5(17m−五r〕以下でなければ
ならないことが判る。
◎: All °C characteristics are marked with ○ (satisfied with the highest standards) 0: There are Δ marks but many Q marks (satisfies the purpose of the present invention) ×; There is at least one × mark According to the results in Table 2, the foam that satisfies the purpose of being used as an internal insulation material for tanks such as LNG according to the present invention is extruded polystyrene foam with a density of 35 to 100 (Kf). /m'),
It can be seen that the elongation at break in the X-axis and z@ directions must be 8 to 60 inches, and the water vapor permeability in the Y-axis direction must be 1.5 (17 m-5 r) or less.

更にLNG地下タンクの断熱材としての機能を高め、−
196℃の液体窒素の保冷材として考え他の特性も最高
水準にある本発明の発泡体では、密度が40〜100 
(Kf/rIL’) 、  X軸及びz軸方向の破断伸
び率Ez、Egが12〜40チ、Y軸方向の水蒸気透過
率が1.0 [117m−ルr]以下でなけれはならな
いことが判る。
Furthermore, the function as a heat insulating material for LNG underground tanks is improved, and -
The foam of the present invention, which is considered as a cold insulator for liquid nitrogen at 196°C and has other properties at the highest level, has a density of 40 to 100.
(Kf/rIL'), the elongation at break Ez and Eg in the X-axis and z-axis directions must be 12 to 40 inches, and the water vapor permeability in the Y-axis direction must be 1.0 [117 m-r] or less. I understand.

ts6表 加  工  条 件 力l工までのエージング日数     :1日加工厚さ
             :100jl11加工速度
(入口ベルト)       : 12 m/By(3
圧縮率(出入口ベルト速度比)    :1.05〜1
.33抑圧距離(人、出口ベルト軸間距離):200m
抑圧固定時間            =6.6秒加工
回l11.:1〜3回
ts6 surface machining conditions Aging days until machining: 1 day Processing thickness: 100jl11 Machining speed (entrance belt): 12 m/By (3
Compression ratio (inlet/outlet belt speed ratio): 1.05~1
.. 33 Suppression distance (person, distance between exit belt axes): 200m
Suppression fixing time = 6.6 seconds Machining times l11. :1 to 3 times

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれこの発明になる複合板の断面
図、第3図、第4図はそれぞれ第1図、第2図の複合板
を円筒形状に曲げ加工した状態の斜視図、第5図は第1
図の複合板を球面形状に曲げ加工した状態の斜視図、第
6図は第1図の複合板において、断熱材の厚みを要求さ
れる場合、断熱層を複数層に形成した実施態様を示す断
面図、第7図は発泡体を圧縮し高い伸び率を付与する状
態を示す模式図、#I8図は熱伝導率の経時変化率測定
のためのサンプリング位置と寸法を示す図、#J9図は
熱伝導率の経時変化特性を評価する之めの加速吸湿させ
るための装置の原理図、第10図は極低温抵抗性評価用
パネルを示す図、第11図と第12図はパネルでの極低
温抵抗性を評価J−るための装置の原理図で、第11図
はマイナス160℃のふん囲気でのテスト装置用、第1
2図は液体窒素中への浸漬テスト装置を示す模式図、第
16図はクリープ量を測定するための複合体を示す図、
第14図はクリープ測定装置を示す模式図である。 l・・・・・・発泡体、2・・・・・・薄層体、3・・
・・・・接着剤、4.4′・・・・・・複合板、5・・
・・・・補強繊#&層、6,7゜8.9・・・・・・挾
持駆動ベルト、IO・・・・・・発泡体、11・・・・
・・容器、12・・・・・・断熱材、13・・・・・・
温度調節器、14・・・・・・水、15・・・・・・試
験片、16・・・・・・パツキン、17゜工8・・・・
・・循環水出入口、19・・・・・・冷却板、20・・
・・・・極低温、抵抗性試験パネル、21・・・・・・
試験発泡体、22・・・・・・ウレタン系極低温用接着
剤、23 、24・・・・・・合板、25・・・・・・
極低温槽、26・・・・・・液体窒素ボンベ、27・・
・・・・液体窒素配管、28・・・・・・液体窒素流量
自動調節弁、29・・・・・・液体窒素噴出ノズル、3
0・・・・・・有孔ジャマ板、31・・・・・・温度1
t、32・・・・・・窒素ガス排出口、33・・・・・
・断熱材、34・・・・・・液体窒素浸漬試験装置、3
5・・・・・・深底トレイ、36・・・・・・液体窒素
、37・・・・・・液体窒素導入弁、38・・・・・・
鉄製重錘、39・・・・・・鉄製サポート、40・・・
・・・クリープ測定用複合体、41 、42・・・・・
・合板、43 、44・・・・・・接着剤、45・・・
・・・クリープ測定用試験片、46・・・・・・クリー
プ測定装置、47・・・・・・ダイヤルゲージ、48・
・・・・・重錘架台、49・・・重錘、50・・・・・
・クリープ測定装R架台。 第1図 第5図 乙 第 7 図 第8図 第9図 第10図 第11図 2日 第 12  図 第13図 n 第14図
1 and 2 are sectional views of the composite plate according to the present invention, and FIGS. 3 and 4 are perspective views of the composite plate of FIGS. 1 and 2 bent into a cylindrical shape, respectively, Figure 5 is the first
FIG. 6 is a perspective view of the composite plate shown in the figure after being bent into a spherical shape. FIG. 6 shows an embodiment in which the composite plate shown in FIG. Cross-sectional view, Figure 7 is a schematic diagram showing the state in which the foam is compressed and given a high elongation rate, Figure #I8 is a diagram showing the sampling position and dimensions for measuring the rate of change in thermal conductivity over time, Figure #J9 is a diagram of the principle of the device for accelerated moisture absorption for evaluating the temporal change characteristics of thermal conductivity, Figure 10 is a diagram showing a panel for evaluating cryogenic resistance, and Figures 11 and 12 are diagrams of the panel. This is a principle diagram of the equipment for evaluating cryogenic resistance.
Figure 2 is a schematic diagram showing a test device immersed in liquid nitrogen, Figure 16 is a diagram showing a complex for measuring the amount of creep,
FIG. 14 is a schematic diagram showing a creep measuring device. l...foam, 2...thin layer, 3...
...Adhesive, 4.4'...Composite board, 5...
...Reinforcement fiber #&layer, 6,7゜8.9...Pinch drive belt, IO...Foam, 11...
...Container, 12...Insulation material, 13...
Temperature regulator, 14...Water, 15...Test piece, 16...Packing, 17° work 8...
...Circulating water inlet/outlet, 19...Cooling plate, 20...
...Cryogenic temperature, resistance test panel, 21...
Test foam, 22... Urethane cryogenic adhesive, 23, 24... Plywood, 25...
Cryogenic chamber, 26...Liquid nitrogen cylinder, 27...
...Liquid nitrogen piping, 28...Liquid nitrogen flow rate automatic control valve, 29...Liquid nitrogen jet nozzle, 3
0...Perforated jammer plate, 31...Temperature 1
t, 32...Nitrogen gas discharge port, 33...
・Insulating material, 34...Liquid nitrogen immersion test device, 3
5...Deep tray, 36...Liquid nitrogen, 37...Liquid nitrogen introduction valve, 38...
Iron weight, 39... Iron support, 40...
... Creep measurement complex, 41, 42...
・Plywood, 43, 44...Adhesive, 45...
...Test piece for creep measurement, 46...Creep measuring device, 47...Dial gauge, 48...
... Weight mount, 49 ... Weight, 50 ...
・Creep measuring device R mount. Figure 1 Figure 5 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 2 Day 12 Figure 13 Figure n Figure 14

Claims (1)

【特許請求の範囲】 (1ン  硬質合成樹脂発泡体の少なくとも片表面に接
着剤を介し薄層体を積層一体化して構成されてなル、該
発泡体は密度が65〜100 Kt/mへ厚さ方向をY
軸、’l’?長さ方向をX、z軸としたときY軸方向の
水蒸気透過率py≦1.5〔1m”・Ar)、X軸、2
軸方向の破断伸び率Ex。 Egが60≧Eπ≧8.60≧Eg≧8(鈎の発泡体層
が設けであることを特徴とする低温断熱用複合板。
[Claims] (1) A thin layer is integrally laminated on at least one surface of a hard synthetic resin foam with an adhesive, and the foam has a density of 65 to 100 Kt/m. Thickness direction is Y
Axis, 'l'? When the length direction is the X and Z axes, the water vapor permeability in the Y-axis direction py≦1.5 [1m”・Ar), X-axis, 2
Axial elongation at break Ex. A composite board for low-temperature insulation, characterized in that Eg is 60≧Eπ≧8.60≧Eg≧8 (a hook foam layer is provided).
JP57130849A 1982-07-27 1982-07-27 Composite board for low-temperature heat insulation Granted JPS5920655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57130849A JPS5920655A (en) 1982-07-27 1982-07-27 Composite board for low-temperature heat insulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130849A JPS5920655A (en) 1982-07-27 1982-07-27 Composite board for low-temperature heat insulation

Publications (2)

Publication Number Publication Date
JPS5920655A true JPS5920655A (en) 1984-02-02
JPH0346304B2 JPH0346304B2 (en) 1991-07-15

Family

ID=15044124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130849A Granted JPS5920655A (en) 1982-07-27 1982-07-27 Composite board for low-temperature heat insulation

Country Status (1)

Country Link
JP (1) JPS5920655A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223343A (en) * 1989-12-11 1991-10-02 Toray Ind Inc Fiber-reinforced foam and its production
JP2012132519A (en) * 2010-12-22 2012-07-12 Dow Kakoh Kk Pipe cover for pipe embedded in ground

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912838A (en) * 1982-07-13 1984-01-23 ダウ化工株式会社 Composite board for low-temperature heat insulation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912838A (en) * 1982-07-13 1984-01-23 ダウ化工株式会社 Composite board for low-temperature heat insulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223343A (en) * 1989-12-11 1991-10-02 Toray Ind Inc Fiber-reinforced foam and its production
JP2012132519A (en) * 2010-12-22 2012-07-12 Dow Kakoh Kk Pipe cover for pipe embedded in ground

Also Published As

Publication number Publication date
JPH0346304B2 (en) 1991-07-15

Similar Documents

Publication Publication Date Title
Zhang et al. Static and dynamic properties of a perforated metallic auxetic metamaterial with tunable stiffness and energy absorption
US4510268A (en) Directional flexibilization of expanded thermoplastic foam sheet for low temperature insulation
Ellis et al. The effects of water absorption on a polyester/chopped strand mat laminate
Avilés et al. Moisture absorption in foam‐cored composite sandwich structures
US4878520A (en) Heat insulating structures for low-temperature or cryogenic pipings
Earl et al. Determination of the moisture uptake mechanism in closed cell polymeric structural foam during hygrothermal exposure
KR880001770B1 (en) Directionally flexibilized exponded thermoplastic foam sheet for low temperature insulation
Choi et al. Cryogenic sandwich-type insulation board composed of E-glass/epoxy composite and polymeric foams
JPS5920655A (en) Composite board for low-temperature heat insulation
Nazari et al. Investigation on the compressive properties of auxetic foams under different loading rates
EP0062882A2 (en) Directionally flexibilized expanded thermoplastic foam sheet for low temperature insulation
Shirrell et al. Moisture-induced surface damage in T300/5208 graphite/epoxy laminates
JPH0247348B2 (en)
JPH0247346B2 (en)
Bomberg et al. Laboratory and roofing exposures of cellular plastic insulation to verify a model of aging
Rivers et al. Detection of micro-leaks through complex geometries under mechanical load and at cryogenic temperature
Reitz A basic study of gas diffusion in foam insulation
JPS59106793A (en) Low-temperature piping heat-insulating device
AU590713B2 (en) Heat insulating structures for low-temperature or cryogenic pipings
Mitalas et al. Methods to calculate gas diffusion coefficients of cellular plastic insulation from experimental data on gas absorption
Oh et al. Thermal and Mechanical Properties of Rigid Polyurethane Foam with Kevlar Aramid Pulp
Rizov et al. Influence of the foam core material on the indentation behavior of sandwich composite panels
Yoshimoto et al. Effects of strain-rate and temperature on mechanical behavior of polyimide foam in compression
JPS5853422A (en) Synthetic resin expansion body
Challis et al. A novel method for determining the temperature dependence of shear properties of structural foams