JPS5920634A - Manufacture of urethane foam body - Google Patents

Manufacture of urethane foam body

Info

Publication number
JPS5920634A
JPS5920634A JP57130855A JP13085582A JPS5920634A JP S5920634 A JPS5920634 A JP S5920634A JP 57130855 A JP57130855 A JP 57130855A JP 13085582 A JP13085582 A JP 13085582A JP S5920634 A JPS5920634 A JP S5920634A
Authority
JP
Japan
Prior art keywords
foam
urethane foam
urethane
die
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57130855A
Other languages
Japanese (ja)
Other versions
JPH035971B2 (en
Inventor
Seishichi Sakamoto
阪本 清七
Tsuneo Kamisato
神里 常夫
Takaaki Yoshida
隆明 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57130855A priority Critical patent/JPS5920634A/en
Priority to KR1019830003338A priority patent/KR860001112B1/en
Publication of JPS5920634A publication Critical patent/JPS5920634A/en
Publication of JPH035971B2 publication Critical patent/JPH035971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • B29C44/1233Joining preformed parts by the expanding material the preformed parts being supported during expanding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/20Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/02Moulds or cores; Details thereof or accessories therefor with incorporated heating or cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2075/00Use of PU, i.e. polyureas or polyurethanes or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Refrigerator Housings (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PURPOSE:To expedite an increase in the strength of a skeleton, to shorten a time required until the removal from a die, and thereby to manufacture the title foam body with excellent productivity, by heating an urethane foam in an outer shell body after cooling the same for a prescribed time. CONSTITUTION:A molding die 6 consisting of a top force 7 and a bottom force 8 is heated to the temperature of 45+ or -5 deg.C by supplying hot water through a water pipe 10 of the die 6, and then foamable urethane resin is injected into the cavity 9 of the die 6 and foamed and inflated therein to form an urethane foam. About five seconds after a tack-free time passes, cold water of 10+ or -5 deg.C is supplied through the pipe 10 to cool down the foam, and thereby the internal pressure of the foam is lowered early (solid line A). Next, about ten-twenty seconds after a foaming time passes, hot water of 45+ or -5 deg.C is supplied to the pipe 10 to heat the molding die 6. Thereby curing reactions are expedited and thus the strength of the skeleton of the foam is increased early (solid line B).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は脱型時間を短縮し得るようにしたウレタン発泡
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing a urethane foam that can shorten demolding time.

〔発明の技術的背景〕[Technical background of the invention]

例えば冷蔵庫の断熱扉は、扉外板と扉内側板とから成る
外殻体内にウレタンフオームを充満させて構成している
が、従来これは次のようにして製造していた。即ち、成
形型に収めた外殻体内に発泡性のウレタン樹脂を注入し
、この後例えば成形型全体を加熱炉内に入れることによ
り発泡したワンタンフオームを硬化反応に適した温度例
えば約45℃に所定時間維持し、その後内部にウレタン
フオームが充満固化した外殻体を成形型から脱型・する
ものであった。
For example, an insulated door for a refrigerator is constructed by filling an outer shell made of a door outer panel and an inner door panel with urethane foam, and has conventionally been manufactured as follows. That is, a foamable urethane resin is injected into an outer shell housed in a mold, and then the entire mold is placed in a heating furnace to heat the foamed wonton foam to a temperature suitable for a curing reaction, such as about 45°C. This was maintained for a predetermined period of time, and then the outer shell filled with solidified urethane foam was removed from the mold.

〔背景技術の問題点〕[Problems with background technology]

ところで、この種の製造方法を採る場合、ウレタン樹脂
の注入から脱型までに要する時間は、一般にウレタンフ
オームの内圧とこれを押えるウレタンフオームの骨格強
度とにより定まるものである。即ち、ウレタンフオーム
の内圧はt′!とんど内部温度により定まり、骨格強度
は時間と伴に硬化反応が進むことにより次第に高まると
いう傾向を呈し、骨格強度が内圧に十分近づいたところ
で脱型すれば内圧による外殻体の膨み変形が生じないも
のである。
By the way, when using this type of manufacturing method, the time required from injection of the urethane resin to demolding is generally determined by the internal pressure of the urethane foam and the skeletal strength of the urethane foam that presses it down. That is, the internal pressure of the urethane foam is t'! The skeletal strength is determined mostly by the internal temperature, and tends to gradually increase over time as the hardening reaction progresses.If the skeletal strength is removed from the mold when it approaches the internal pressure, the internal pressure will cause the outer shell to swell and deform. will not occur.

しかしながら、従来の製造方法では、ワレタン樹脂の硬
化反応による反応熱にょジウレタンフオームの温度が比
較的長時間高温度に維持されてしまうため、内圧の高い
状態が比較的長く続き、従つて脱型までに長時間を要し
て生産性が劣るという問題があった。しかし、かといっ
て発泡後のワレタンフオームを単に冷却して内圧を下げ
るようにしても、今度は硬化反応の進行が遅れて骨格強
度が早期に高まらず、これも脱型までに長時間を要して
しまうものである。
However, in the conventional manufacturing method, the temperature of the urethane foam is maintained at a high temperature for a relatively long time due to the reaction heat due to the curing reaction of the polyurethane resin, so the internal pressure remains high for a relatively long time, resulting in demolding. There was a problem in that it took a long time to complete the process, resulting in poor productivity. However, even if the foamed foam is simply cooled to lower the internal pressure, the curing reaction will be delayed and the skeletal strength will not increase quickly, and it will take a long time to demold the foam. It costs a lot.

〔発明の目的〕[Purpose of the invention]

従ッテ、本発明の目的は、ワレタンフオームの内圧を早
期に低下させつつ骨格強度の高まシを速め、もって脱型
時間を短縮できて生産性に優れるウレタン発泡体の製造
方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a urethane foam that reduces the internal pressure of the foam at an early stage while increasing the skeletal strength, thereby shortening demolding time and providing excellent productivity. There is something to do.

〔発明の概要〕[Summary of the invention]

本発明は、外殻体内のワレタくフオームを所定の時期に
冷却し、この後所定の時期に加熱するようにし、もって
所定の段階にまで反応が進行したウレタンフオームの温
度を下げて内圧を早期に低下せしめ、且つその後ウレタ
ンフオームを加熱することにより骨格強度を極力早期に
高めるところに特徴を有するものである。
The present invention cools the urethane foam inside the outer shell at a predetermined time and then heats it at a predetermined time, thereby lowering the temperature of the urethane foam whose reaction has progressed to a predetermined stage to quickly reduce the internal pressure. The urethane foam is then heated to increase the skeleton strength as quickly as possible.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の第1実施例につき第1図乃至M3図を参照
して説明する。まず第1図において、1は最終的に得ら
れたウレタン発泡体たる冷蔵庫の断熱扉で、これは扉外
板2と扉内側板3とから成る外殻体4内にウレタンフオ
ーム5を充満させて構成したものである。次に、この断
熱扉1の製造時の様子を示す第2図において、6は成形
型でうこれは上型7及び下型8がら成る上下二分割形で
あり、上下両型7,8間に前記外殻体4を収容するため
のキャビティ9を構成している。フ0は通水パイプで、
これは上下両型7,8のキャビティ9近傍に埋設されて
おり、図示しない温水供給装置及び冷水供給装置に選択
的に接続されるようにしている。
A first embodiment of the present invention will be described below with reference to FIGS. 1 to M3. First, in Fig. 1, reference numeral 1 indicates an insulating door of a refrigerator made of urethane foam finally obtained, which is made by filling an outer shell 4 consisting of a door outer panel 2 and an inner door panel 3 with urethane foam 5. It is composed of Next, in FIG. 2 showing the manufacturing state of this heat insulating door 1, 6 is a molding die, and this is a mold that is divided into upper and lower parts, consisting of an upper mold 7 and a lower mold 8. A cavity 9 for accommodating the outer shell 4 is formed therein. F0 is the water pipe,
This is buried near the cavities 9 of both the upper and lower molds 7 and 8, and is selectively connected to a hot water supply device and a cold water supply device (not shown).

さて、上記構成において外殻体4内にウレタンフオーム
5を充満させるには次のようにする。まず、第2図に示
す状態において成形型乙の通水パイプ10に温水供給装
置を接続し、例えば朽45℃の温水を流して成形型6ひ
いては外殻体4を約45℃に維持しておく。この後、図
示しないワレタン樹脂注入装置により外シ役体4内に発
泡性のウレタン樹脂を注入する。これにより、ウレタン
樹脂が外殻体4内で発泡膨張してウレタンフオームとな
り、外殻体4の略全域に急速に広がる。この間、外殻体
4は約45℃に維持されているから外殻体4への充填性
は良好である。また、この発泡反応と共にウレタンフオ
ームは硬化反応を進行させて次第にゲル化し、且つ反応
熱を発生させてウレタンフオームの温度が急激に上昇し
、これに伴い内圧が高まる(第6図実線A参照)。そこ
で、ワレタンフオームのゲル化が十分4行してウレタン
フオーム表面の粘着性が失われる新開タックフリータイ
ム(本実施例では注入から約55秒後)を経過してから
約5秒後に、成形型6の通水パイプ10を冷水供給装置
側に切換えて通水パイプ10に約10℃の冷水を流し、
成形型6を約10℃に冷却する。これにより、反応熱が
奪われてワレタンフオームが冷却されるから、ウレタン
フオームの最高温度が比較的低く抑制され、従ってワレ
タンフオームの内圧は第6図実線Aで示すように冷却却
しない場合(第3図一点鎖線a参照)に比べて早期に低
下するようになる。この後、ウレタンフオーム内の泡の
立上りが止まる所謂フオームタイム(本実施例では注入
から約90秒後)を経過してから約10〜20秒後に、
成形型6の通水パイプ10を再び温水供給装置側に接続
して通水パイプ10に約45℃の温水を流し続け、成形
型6を加熱する。これによシ、ウレタンフオームが硬化
反応の進行に最も適した約45℃に加熱されるから、硬
化反応が促進され、第6図実Iii!Bで示すようにそ
の骨格強度が再加熱をせず単に冷却を続けた場合(第3
図工点鎖線す参照)に比べて早期に高ま)、しかもウレ
タンフオーム表面の脆化現象を抑制できるようになる。
Now, in the above structure, the outer shell 4 is filled with the urethane foam 5 in the following manner. First, in the state shown in Fig. 2, a hot water supply device is connected to the water pipe 10 of the mold B, and hot water of, for example, 45°C is flowed to maintain the mold 6 and the outer shell 4 at about 45°C. put. Thereafter, a foamable urethane resin is injected into the outer shell body 4 using a urethane resin injection device (not shown). As a result, the urethane resin foams and expands within the outer shell 4 to form a urethane foam, which rapidly spreads over substantially the entire area of the outer shell 4. During this time, since the outer shell 4 is maintained at about 45° C., the filling property of the outer shell 4 is good. In addition, along with this foaming reaction, the urethane foam undergoes a curing reaction and gradually gels, generating reaction heat, causing the temperature of the urethane foam to rise rapidly, and the internal pressure to rise accordingly (see solid line A in Figure 6). . Therefore, about 5 seconds after the new tack-free time (about 55 seconds after injection in this example), in which the urethane foam has sufficiently gelled for 4 lines and the urethane foam surface loses its tackiness, molding is performed. Switch the water pipe 10 of type 6 to the cold water supply device side and flow cold water of about 10°C through the water pipe 10.
The mold 6 is cooled to about 10°C. As a result, the heat of reaction is removed and the urethane foam is cooled, so the maximum temperature of the urethane foam is suppressed to a relatively low level, and therefore the internal pressure of the urethane foam is reduced as shown by the solid line A in Figure 6, when the urethane foam is not cooled. (See the one-dot chain line a in FIG. 3), it starts to decrease earlier. After this, about 10 to 20 seconds after the so-called foam time (in this example, about 90 seconds after injection) has passed, when the bubbles in the urethane foam stop rising.
The water pipe 10 of the mold 6 is connected to the hot water supply device again, and hot water of about 45° C. continues to flow through the water pipe 10 to heat the mold 6. As a result, the urethane foam is heated to about 45°C, which is the most suitable temperature for the curing reaction to proceed, so the curing reaction is accelerated and the curing reaction is accelerated. As shown in B, if the skeletal strength is simply continued cooling without reheating (3rd
(see dotted chain line)), and the embrittlement phenomenon on the urethane foam surface can be suppressed.

このように、ウレタンフオームの内圧が早期に低下し、
且つ骨格強度が早期に高まることから、ウレタン樹脂を
注入してから骨格強度が内圧に略等しくなるまでの時間
(第3図においては点Pに至るまでの時間)は従来の時
間(点Qに至るまでの時間)に比べて十分に短かく、従
ってウレタンフオーム5が充満固化した断熱扉1を成形
型6から取出すことができる脱型時間を従来に比して短
時間にし得て生産性の向上を図ることができる。因みに
、ウレタン樹脂を注入した後ワレタンフオームを約45
℃に一定ニ維持する従来方法では脱型時間が約5分であ
ったところ、本実癩例では約3分に短縮できた。また、
外殻体4をウレタン樹脂注入直後及び冷却後の再加熱時
に高温に維持する温度としては、55℃以上であると充
填性が劣化し、且つ35℃以下ではウレタンフオームの
表面が脆弱化することから約45±5℃が望ましく、ま
た外殻体4を冷却する際の温度としては、20℃以上で
は脱型後の膨み変形が生じ、且つ0℃以下ではワレタン
7オームの剛性が劣化することから約10±5℃が望ま
しい。
In this way, the internal pressure of the urethane foam decreases quickly,
In addition, since the skeletal strength increases quickly, the time from injecting the urethane resin until the skeletal strength becomes approximately equal to the internal pressure (time to point P in Figure 3) is longer than the conventional time (time to point Q). Therefore, the demolding time for taking out the insulated door 1 filled with the urethane foam 5 and solidified from the mold 6 can be shortened compared to the conventional method, which improves productivity. You can improve your performance. By the way, after injecting the urethane resin, the foam is about 45%
In the conventional method of maintaining the temperature at a constant temperature, the demolding time was about 5 minutes, but in this leprosy case, the demolding time was reduced to about 3 minutes. Also,
The temperature at which the outer shell 4 is maintained at a high temperature immediately after injecting the urethane resin and during reheating after cooling is such that if it is 55°C or higher, the filling properties will deteriorate, and if it is 35°C or lower, the surface of the urethane foam will become brittle. The temperature at which the outer shell 4 is cooled is desirably from 20°C or above, causing swelling and deformation after demolding, and below 0°C, the rigidity of the 7-ohm cracked shell deteriorates. Therefore, the temperature is preferably about 10±5°C.

第4図は冷蔵庫の断熱扉を連続生産するための本発明の
第2実施例を示すもので、この第4)図において、11
はフィンコンベアで、これは図中左方に所定の時間間隔
で間欠的に駆動されるものでアル。12はフィンコンベ
ア11上に載置した多数の移送枠で、これには夫々界外
板2を収納している。15はウレタン樹脂注入装置で、
これはフィンコンベア11のうち始端部側から移送枠1
2の5個分離れた部位に位置する注入ポートP1に設け
られている。14は加熱ポー)Pzを構成する加熱室で
、これは注入ボートP1に引き続く移送枠12の10個
分の部位を覆うよう設けられており、図示しない蒸気発
生装置により内部に蒸気を供給されて約45℃の一定温
度に加熱されるようになっている。15はフィンコンベ
ア11のうち加熱室14に引き続く部位を覆うよう設け
た温調室で、これは例えばニアコンディショナーにより
約20℃の一定温度に維持されている。そして、この加
熱室14及び温調室15内にはフィンコンベア11の上
方に位置して夫々例えば10個の押え治具16を配設し
ている。この押え治具16は扉外板2の開放上面を上方
から閉鎖するものである。そして、温調室15内の前半
の5個の各押え治具16には内部に通水パイプを設けこ
の通水パイプに冷水を流して約10℃に維持するように
して冷却ポートP sを構成し、且つ後学の5個の各押
え治具16にも同様の通水パイプに温水を流して約45
℃に維持するようにして再加熱ポー)P4を構成してい
る。更に、これらの押え治具16群は所定の時間間隔に
て一斉に上下動させ得るようにしており、この押え冶具
16が上昇すると、フィンコンベア11が左方に移送枠
12の1個分に相当する1ピツチ移動し、この後前記押
え治具16が下方に移動して扉外板2の開放上面を再び
閉鎖して所定時間その状態を維持し、その後再び上昇す
るというサイクルを繰返すようにしている。
Figure 4 shows a second embodiment of the present invention for continuous production of refrigerator doors.
is a fin conveyor, which is driven intermittently at predetermined time intervals to the left in the figure. Reference numeral 12 designates a number of transfer frames placed on the fin conveyor 11, each of which accommodates a field outer plate 2. 15 is a urethane resin injection device,
This is the transfer frame 1 from the starting end side of the fin conveyor 11.
The injection port P1 is located five locations apart from the injection port P1. Reference numeral 14 denotes a heating chamber constituting the heating port (Pz), which is provided to cover 10 portions of the transfer frame 12 following the injection boat P1, and is supplied with steam inside by a steam generator (not shown). It is heated to a constant temperature of about 45°C. Reference numeral 15 denotes a temperature control chamber provided to cover a portion of the fin conveyor 11 that follows the heating chamber 14, and is maintained at a constant temperature of about 20° C. by, for example, a near conditioner. For example, ten presser jigs 16 are disposed in the heating chamber 14 and the temperature control chamber 15 above the fin conveyor 11, respectively. This holding jig 16 closes the open upper surface of the door outer panel 2 from above. Each of the five presser jigs 16 in the first half of the temperature control chamber 15 is provided with a water pipe therein, and cold water is flowed through the water pipe to maintain the temperature at about 10°C, thereby opening the cooling port Ps. In addition, warm water was poured into the same water pipes for each of the five presser jigs 16 described later, and approximately 45
A reheating pot) P4 is configured to maintain the temperature at ℃. Furthermore, these groups of presser jigs 16 can be moved up and down simultaneously at predetermined time intervals, and when the presser jigs 16 rise, the fin conveyor 11 moves to the left by one transfer frame 12. The holding jig 16 moves the corresponding one pitch, and then the holding jig 16 moves downward to close the open upper surface of the door outer panel 2 again, maintains this state for a predetermined period of time, and then rises again, and the cycle is repeated. ing.

17は返送コンベアで、これはフィンコンベア11終端
部に至った移送枠12を再びフィンコンベア11の始端
部に戻すためのものである。18はフード19内に配設
した垂直形の予熱コンベアで、これは扉外板2の製造設
備を設置した工場の2階と前記フィンコンベア11を設
置した1階とを結んで、2階で製−作された扉外板2を
順次1階へ移送し、且つその間においてフード19内に
例えば約6D℃の熱風を吹き込んで扉外板2を約50℃
に予熱するものである。20は予熱コンベア18内に扉
外板2を送り込むための搬入コンベア、21は予熱コン
ベア18内から扉外板2をフィンコンベア11側へ移送
する搬出コンベアである。
Reference numeral 17 denotes a return conveyor, which is used to return the transfer frame 12 that has reached the end of the fin conveyor 11 to the start end of the fin conveyor 11. 18 is a vertical preheating conveyor disposed inside the hood 19, which connects the second floor of the factory where the manufacturing equipment for the door outer panel 2 is installed and the first floor where the fin conveyor 11 is installed. The manufactured door panels 2 are sequentially transferred to the first floor, and during that time, hot air of, for example, about 6D°C is blown into the hood 19 to heat the door panels 2 to about 50°C.
It preheats the temperature. 20 is a carry-in conveyor for feeding the door outer plate 2 into the preheating conveyor 18, and 21 is a carry-out conveyor for transferring the door outer plate 2 from inside the preheating conveyor 18 to the fin conveyor 11 side.

次に、上記構成の作用を説明する。まず、扉外板2を搬
入コンベア20に載置t7て予熱コンベア18内に送り
込む。そして、予熱コンベア18により約50℃に予熱
されて搬出コンベア21によシ送し出された扉外板2を
順次ラインコンベア11上の移送枠12内に収納する。
Next, the operation of the above configuration will be explained. First, the door outer panel 2 is placed on the carry-in conveyor 20 t7 and sent into the preheating conveyor 18. Then, the door outer panels 2 that have been preheated to about 50° C. by the preheating conveyor 18 and sent out by the carry-out conveyor 21 are sequentially stored in the transfer frame 12 on the line conveyor 11.

すると、フィンコンベア11の左方向への駆動により、
移送枠12ひいては扉外板2が注入ボートP1に至り、
ウレタン樹脂注入装置13により扉外板2内に所定量の
ウレタン原液が注入される。この後、この扉外板2は加
熱室14内の加熱ポー)P2に至り、ウレタン樹脂が発
泡して扉外板2内に充満する。
Then, by driving the fin conveyor 11 to the left,
The transfer frame 12 and the door outer panel 2 reach the injection boat P1,
A predetermined amount of urethane stock solution is injected into the door outer panel 2 by the urethane resin injection device 13 . Thereafter, the door outer panel 2 reaches the heating port P2 in the heating chamber 14, and the urethane resin foams and fills the door outer panel 2.

ソシテ、ウレタンフオームのタックフリータイムが経過
する頃になると扉外板2が加熱室14内から出て温調室
15内の冷却ポー) P sに至る。ここでは押え治具
16が約10’Cに冷却されていることからワレタンフ
オームが約10℃に冷却され、ウレタンフオームの反応
熱が奪われて内圧が低下するようになる。そして、ウレ
タンフオームのフオームタイムが経過する頃になると扉
外板2が再加熱ボー)P4に至る。ここでは押え治具1
6が約45℃に加熱されていることからウレタンフオー
ムが約45℃に再加熱され、これによりウレタンフオー
ムの硬化反応が促進されて表面の脆弱化が防止されると
共に骨格強度が簡まる。この後、温調室15を出た移送
枠12内から扉外板2を取り出し、更に扉外板2に扉内
側板6を取付けて断熱扉1が完成する。
When the tack-free time of the urethane foam has elapsed, the door outer plate 2 comes out of the heating chamber 14 and reaches the cooling hole (Ps) in the temperature control chamber 15. Here, since the presser jig 16 is cooled to about 10'C, the urethane foam is cooled to about 10C, and the reaction heat of the urethane foam is taken away, causing the internal pressure to decrease. Then, when the foam time of the urethane foam has elapsed, the door outer panel 2 reaches reheating point P4. Here, presser jig 1
6 is heated to about 45°C, the urethane foam is reheated to about 45°C, which accelerates the curing reaction of the urethane foam, prevents the surface from becoming brittle, and reduces the skeletal strength. Thereafter, the door outer panel 2 is taken out from the transfer frame 12 that has left the temperature-controlled room 15, and the door inner panel 6 is attached to the door outer panel 2, thereby completing the heat insulating door 1.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、ウレタンフオームの内圧を
早期に低下させつつ骨格強度の高まりを速めることがで
きるから、脱型時間を短縮化し得て生産性に優れたワレ
タン発泡体の製造方法を提供できる。
As described above, the present invention can reduce the internal pressure of the urethane foam at an early stage and accelerate the increase in skeletal strength, so it is possible to shorten demolding time and provide a method for producing urethane foam with excellent productivity. Can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明の第1実施例を示し、第1図
は一部破断して示す冷蔵庫の断熱扉の斜視図、第2図は
外殻体と共に示す成形型の縦断面図、第3図はウレタン
樹脂の発泡時の緒特性を示す特性図、第4図は本発明の
第2実施例を示す製造工程図である。 図中、1は断熱扉(ウレタン発泡体)、4は外殻体、5
はウレタンフオーム、6は成形型、10は通水バイブで
ある。 出−人  東京芝浦電気株式会社
1 to 3 show a first embodiment of the present invention, FIG. 1 is a partially cutaway perspective view of a heat insulating door of a refrigerator, and FIG. 2 is a longitudinal section of a mold together with an outer shell. 3 and 3 are characteristic diagrams showing the initial characteristics of the urethane resin during foaming, and FIG. 4 is a manufacturing process diagram showing a second embodiment of the present invention. In the figure, 1 is a heat insulating door (urethane foam), 4 is an outer shell, and 5
1 is a urethane foam, 6 is a mold, and 10 is a water passing vibrator. Source: Tokyo Shibaura Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、外殻体内に発泡性のウレタン樹脂を注入してウレタ
ンフオームを内部に充満させるものにおいて、前記外殻
体内のワレタンフォームラ所定の時期に冷却し、その後
所定の時期に加熱するようにしたことを特徴とするウレ
タン発泡体の製造方法。
1. In a product in which foamable urethane resin is injected into the outer shell to fill the inside with urethane foam, the foam in the outer shell is cooled at a predetermined time and then heated at a predetermined time. A method for producing a urethane foam, characterized by:
JP57130855A 1982-07-27 1982-07-27 Manufacture of urethane foam body Granted JPS5920634A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57130855A JPS5920634A (en) 1982-07-27 1982-07-27 Manufacture of urethane foam body
KR1019830003338A KR860001112B1 (en) 1982-07-27 1983-07-20 Manufacture of urethane foam body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57130855A JPS5920634A (en) 1982-07-27 1982-07-27 Manufacture of urethane foam body

Publications (2)

Publication Number Publication Date
JPS5920634A true JPS5920634A (en) 1984-02-02
JPH035971B2 JPH035971B2 (en) 1991-01-28

Family

ID=15044265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57130855A Granted JPS5920634A (en) 1982-07-27 1982-07-27 Manufacture of urethane foam body

Country Status (2)

Country Link
JP (1) JPS5920634A (en)
KR (1) KR860001112B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960362A (en) * 1972-10-17 1974-06-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960362A (en) * 1972-10-17 1974-06-12

Also Published As

Publication number Publication date
KR860001112B1 (en) 1986-08-13
KR840005389A (en) 1984-11-12
JPH035971B2 (en) 1991-01-28

Similar Documents

Publication Publication Date Title
US5507999A (en) Process for thermoforming plastic doors
US3933967A (en) Method of making seamless hollow molded articles
US6579489B1 (en) Process for gas assisted and water assisted injection molding
US3733161A (en) Structurizer mold
US6189589B1 (en) Molding method for laminated body using cooling air
CN109849257B (en) Method for improving surface quality of injection-molded and foamed plastic part
KR100923726B1 (en) Rapid heating and rapid cooling mold device
KR920000182B1 (en) Production of composite foamed molded body
JPS5920634A (en) Manufacture of urethane foam body
JPS5919120A (en) Manufacture of urethane foamed body
JPS62179912A (en) Molding equipment of synthetic resin molded part
JP2001047440A (en) Method for vulcanizing and molding tire and heater of vulcanizing mold
JP2946259B2 (en) Mold temperature control method and mold temperature control device for reaction injection molding apparatus
KR20110131828A (en) Injection mold apparatus
JPH0225605Y2 (en)
JP3055831B2 (en) Foam molding method for foamed resin
JPH0235654B2 (en) SENIKYOKAPURASUCHITSUKUSUSEIHINNOSEIKEIHOHO
JPH03251409A (en) Manufacture of resin molding by high frequency molding mold
JPH07304046A (en) Molding device and production of castings
JPS5922732A (en) Manufacture of urethane foam
JP2565391B2 (en) Molding method for vanishing model with core
JPS581657B2 (en) Kanetsuhouhou
JPS6324448B2 (en)
JPS5831725A (en) Manufacture of automobile interior trim
JPH06142241A (en) Manufacture of golf club shaft