JPS59205332A - Production of olefin from hydrocarbon - Google Patents

Production of olefin from hydrocarbon

Info

Publication number
JPS59205332A
JPS59205332A JP58080035A JP8003583A JPS59205332A JP S59205332 A JPS59205332 A JP S59205332A JP 58080035 A JP58080035 A JP 58080035A JP 8003583 A JP8003583 A JP 8003583A JP S59205332 A JPS59205332 A JP S59205332A
Authority
JP
Japan
Prior art keywords
reactor
hydrocarbons
reaction
foamed metal
foamed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58080035A
Other languages
Japanese (ja)
Inventor
Michio Oshima
大島 道雄
Mamoru Tamai
玉井 守
Naoyuki Takahashi
直之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58080035A priority Critical patent/JPS59205332A/en
Publication of JPS59205332A publication Critical patent/JPS59205332A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:The reactor provided on the inner walls, with foamed metal on which an alkali or alkaline earth metal or nickel oxide is supported, is used to effect the reaction by internal heating to produce olefins from heavy oil without concern of coking. CONSTITUTION:Foamed metal is set on the inner walls of the reactor and an alkali or alkaline earth metal or nickel oxide is supported on the foamed metal and pyrolysis of hydrocarbons is effected in the presence of steam to produce olefins. When the starting hydrocarbons are fed to the reactor, they are rapidly heated to cause conversion into methane, ethylene, propylene and so on, however, a part of undecomposed hydrocarbons reaches the walls of the reactor to be cracked into CO and H2 and a part of them reacts to form methane as a useful product and prevent coke formation. EFFECT:Since the needed heat is fed internally, the pyrolysis at high temperatures in short residential times becomes possible.

Description

【発明の詳細な説明】 本発明は、炭化水素原料よジオレフィンを製造する方法
に関する。更に詳しくは、本発明は、内熱式加熱法傾よ
シ重質油から、コーキングのおそれなしにオレフィンを
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diolefins from hydrocarbon feedstocks. More particularly, the present invention relates to a process for producing olefins from internally heated decanted heavy oils without fear of coking.

従来、エタン、プロパンをはじめとする軽質のガス状炭
化水素及びナフサ、灯軽油等の軽質油をオレフィンに転
換する方法としては、スチームクラッキングと呼称され
る管式熱分解法が、用いられていることは、周知の通り
である。この方法では熱は外部から管壁を通して、供給
されるため、伝熱速度及び、反応温度に限界があり、通
常850℃以下、滞留時間0.1〜0.5秒の反応条件
が採用されている。しかし、このような装置及び反応条
件の制約から使用できる原料は、せいぜい軽油までに限
定され、残油等の重質油には、適用できない。
Conventionally, a tube pyrolysis method called steam cracking has been used to convert light gaseous hydrocarbons such as ethane and propane, and light oils such as naphtha and kerosene into olefins. This is well known. In this method, heat is supplied from the outside through the tube wall, so there are limits to the heat transfer rate and reaction temperature, and the reaction conditions are usually 850°C or less and a residence time of 0.1 to 0.5 seconds. There is. However, due to such restrictions on equipment and reaction conditions, the raw material that can be used is limited to light oil at most, and cannot be applied to heavy oil such as residual oil.

この外部加熱方式に代わる方法として、水素あるいは、
炭化水素等の可燃ガスを、酸素により燃焼して、高温ガ
スをつくり、この高温ガスを、原料炭化水素の加熱用熱
源として炭化水素を熱分解する方法が提案されている。
As an alternative to this external heating method, hydrogen or
A method has been proposed in which combustible gas such as hydrocarbons is combusted with oxygen to produce high-temperature gas, and the high-temperature gas is used as a heat source for heating raw material hydrocarbons to thermally decompose the hydrocarbons.

この方法では、反応に必要な熱は高温ガスより、直接原
料炭化水素に供給されるため、管式熱分解法で生じる伝
熱速度及び反応温度の制限が著しく改善され、高温・短
滞留時間の反応が可能となる。
In this method, the heat required for the reaction is supplied directly to the feedstock hydrocarbon from the high-temperature gas, so the heat transfer rate and reaction temperature limitations that occur in the tube pyrolysis method are significantly improved, and the high temperature and short residence time are reduced. reaction becomes possible.

しかし、このような、内部加熱方式を用いたとしても、
原料炭化水素が、常圧残油、減圧残油等の重質油になる
と、壁面でのコーキングが激しく、そのままでは長時間
の安定運転は、困難であり、実質的に、使用できるのは
、減圧軽油等の留出油に、限定されているのが現状であ
る。
However, even if such an internal heating method is used,
When the feedstock hydrocarbon becomes heavy oil such as atmospheric residual oil or vacuum residual oil, coking on the wall is severe and stable operation for long periods of time is difficult. Currently, it is limited to distillate oils such as vacuum gas oil.

このような、重質油のりアクタ−内壁へのコーキング防
止のために、炭酸ガスのようなイナートガスで、内壁を
おおう方法が提案されている。しかし、この方法では、
飛沫として飛んでくるに未分解炭化水素の壁面への付着
を、防ぐことは困難であり、実効をあげようとすれば、
かなり大量のイナートガスをリアクター内に導入する必
要がある。その結果第一に、供給した大骨のイナートガ
スの回収設備及び、動力が増大し、第二に、原料炭化水
素の分解それ自体には、有効に作用しないイナートガス
を、反応温度まで、加熱する必要があるため、エネルギ
ー収支が、著しく悪化するという問題がある。
In order to prevent such heavy oil from forming on the inner wall of the actuator, a method of covering the inner wall with an inert gas such as carbon dioxide has been proposed. However, with this method,
It is difficult to prevent undecomposed hydrocarbons flying as droplets from adhering to walls, and if we are to be effective,
It is necessary to introduce a fairly large amount of inert gas into the reactor. As a result, firstly, the equipment and power needed to recover the supplied large-scale inert gas have increased, and secondly, it is necessary to heat the inert gas, which does not work effectively on the decomposition of raw material hydrocarbons, to the reaction temperature. Therefore, there is a problem that the energy balance deteriorates significantly.

本発明者等は、重質油からもコーキングのおそれなく、
高い安定した、オレフィン収率が得られる熱分解法を鋭
意研究した結果、リアクター内壁に、重質分の分解機能
を持った触媒を担持させたりアクタ−が、極めて有効で
あることを見出し、本発明に到達したものである。すな
わち、本発明によれば、 (1)  炭化水素の分解に必要な熱は、水素、−酸化
炭素又は、炭化水素の燃焼により生じた高温ガスにより
、内熱的に供給されるだめ、外部加熱法では困難であっ
たような高温、短滞留時間での分解が可能となり、その
結果、高いオレフィン収率が得られる、 (2)重質油からも、コーキングのおそれなく、オレフ
ィンが製造でき、安定した運転が可能となる、 (3)  反応器壁での重質分の分解により、高いガス
化率が得られ、有用成分の回収が増大する、(4)  
触媒は、発泡金属内に担持することにより、容易に、リ
アクター内壁に付設でき、しかも、反応壁だけであるか
ら、その量は極めて少なく、しかも、全体の熱分解反応
にはほとんど影響しない、 等の利点がある。
The present inventors have discovered that even from heavy oil there is no fear of coking.
As a result of intensive research into a thermal decomposition method that can provide a high and stable olefin yield, we discovered that supporting a catalyst on the inner wall of the reactor, which has the function of decomposing heavy components, is extremely effective. This invention has been achieved. That is, according to the present invention, (1) The heat necessary for decomposing hydrocarbons is supplied internally by hydrogen, carbon oxide, or high-temperature gas generated by combustion of hydrocarbons; (2) Olefins can be produced from heavy oil without the risk of coking; (3) Decomposition of heavy components on the reactor wall provides a high gasification rate and increases the recovery of useful components. (4)
By supporting the catalyst in foam metal, it can be easily attached to the inner wall of the reactor, and since it is only on the reaction wall, its amount is extremely small and has almost no effect on the overall thermal decomposition reaction. There are advantages.

本発明について更に詳しく説明すると、まず、反応に必
要な熱は、水素、−酸化炭素又は炭化水素を酸素により
燃焼することによシ供給される。すなわち、上記燃焼に
よシ、1300〜2500℃の高温燃焼ガスを製造し、
この高温ガス中に、原料である炭化水素を供給する。そ
の結果、原料炭化水素は、急速に加熱されて、所定の反
応温度となり、分解して、メタン、エチレン、プロピレ
ン等に転化する。この時、原料又は未分解炭化水素の一
部が、反応器の壁に到達するが、反応器壁に存在する触
媒によりOnHm + nH2O−+ neo + (
m+2n) / 2 H2の反応が生じ、OOとH,を
生成して分解する。
To explain the present invention in more detail, first, the heat necessary for the reaction is supplied by burning hydrogen, carbon oxide, or hydrocarbon with oxygen. That is, by the above combustion, a high temperature combustion gas of 1300 to 2500°C is produced,
Hydrocarbons, which are raw materials, are fed into this high-temperature gas. As a result, the feedstock hydrocarbon is rapidly heated to a predetermined reaction temperature, decomposed and converted into methane, ethylene, propylene, etc. At this time, a part of the raw material or undecomposed hydrocarbons reaches the wall of the reactor, but due to the catalyst present on the wall of the reactor, OnHm + nH2O- + neo + (
m+2n)/2H2 reaction occurs, producing OO and H, which are decomposed.

この00  とH! は一部更に反応して(30+ 5
H2→ OH4+ H,0の反応によシ、メタンに転化
する。このように、反応器壁では触媒の作用により、未
分解炭化水素が分解され、有価な00 、 H,、O’
H4等に転化すると共に、コーキング物の生成が抑制さ
れる。
This 00 and H! partially reacts further (30 + 5
It is converted to methane by the reaction H2→OH4+ H,0. In this way, undecomposed hydrocarbons are decomposed on the reactor wall by the action of the catalyst, and valuable 00, H,, O'
While converting to H4 etc., the generation of coking substances is suppressed.

分解反応に必要なスチームは、高温燃焼ガスの生成の際
に一部生成するが、別途系外から補給することが望まし
い。また、生成した、Co  及び水素は、メタンにし
て利用することもできるが、前に述べた反応熱供給用の
内熱源として使うこともできる。また、水素の生成は、
重質油を分解する場合系内に不足する水素を補って、オ
レフィン収率を増加させる効果をもつ。
A portion of the steam required for the decomposition reaction is generated during the generation of high-temperature combustion gas, but it is desirable to supply it separately from outside the system. Further, the produced Co 2 and hydrogen can be used as methane, but they can also be used as the internal heat source for supplying the reaction heat mentioned above. In addition, the generation of hydrogen is
When cracking heavy oil, it has the effect of increasing the olefin yield by supplementing the hydrogen that is lacking in the system.

触媒としては、アルカリ金属又は、アルカリ土類金属の
酸化物、又は酸化ニッケルのうちから選ばれる酸化物が
好ましく、特に酸化カルシウムが望ましい。これらの触
媒を反応器壁に付設するため、触媒は発泡金属に、担持
された後、この発泡金属を反応器内壁にとシつける。
The catalyst is preferably an oxide selected from oxides of alkali metals or alkaline earth metals, or nickel oxide, and calcium oxide is particularly desirable. In order to attach these catalysts to the reactor wall, the catalyst is supported on a foamed metal, and then this foamed metal is attached to the reactor inner wall.

発泡金属とは、発泡樹脂に金属をメッキした後、高温で
焼成することにより、有機物である樹脂を焼散させるこ
とによって得られるもので、例えば発泡ポリスチレンに
Nl 、 Or  などをメッキし、これを焼成すると
、発泡クロム、発泡ニッケルになる。
Foamed metal is obtained by plating metal on foamed resin and then firing it at high temperature to burn off the organic resin.For example, foamed polystyrene is plated with Nl, Or, etc. When fired, it becomes foamed chromium and foamed nickel.

分解ガスは急冷により反応を凍結した後、公知の精製分
離系に入り、製品として取り出される。以上、この方法
は、スチームの存在は不可欠であるが、他の水素、メタ
ン等の共存ガスの存在を何ら制限するものではない。
After the cracked gas freezes the reaction by rapid cooling, it enters a known purification separation system and is taken out as a product. As described above, although the presence of steam is essential for this method, the presence of other coexisting gases such as hydrogen and methane is not restricted in any way.

以下に本発明の1実施例を示す。An example of the present invention is shown below.

〔実施例〕〔Example〕

上部に燃焼室、下部に急冷部を持った反応器に、中東系
減圧残油を供給し、熱分解した。燃焼室には水素を供給
し、これを酸素を含むスチームの存在下で燃焼した。生
成した高温ガスは反応器入口で、予熱された原料残油と
接触させた。分解ガスは、反応器下部に設置された、急
冷部に設けられた水噴射ノズルにより直接冷却して、収
率を検討した。反応器内壁には、各種触媒を担持した、
発泡クロムをとりつけた。結果を表1に示す。
Middle Eastern vacuum residue was fed into a reactor with a combustion chamber in the upper part and a quenching part in the lower part, and was thermally decomposed. The combustion chamber was supplied with hydrogen, which was combusted in the presence of oxygen-containing steam. The generated high-temperature gas was brought into contact with preheated raw material residual oil at the reactor inlet. The cracked gas was directly cooled by a water injection nozzle provided in a quenching section installed at the bottom of the reactor, and the yield was examined. Various catalysts are supported on the inner wall of the reactor.
I installed chrome foam. The results are shown in Table 1.

表      1 反応温度1000℃、滞留時間10ミリ秒チ1ニア時間
後の発泡メタルの重量変化より計算 蒼2:2時間で閉そく 表1より明らかなように、触媒を担持させることによシ
、そうでない場合(例5)に比べて、著しく、ガス化率
が向上し、コークスの生成が抑制されることがわかる。
Table 1: Reaction temperature: 1000°C, residence time: 10 milliseconds Calculated from weight change of foamed metal after 1 hour.As is clear from Table 1, by supporting the catalyst, It can be seen that the gasification rate is significantly improved and the generation of coke is suppressed, compared to the case where it is not used (Example 5).

復代理人  内 1)  明 復代理人  恢 原 亮 −Sub-agent: 1) Akira Sub-agent Ryo Hara -

Claims (1)

【特許請求の範囲】[Claims] 炭化水素をスチームの存在下で内熱的に熱分解してオレ
フィンを製造する方法において、反応器内壁に、発泡金
属を付設し、この発泡金属中に、アルカリ金属酸化物、
アルカリ土類金属酸化物又は酸化ニッケルのうちから選
ばれた少くとも1種の酸化物を担持させることを特徴と
するオレフィンの製造法。
In a method for producing olefins by internally thermally decomposing hydrocarbons in the presence of steam, a foamed metal is attached to the inner wall of the reactor, and alkali metal oxides, alkali metal oxides,
A method for producing an olefin, which comprises supporting at least one oxide selected from alkaline earth metal oxides and nickel oxide.
JP58080035A 1983-05-10 1983-05-10 Production of olefin from hydrocarbon Pending JPS59205332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58080035A JPS59205332A (en) 1983-05-10 1983-05-10 Production of olefin from hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58080035A JPS59205332A (en) 1983-05-10 1983-05-10 Production of olefin from hydrocarbon

Publications (1)

Publication Number Publication Date
JPS59205332A true JPS59205332A (en) 1984-11-20

Family

ID=13707001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58080035A Pending JPS59205332A (en) 1983-05-10 1983-05-10 Production of olefin from hydrocarbon

Country Status (1)

Country Link
JP (1) JPS59205332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055637A1 (en) * 1999-05-27 2000-11-29 Haldor Topsoe A/S Synthesis gas production by steam reforming
EP1584603A3 (en) * 1999-05-27 2007-06-13 Haldor Topsoe A/S Steam reforming reactor for synthesis gas production
JP2014509328A (en) * 2010-12-22 2014-04-17 ゼネラル・エレクトリック・カンパニイ Hydrocarbon cracking method and reactor, and reactor coating method
CN107511482A (en) * 2017-09-12 2017-12-26 成都新柯力化工科技有限公司 A kind of method that foam metal is prepared by coke composite foamable agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055637A1 (en) * 1999-05-27 2000-11-29 Haldor Topsoe A/S Synthesis gas production by steam reforming
US6576158B1 (en) 1999-05-27 2003-06-10 Haldor Topsoe A/S Synthesis gas production by steam reforming
EP1584603A3 (en) * 1999-05-27 2007-06-13 Haldor Topsoe A/S Steam reforming reactor for synthesis gas production
JP2014509328A (en) * 2010-12-22 2014-04-17 ゼネラル・エレクトリック・カンパニイ Hydrocarbon cracking method and reactor, and reactor coating method
JP2016222922A (en) * 2010-12-22 2016-12-28 ゼネラル・エレクトリック・カンパニイ Method and reactor for cracking hydrocarbon and method for coating reactor
US9850432B2 (en) 2010-12-22 2017-12-26 General Electric Company Method and reactor for cracking hydrocarbon and method for coating the reactor
CN107511482A (en) * 2017-09-12 2017-12-26 成都新柯力化工科技有限公司 A kind of method that foam metal is prepared by coke composite foamable agent

Similar Documents

Publication Publication Date Title
US4115467A (en) Hydrocarbon conversion process
US4527003A (en) Thermal cracking process for producing olefins from hydrocarbons
US6365792B1 (en) Preparation of acetylene and synthesis gas
JP5816099B2 (en) Adiabatic reactor for olefin production
US4725349A (en) Process for the selective production of petrochemical products
NO157756B (en) PROCEDURE AND APPARATUS FOR EXAMINATION OF PROPERTIES AND BASIC INFORMATION SURROUNDING A BORING HOLE.
US3252774A (en) Production of hydrogen-containing gases
US3765851A (en) Gas production
US2371147A (en) Preparation op unsaturated ali
JPH0416512B2 (en)
JPH0244355B2 (en)
JPS59205332A (en) Production of olefin from hydrocarbon
US3140323A (en) Process for production of acetylene and other products by partial combustion of hydrocarbons
SU1616954A1 (en) Method of producing lower olefins
EP0119158B1 (en) Thermal cracking process for producing olefins and synthetic gas from hydrocarbons
US20180029955A1 (en) Method and apparatus for producing hydrocarbons
JPS6147794A (en) Method of cracking to produce petrochemical product from hydrocarbon
WO2003033444A1 (en) High temperature hydrocarbon cracking
US3704332A (en) Pyrolysis of hydrocarbons
RU2232791C1 (en) Method of pyrolysis of liquid hydrocarbons in tubular furnaces
CA1146597A (en) Crude oil cracking using partial combustion gases
JPS60235890A (en) Method for thermally cracking hydrocarbon to produce petrochemicals
JPS60163996A (en) Thermal cracking of heavy hydrocarbon
JPH0688078A (en) Method of thermal cracking of coal and heavy tar
GB323864A (en) Improved process for obtaining a mixture of hydrogen and carbon monoxide by the decomposition of hydrocarbon gases or vapours in the presence of steam