JPS59205473A - Preparation of cam shaft - Google Patents

Preparation of cam shaft

Info

Publication number
JPS59205473A
JPS59205473A JP7779183A JP7779183A JPS59205473A JP S59205473 A JPS59205473 A JP S59205473A JP 7779183 A JP7779183 A JP 7779183A JP 7779183 A JP7779183 A JP 7779183A JP S59205473 A JPS59205473 A JP S59205473A
Authority
JP
Japan
Prior art keywords
cam
cam shaft
substrate material
vapor deposition
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7779183A
Other languages
Japanese (ja)
Inventor
Manabu Kato
学 加藤
Shunichi Aoyama
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP7779183A priority Critical patent/JPS59205473A/en
Publication of JPS59205473A publication Critical patent/JPS59205473A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Gears, Cams (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To fabricate a cam shaft excellent in durability in good yield, in fabricating the cam shaft, by molding a substrate material into a predetermined profile while vapor depositing a hard metal compound to the cam part of the molded one by a chemical vapor deposition method. CONSTITUTION:A cam shaft substrate material to which a fundamental shape is imparted by casting and the other mechanical processing is preformed precisely so as to obtain a predetermined cam profile. In the next step, the molded one is put in a reaction furnace for chemical vapor deposition and heated to 1,000- 1,200 deg.C. On the other hand, TiCl4 is gasified by heating the same to 20-80 deg.C and sent into the reaction furnace along with CH4 and H2 being carrier gases. TiCl4 and the carrier gases are chemically reacted on the surface of the cam shaft substrate material in the furnace to form TiC and HCl while TiC among them is precipitated to the surface of the cam shaft substrate material to form a hard TiC vapor deposition layer. Because the largest load is especially applied to a cam nose part Cn, the life of a cam is prolonged by the enhancement of the abrasion resistance of said part.

Description

【発明の詳細な説明】 本発明はレシプロエンジン等に使用されるカム軸の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a camshaft used in a reciprocating engine or the like.

カム及びカム軸は各種の機械装置に汎く使用されている
が、とりわけレシプロエンジンの動弁機構に用いられる
カム軸は苛酷な条件下で毎分数千回にも及ぶ吸排気弁の
開閉作動を担うため高度の耐久性が要求され、またその
カムプロフィールがエンジン性能を大きく左右すること
になるため形状11度の面でも十分な配虚がなされな(
プればならない。
Cams and camshafts are widely used in various mechanical devices, but camshafts used in the valve mechanism of reciprocating engines in particular open and close intake and exhaust valves thousands of times per minute under harsh conditions. A high degree of durability is required to carry the engine, and the cam profile greatly affects engine performance, so even the 11-degree shape requires sufficient ventilation (
You have to pull it.

そこで、このような要求に応えるカム軸の製造方法とし
て、従来は金型鋳造によりカム軸素材を形成し、そのカ
ム部及びジャーナル部を精密に研摩して仕上げる方法を
採用していた(社団法人自動車技術会昭和50年6月1
日発行自動車工学便覧第2分冊P、1−86>。つまり
、熱伝導の良・い金型との接触で素材表面を急冷(チル
化)して硬化層を形成し、これを所定の形状に研摩づ′
るという過程を採ることによ一す、鋳造後に熱処理した
場合の素材の変形という問題を解消して、耐久性及び精
度に優れたカム軸を得るわ(プである。
Therefore, as a manufacturing method for camshafts that meet these demands, conventional methods have been adopted in which the camshaft material is formed by die casting, and the cam part and journal part are precisely polished and finished (Incorporated Association) Society of Automotive Engineers of Japan June 1, 1975
Japanese Automotive Engineering Handbook Volume 2 P, 1-86>. In other words, the surface of the material is rapidly cooled (chilled) by contact with a mold with good thermal conductivity to form a hardened layer, which is then polished into a predetermined shape.
By adopting this process, we can solve the problem of deformation of the material when heat-treated after casting, and obtain a camshaft with excellent durability and precision.

しh;シながら、このような従来の製造方法には、金型
鋳造のために鋳型の製作に多くの行程を要し、またチル
化にJ:り形成した硬化層に研摩を行なう関係上硬化層
が部分的に消失した不良品が発生して歩留まりが悪化す
るなど、生産及び製品管理上の不都合があった。
However, such conventional manufacturing methods require many steps to fabricate the mold for mold casting, and also have to be polished because the hardened layer formed during chilling is polished. There were inconveniences in production and product management, such as defective products in which the hardened layer was partially lost and yields deteriorated.

本発明はこのような従来の問題点を解消し、さらに耐久
性に優れ、小型軽量化が可能なカム軸を提供することを
目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve these conventional problems and to provide a camshaft that is more durable and can be made smaller and lighter.

このために本発明では、まずカム部を所定のプロフィー
ルに精密加工しIcカム軸素材を形成した後、前記カム
部に化学蒸着法にまり金属化合物を蒸着して硬質の被覆
を形成づ−るようにした。
To this end, in the present invention, first, the cam part is precisely machined to a predetermined profile to form an Ic camshaft material, and then a hard coating is formed by depositing a metal compound on the cam part using chemical vapor deposition. I did it like that.

化学蒸着法は、比較的低温で高い蒸気圧をもっ)Jス状
化合物(蒸着物質)をキレリアガスと共に反応炉内に送
り込んで素材表面に固体状に析出させる一種のメッキ法
であり、一般にCVD(C11emical Vapo
r  Deposition )法として知られている
The chemical vapor deposition method is a type of plating method in which a J-type compound (vapor deposition substance), which has a relatively low temperature and high vapor pressure, is sent into a reaction furnace together with Kyrelia gas and deposited as a solid on the surface of the material. C11emical Vapo
rDeposition) method.

いま、カム軸索材にCVD法によりTiCを蒸着してカ
ム軸を乳造する場合について説明すると、まずCVDの
プロセスに先立って、鋳造その他の機械加工により基礎
的形状を与えたカム軸索材(カム部)を、所定のカムプ
ロフィールになるように予め精密に成形する。
Now, to explain the case of emulsifying a cam shaft by depositing TiC on cam axle material using the CVD method, first, prior to the CVD process, the cam axle material is given a basic shape by casting or other machining. (Cam part) is precisely molded in advance to have a predetermined cam profile.

この成形済のカム軸索材は、CVD用の反応炉に挿入し
てi ooo〜1200℃に加熱する。
This shaped cam axon material is inserted into a CVD reactor and heated to iooo to 1200°C.

一方、Ti C1f、Aを20〜80℃で加熱してガス
化し、これをキャリアカスとしてのCH、及びH2とと
もに上記反応炉に送り込む。
On the other hand, Ti C1f, A is heated at 20 to 80° C. to gasify it, and this is sent to the above-mentioned reactor together with CH and H2 as a carrier cass.

すると、反応炉中のカム軸素材表面においてTiC/、
とキャリアガスとが化学反応を起こしてTiCとHCヱ
とを生成するが、このうちTiCは素材表面に析出して
硬い蒸着層を形成する。
Then, on the surface of the camshaft material in the reactor, TiC/,
A chemical reaction occurs between the carrier gas and TiC to produce TiC and HC, of which TiC precipitates on the surface of the material to form a hard vapor deposited layer.

このようにしてカム表面に形成したTiCの被覆は、従
来のデル化による硬化層の硬度がHV?500程度であ
るのに対し、1−1v = 3800〜4000と著し
く硬度が高−く、従って極めて高い耐久性を持ったカム
軸が得られる。
The TiC coating formed on the cam surface in this way has a hardness of HV? 500, the hardness is extremely high at 1-1v = 3800 to 4000, and therefore a camshaft with extremely high durability can be obtained.

なお、エンジン用カム軸では、バルブスプリングの張力
に抗してタペット側にリフトを与えるカムノーズ部Cn
  (図面参照)の部分が最も負荷が大ぎく、この部分
での耐摩耗性がカムの寿命を左右する。そこで上記CV
Dによる硬質被覆は、このカムノーズ部Cnにのみ局所
的に施すようにしてもよい。このように局所的に蒸着を
行なう方法としては、被蒸着箇所をレーザ、電子ビーム
等で局所的に加熱する方法が開発されている。
In addition, in the engine camshaft, the cam nose part Cn provides lift to the tappet side against the tension of the valve spring.
The area (see drawing) is subject to the heaviest load, and the wear resistance of this area determines the lifespan of the cam. Therefore, the above CV
The hard coating D may be applied locally only to this cam nose portion Cn. As a method for performing such local vapor deposition, a method has been developed in which the area to be vapor deposited is locally heated using a laser, an electron beam, or the like.

また、カム軸素材として、高温下で変形して刈払精度が
低下しやすい材質を使用する場合に対しては、上記局所
的加熱によるCVD法が有効であるが、その他に蒸着物
質として有機金属化合物を使用するMOCVD、低圧下
で処v11を行なうLPGVDなど400℃以下の温度
で蒸着メッキ層を得る低温CVD法が開鎖されている。
In addition, when using a material that deforms under high temperatures and tends to reduce cutting accuracy as the camshaft material, the above-mentioned CVD method using local heating is effective. Low-temperature CVD methods for obtaining a deposited plating layer at a temperature of 400° C. or lower have been developed, such as MOCVD using chemical compounds and LPGVD performing treatment v11 under low pressure.

さらに、蒸着物質としては上記TiCの他に数十種類の
ものが開発されているが、そのうちカム軸用として適し
ているものとしては、例えばT1CN、Af20.など
がある。1−iCNは1」■−2000〜3000どT
iCに比較すると硬度の点では劣るものの、むしろ靭性
では大ぎく優れるので、繰り返し荷重下の疲労強度の点
で有利である。また、Aヱ203 は]」\l−230
0程度であるが熱的負荷に対して強いという特徴がある
。このように蒸着物質にはそれぞれに個性があるので、
これを適宜選択するだけで様々な目的・用途に応じたカ
ム軸を11?供することができる。(CVDについては
、[゛′最近の表面処理技術CVDの現状と展望゛日本
機械学会第49回特別講演会講演要旨ff?”J(昭和
57年10月発行)に詳しい。)ところで、CVD法に
より形成した被覆は上述したように極めて硬度が高く、
従って耐摩耗性、耐スカツフ性に優れたカム軸が得られ
るわけであるが、実用上はこの耐久性向上方だけタペッ
トないしフAロワとの間の面圧を高くすること、つまり
カム幅を小さくすることができ、これによりカム軸の小
型・軽量化を達成することもできる。
Furthermore, dozens of other vapor deposition materials have been developed in addition to the above-mentioned TiC, and among them, those suitable for camshafts include, for example, T1CN, Af20. and so on. 1-iCN is 1”■-2000~3000T
Although it is inferior to iC in terms of hardness, it is considerably superior in toughness, so it is advantageous in terms of fatigue strength under repeated loads. Also, Aヱ203 is]”\l-230
It has the characteristic of being strong against thermal loads, although it is about 0. In this way, each vapor deposition substance has its own characteristics, so
By simply selecting the appropriate camshaft, you can create 11 camshafts for various purposes and uses. can be provided. (For more information about CVD, see ['Current situation and prospects of recent surface treatment technology CVD' Abstracts of the 49th Special Lecture of the Japan Society of Mechanical Engineers ff?' J (published October 1982).) By the way, the CVD method As mentioned above, the coating formed by
Therefore, a camshaft with excellent wear resistance and scuff resistance can be obtained, but in practice, the only way to improve this durability is to increase the surface pressure between the tappet or follower, that is, to increase the cam width. This allows the camshaft to be made smaller and lighter.

また、潤滑性に着目ず−ると、カムノーズ部のように境
界潤滑状態が引き起こされる条件下ではある程度大きな
表面粗さを与えた方が保油性が生じて好ましいことが知
られているが(例えば、「潤滑」第23巻第9号(19
78年) 、654〜662頁を参照)、これに対しC
VD法により形成した被覆は、その厚さにもよるが1〜
5μnl稈度の表面粗さがあるため、この点でも従来の
研摩加工したカム面に比較して有利である。
Furthermore, if we focus on lubricity, it is known that under conditions where a boundary lubrication state occurs, such as in the case of a cam nose, it is preferable to provide a certain degree of large surface roughness to improve oil retention (for example, , “Lubrication” Vol. 23 No. 9 (19
78), pp. 654-662), whereas C.
The coating formed by the VD method has a thickness of 1 to 1, depending on its thickness.
Since it has a surface roughness of 5 μnl, it is advantageous in this respect as well compared to conventional polished cam surfaces.

以上を要するに、本発明は予め所定のカム形状を与えた
のちr* c、rt CN、△220.などの金属化合
物をカムに化学蒸着して硬質被覆を施すことによりカム
軸を仕上げるようしたので従来のようにカムプロフィー
ルの形成に伴って硬化層を削り取ってしまうような不都
合が生じ得ず、またカム軸素材にチル化による硬化層を
形成するだめの複雑な金型を用意する必要もなく、従っ
て分留まりが改善され、生産性が著しく向上するという
効果を生じる。
In summary, the present invention provides a predetermined cam shape in advance and then calculates r* c, rt CN, Δ220. The camshaft is finished by applying a hard coating to the cam by chemical vapor deposition of metal compounds such as There is no need to prepare a complicated mold for forming a hardened layer on the camshaft material by chilling, and therefore, the retention is improved and productivity is significantly improved.

また、本発明により製造したカム軸は、カム表面に形成
した金属化合物の被覆が極めて硬く、また潤滑性に優れ
るので、従来に比較して著しく耐久性が高く、従って小
型軽量化が可能である。
In addition, the camshaft manufactured according to the present invention has an extremely hard metal compound coating formed on the cam surface and has excellent lubricity, so it has significantly higher durability than conventional camshafts, and can therefore be made smaller and lighter. .

【図面の簡単な説明】[Brief explanation of the drawing]

図はカム軸のカムノーズ部Onを説明するだめの側面図
である。
The figure is a side view for explaining the cam nose portion On of the camshaft.

Claims (1)

【特許請求の範囲】[Claims] カム軸素材のカム部を予め所定のプロフィールに成形し
た後、このカム部の少な(ともカムノーズ部に化学蒸着
法ににり金属化合物の被覆を施すことを特徴とするカム
軸の製造方法。
A method for manufacturing a camshaft, which comprises forming a cam portion of a camshaft material in advance into a predetermined profile, and then coating a small portion of the cam portion (in particular, the cam nose portion) with a metal compound by chemical vapor deposition.
JP7779183A 1983-05-02 1983-05-02 Preparation of cam shaft Pending JPS59205473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7779183A JPS59205473A (en) 1983-05-02 1983-05-02 Preparation of cam shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7779183A JPS59205473A (en) 1983-05-02 1983-05-02 Preparation of cam shaft

Publications (1)

Publication Number Publication Date
JPS59205473A true JPS59205473A (en) 1984-11-21

Family

ID=13643803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7779183A Pending JPS59205473A (en) 1983-05-02 1983-05-02 Preparation of cam shaft

Country Status (1)

Country Link
JP (1) JPS59205473A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525861A (en) * 2014-11-18 2015-04-22 西安理工大学 Engine cam and production method thereof
CN106795617A (en) * 2014-06-18 2017-05-31 H.E.F.公司 The DLC carbon painting method of the plush copper of the cam of camshaft, the camshaft for so obtaining and the equipment for implementing this method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795617A (en) * 2014-06-18 2017-05-31 H.E.F.公司 The DLC carbon painting method of the plush copper of the cam of camshaft, the camshaft for so obtaining and the equipment for implementing this method
JP2017523305A (en) * 2014-06-18 2017-08-17 アシュ.エー.エフ Method for coating camshaft cam nose with DLC, camshaft obtained by the method, and equipment for implementing the method
CN106795617B (en) * 2014-06-18 2020-05-26 H.E.F.公司 Method for coating DLC carbon on the nose of a camshaft cam, camshaft thus obtained and device for implementing such a method
US10683777B2 (en) 2014-06-18 2020-06-16 H.E.F. Method for coating the nose of the cams of a camshaft with DLC, camshaft obtained in this way and facility for implementing said method
CN104525861A (en) * 2014-11-18 2015-04-22 西安理工大学 Engine cam and production method thereof

Similar Documents

Publication Publication Date Title
KR101282483B1 (en) Wear-resistant coating and method of producing the same
KR100540962B1 (en) Sliding member and method of manufacturing thereof
US20020153210A1 (en) Plated wear surface for alloy components and methods of manufacturing the same
JPS59205473A (en) Preparation of cam shaft
KR100706387B1 (en) Coating method of engine valve cap
US7621244B2 (en) Titanium alloy tappet, manufacturing method thereof, and jig used in manufacturing tappet
JP2006257942A5 (en)
US20060213472A1 (en) Valve lifter and method of manufacturing same
JPH0436497A (en) Formation of sliding surface
JPH01106909A (en) Valve lifter made of aluminum alloy
JP2812563B2 (en) Valve lifter and method of manufacturing the same
JPH0617609A (en) Manufacture of engine tappet
JPH05306461A (en) Wear resistant sliding member of internal combustion engine
JP2002115514A (en) Aluminum alloy valve spring retainer and method of its manufacture
JP3147538B2 (en) Cam follower and manufacturing method thereof
JP3239610B2 (en) Piston / piston ring assembly
US11229940B2 (en) Method for manufacturing combined hollow camshaft by axial-compression upsetting-deformation technique
JP2001041008A (en) Valve system of four-cycle engine
JP2812561B2 (en) Valve lifter and method of manufacturing the same
JPH04221100A (en) Internal combustion engine
JPS62136593A (en) Sliding contact member having excellent workability and its production
KR20090090157A (en) Cam shaft
JPH051769A (en) Abrasion-resistant sliding member of internal combustion engine
JPH05345988A (en) Method for plating titanium alloy material
KR20010056706A (en) Manufacturing method of tappet shim for vehicle