JPS59204665A - Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product - Google Patents

Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product

Info

Publication number
JPS59204665A
JPS59204665A JP8019283A JP8019283A JPS59204665A JP S59204665 A JPS59204665 A JP S59204665A JP 8019283 A JP8019283 A JP 8019283A JP 8019283 A JP8019283 A JP 8019283A JP S59204665 A JPS59204665 A JP S59204665A
Authority
JP
Japan
Prior art keywords
carbon black
furnace
cooling
electrically conductive
conductive carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8019283A
Other languages
Japanese (ja)
Other versions
JPS6158498B2 (en
Inventor
Toshio Nakada
仲田 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP8019283A priority Critical patent/JPS59204665A/en
Publication of JPS59204665A publication Critical patent/JPS59204665A/en
Publication of JPS6158498B2 publication Critical patent/JPS6158498B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce electrically conductive carbon black (CB) economically as a by-product of furnace CB, by contacting hot gas stream suspending CB produced by furnace process with a cold wall thereby depositing electrically conductive CB on the wall surface, and collecting the furnace CB from the residual gas stream. CONSTITUTION:The gas stream suspending carbon black produced by the thermal cracking of stock oil in the cracking furnace, is cooled with water sprayed through the spray nozzle 4 for quenching, and introduced through the line 9 to the bottom of the cooling reaction column 5. The introduced hot suspension of carbon black is transferred upward while being brought into contact with the cold reaction column wall cooled by the function of the cooling jacket 6, and electrically conductive fine carbon black particles having developed chain structure are deposited on the cooled wall surface. The remaining carbon black stream transferred to the top of the cold reaction column 5 is introduced through the line 10 into the collection system such as bag filter, etc. and collected as the furnace carbon black of normal grade.

Description

【発明の詳細な説明】 電導性を有するカーボンブラック品種としてはアセチレ
ンブラックが古くから知られており、また最近では、合
成原料ガス生産時に生ずる副生カーボンブラックを少量
の酸素を含むか含まない不活性雰囲気下で熱処理(約3
00〜900℃)したものが有用されているが、これら
は原料もしくけ製造工程の面からそれぞれ生産原価の高
騰化をもたらす欠点がある。
Detailed Description of the Invention Acetylene black has been known for a long time as a type of carbon black that has electrical conductivity, and recently, by-product carbon black produced during the production of synthetic raw material gas has been used as a carbon black with or without a small amount of oxygen. Heat treatment under active atmosphere (approximately 3
00 to 900°C) are useful, but these have the disadvantage of raising production costs in terms of raw materials and manufacturing processes.

本発明は、通常の7アーネスカーボンブラツクを製造す
るプロセス段階において安価に電導性カーボンブラック
を併産する新規な方法および装置を提供するものである
The present invention provides a novel method and apparatus for co-producing conductive carbon black at low cost during the process step of manufacturing conventional 7 Arness carbon black.

すなわち、本発明の製法的特徴は、ファーネス法により
生成した高温のカーボンブラック懸濁ガス流を冷却壁と
接触させてその壁面に電導性カーボンブラックを析出し
、余剰のカーボンブラック懸濁ガス流から常法により通
常品種のカーボンブラックを捕集する工程から構成され
る。
That is, the manufacturing method of the present invention is characterized by bringing a high-temperature carbon black suspended gas flow generated by a furnace method into contact with a cooling wall to precipitate conductive carbon black on the wall surface, and removing excess carbon black from the surplus carbon black suspended gas flow. It consists of the process of collecting ordinary types of carbon black using conventional methods.

以下、本発明の製造法と装置を例示の製造装置図(第1
図)に基づいて説明する。
Below, the manufacturing method and apparatus of the present invention are illustrated in the manufacturing equipment diagram (first
The explanation will be based on Figure).

図において、1は耐火材および鋼製のカバーにより構築
された常用の円筒型発生炉で、炉頭部に燃焼バーナーお
よび原料噴射用のノズル2と切線方向に増刊けられた空
気導入ダクト3を、また下流域にはクエンチ用スプレー
ノズル4を備えた構造をもつ。5は、外面に空冷ジャケ
ット6、内部にスクレーパー装置7、底部にホッパ一部
位8を各配設した冷却反応塔である。該冷却反応塔5は
導管9を介して発生炉1の下流端と接続されており、そ
の内部を高温のカーボンブラック懸濁ガス流が冷却され
た内壁面と接触しながら上昇流通する機構を有している
。冷却反応塔5の上部には導管10が接続されており、
図示しない捕集系統し くバッグフィルター装置)と連結Iている。また、ホッ
パ一部位8の下端部はロータリーフィーダー15を介し
て図示しない粉砕機およびストレージタンクに通じるス
クリューコンベア14に接続する。
In the figure, 1 is a regular cylindrical generating furnace constructed with a cover made of refractory material and steel, with a combustion burner and a nozzle 2 for material injection at the head of the furnace, and an air introduction duct 3 extended in the tangential direction. , and has a structure equipped with a quenching spray nozzle 4 in the downstream region. 5 is a cooling reaction tower having an air cooling jacket 6 on the outside, a scraper device 7 inside, and a hopper section 8 at the bottom. The cooling reaction tower 5 is connected to the downstream end of the generating furnace 1 via a conduit 9, and has a mechanism in which a high-temperature carbon black suspended gas stream flows upward while contacting the cooled inner wall surface. are doing. A conduit 10 is connected to the upper part of the cooling reaction tower 5,
It is connected to a collection bag filter device (not shown). Further, the lower end of the hopper part 8 is connected via a rotary feeder 15 to a screw conveyor 14 that communicates with a crusher and a storage tank (not shown).

冷却反応塔5は単独であってもよいが、連続操業化には
図示のようにこれを複数個設置し、導管9および10に
介設したカーボンブラック懸濁ガス流の流通切換パルプ
11.12の操作により交互に運転しえる構造に設計し
ておくことが望ましい。
The cooling reaction tower 5 may be provided alone, but for continuous operation, a plurality of these may be installed as shown in the figure, and the flow switching pulp 11.12 of the carbon black suspended gas flow interposed in the conduits 9 and 10 is used. It is desirable to design the structure so that it can be operated alternately by operating the

上記の構造および機構を有する装置において、発生炉l
で原料油の熱分解反応により生成したカーボンブラック
懸濁ガス流はクエンチ用スプレーノズル4からの散水に
より850℃以下に冷却したのち、4管9を経て冷却反
応塔5の下部に導入される。導入された高温のカーボン
ブラック懸濁ガス流は空冷ジャケット6の機能によって
冷却された冷却反応塔内壁と接触しながら上昇するが、
この過程で著るしく鎖状構造の発達した電導性のカーボ
ンブラック微粒体が冷却壁面に析出する。
In the apparatus having the above structure and mechanism, the generator l
The carbon black suspended gas stream generated by the thermal decomposition reaction of the feedstock oil is cooled to below 850° C. by water spraying from the quenching spray nozzle 4, and then introduced into the lower part of the cooling reaction tower 5 through four pipes 9. The introduced high-temperature carbon black suspended gas flow rises while contacting the inner wall of the cooling reaction tower, which is cooled by the function of the air cooling jacket 6.
During this process, conductive carbon black particles with a significantly developed chain structure are deposited on the cooling wall surface.

析出の条件としては、導入時の高温カーボンブラック懸
濁ガス流の温度を450℃以上に保ち、該ガス流と冷却
壁の温度差を少くとも100Cに設定するとともに冷却
反応塔を上昇流通するガス流速を35m/秒以下に制御
することが望ましい。
The conditions for precipitation are that the temperature of the high temperature carbon black suspended gas stream at the time of introduction is maintained at 450°C or higher, the temperature difference between the gas stream and the cooling wall is set to at least 100°C, and the gas flowing upward through the cooling reaction tower is It is desirable to control the flow velocity to 35 m/sec or less.

最も好適なケースは、ガス流温度500〜800℃、冷
却壁温度150−250℃、ガス流速20−10?7纂
/秒の各範囲に設定することで、これら条件を与えるこ
とにより良性状の電導性カーボンブラックを効率よく析
出することができる。
The most suitable case is to set the gas flow temperature in the range of 500 to 800℃, the cooling wall temperature in the range of 150 to 250℃, and the gas flow rate in the range of 20 to 10 to 7 threads/second. Conductive carbon black can be efficiently deposited.

冷却壁面に電導性カーボンブラックが析出する原理、機
構などについては未だ十分解明するに至っていないが、
カーボンブラック懸濁ガス流中に存在する微細なカーボ
ンブラック粒子がガス流と器壁の温度差により物理的に
壁面に捕促されること、該低温域下でガス流中の一酸化
炭素と水素がCO+H,→H,O+Cの反応を生じて化
学的に炭素を遊離すること、さらに壁面に析出したカー
ボンブラック粒子が高温熱履歴を受けて酸素あるいは活
性水素の離脱、水分および二酸化炭素による酸化等の経
時的作用を営むなどの諸要因が複合的に働く現象に基づ
くものと推測される。
Although the principle and mechanism by which conductive carbon black is deposited on cooling walls has not yet been fully elucidated,
The fine carbon black particles present in the carbon black suspended gas stream are physically captured by the wall surface due to the temperature difference between the gas stream and the vessel wall, and in this low temperature range, carbon monoxide and hydrogen in the gas stream are The reactions of CO+H, →H, and O+C occur to chemically liberate carbon, and the carbon black particles deposited on the wall undergo high-temperature thermal history, causing desorption of oxygen or active hydrogen, oxidation by moisture and carbon dioxide, etc. It is assumed that this phenomenon is based on a phenomenon in which various factors, such as those that act over time, act in a complex manner.

冷却反応塔5を上昇した余剰のカーボンブラック懸濁ガ
ス流は、導管10を経由してバッグフィルター室などの
捕集系統に至り常法により通常品種のファーネスカーボ
ンブラックとして生産回収される。
The surplus carbon black suspended gas flow rising from the cooling reaction tower 5 reaches a collection system such as a bag filter chamber via a conduit 10, and is produced and recovered as a normal type of furnace carbon black by a conventional method.

冷却壁に析出した電導性カーボンブラックは、所定の時
間操業したのちスクレーパー装置7を作動させてホッパ
一部位8に落下し、次いでロータリーフィーダー13を
開いてスクリューコンベア14により回収する。冷却反
応塔5を複数個設置した構造では、流通切換バルブ11
.12の開閉を間歇的に切換えて閉止した冷却反応塔に
ついて上記に準じた回収操作をおこなう。この切換えお
よび回収操作を交互におこなうことにより連続操業化が
可能となる。
After operating for a predetermined time, the conductive carbon black deposited on the cooling wall falls into the hopper part 8 by operating the scraper device 7, and then is recovered by the screw conveyor 14 by opening the rotary feeder 13. In a structure in which a plurality of cooling reaction towers 5 are installed, the flow switching valve 11
.. The recovery operation similar to the above was performed for the cooling reaction tower which was closed by intermittently switching the opening and closing of No. 12. Continuous operation is possible by performing this switching and recovery operation alternately.

このようにして併産された電導性カーボンブラックは、
見掛けの粒子径の割に大きな比表面積と高度に発達した
粒子鎖状構造を備えてお秒、定圧縮下での固有電気伝導
度はアセチレンブラックに匹敵する高電導特性を示す。
The conductive carbon black co-produced in this way is
It has a large specific surface area relative to its apparent particle size and a highly developed particle chain structure, and exhibits high specific electrical conductivity comparable to acetylene black under constant compression.

したがって、ゴム、プラスチックその他各種材料の導電
性充填材として極めて有用である。
Therefore, it is extremely useful as a conductive filler for rubber, plastic, and other various materials.

本発明によれば、通常のファーネスカーボンブラック製
造プロセス過程に簡易な工程ならびに装置を付加するこ
とにより高性能の電導性カーボンブラックを安価に併産
することができるから、産業上極めて有益である。
According to the present invention, high-performance conductive carbon black can be co-produced at low cost by adding simple steps and equipment to the ordinary furnace carbon black manufacturing process, which is extremely useful industrially.

実施例1゜ 炉頭部に軸方向の燃焼バーナーおよび原料噴射用のノズ
ル2と切線方向空気導入ダクト3を、また下流域にクエ
ンチ用スプレーノズル4を備えた直径650闘、長さ1
0.OOO+1IIIの円筒型発生炉1の後部に、内部
にスクレーバー装置7を宿し外面に空冷ジャケット6を
取付けた内径394關、有効長5000mi+、空冷側
伝熱面積23.19tyt’の底部ホッパー状冷却反応
塔5を設置し、前記発生炉1の下流端と冷却反応塔の下
部を導管9により接続した。冷却反応塔5の下端部はロ
ータリーフィーダー13を介してスクリューコンベア1
4に接続し、その上部にはバッグフィルター室に連結す
る導管10を接続した。
Example 1: A furnace with a diameter of 650 mm and a length of 1, equipped with an axial combustion burner, a nozzle 2 for material injection, and a tangential air introduction duct 3 in the furnace head, and a quenching spray nozzle 4 in the downstream region.
0. At the rear of the OOO+1III cylindrical generating furnace 1, there is a bottom hopper-shaped cooling reaction with an inner diameter of 394 cm, an effective length of 5000 m+, and an air-cooled side heat transfer area of 23.19 tyt', with a scraper device 7 housed inside and an air cooling jacket 6 attached to the outer surface. A column 5 was installed, and a conduit 9 connected the downstream end of the generating furnace 1 and the lower part of the cooling reaction column. The lower end of the cooling reaction tower 5 is connected to the screw conveyor 1 via a rotary feeder 13.
4, and a conduit 10 connected to the bag filter chamber was connected to the upper part thereof.

上記構造の装置を用い、N−787(GPF)級ファー
ネスカーボンブラックを製造目的とする条件により操業
運転を実施した。
Using the apparatus having the above structure, operation was carried out under conditions for producing N-787 (GPF) class furnace carbon black.

適用した燃料油および原料油(芳香族炭化水素)の組成
をそれぞれ表■、表■に、また設定した製造条件を表1
に示した。
The compositions of the applied fuel oil and feedstock oil (aromatic hydrocarbons) are shown in Tables ■ and Table ■, respectively, and the set manufacturing conditions are shown in Table 1.
It was shown to.

表1 燃料油の組成 表1I  原料油の組成 表Ill  製造条件 (注)*カーボンブラック懸濁ガス流 操業を5時間継続後、冷却反応塔5の器壁に堆積した電
導性カーボンブラックをスクレーパー装置7を作動させ
て掻き落し、ロータリーフィーダー13を開口してスク
リューコンベア14により回収した。一方、冷却反応塔
5を上昇した余剰のカーボンブラック懸濁ガス流はバッ
グフィルター室に導き、常法によりカーボンブラック粒
子として捕集した。
Table 1 Composition Table of Fuel Oil 1I Composition Table of Feedstock Oil Production Conditions (Note) *After continuing the carbon black suspended gas flow operation for 5 hours, the conductive carbon black deposited on the wall of the cooling reaction tower 5 was removed using a scraper device. 7 was operated to scrape off the waste, the rotary feeder 13 was opened, and the waste was collected by the screw conveyor 14. On the other hand, the excess carbon black suspended gas flow rising through the cooling reaction tower 5 was led to a bag filter chamber and collected as carbon black particles by a conventional method.

このようにして併産された電導性カーボンブラックなら
びにN−787(GPi)級ファーネスカーボンブラッ
クの各種特性を測定し、結果を対比して表■に示した。
Various properties of the electrically conductive carbon black and N-787 (GPi) class furnace carbon black co-produced in this way were measured, and the results are compared and shown in Table 3.

なお、比較のために市販のアセチレンブラックの特性を
併載した。
For comparison, the characteristics of commercially available acetylene black are also listed.

表■ (注)*′デンカブラック′〔電気化学工業■〕表■の
結果から、本発明で併産される電導性カーボンブラック
は同時に得られるファーネスカーボンブランクに比べ電
気伝導性が著るしく高く、ア、、セチレンブラソクに匹
敵する電気抵抗値を示すことが判明する。
Table ■ (Note) *'Denka Black' [Denki Kagaku Kogyo ■] From the results in Table ■, the conductive carbon black co-produced by the present invention has significantly higher electrical conductivity than the furnace carbon blank obtained at the same time. , A. It has been found that it exhibits an electrical resistance value comparable to that of setylene brazol.

実施例2 実施例1と同一の装置、燃料油ならびに原料油を用い、
原料油損7 ’98 % / hr、燃料油量78’4
゜全空気i 1873 Nft?/br、発生ガス量3
494N、//hr(Wet)の条件(製造対象品a 
、 N−33゜(HAF))でカーボンブラック懸濁ガ
ス流の温度、流速および冷却反応塔壁面の温度などの因
子を変えて操業をおこなった。
Example 2 Using the same equipment, fuel oil, and raw material oil as in Example 1,
Feedstock oil loss 7'98%/hr, fuel oil amount 78'4
゜Total air i 1873 Nft? /br, amount of gas generated 3
494N, //hr (Wet) conditions (product to be manufactured a)
, N-33° (HAF)) while changing factors such as the temperature and flow rate of the carbon black suspended gas stream and the temperature of the cooling reaction tower wall surface.

製造されたファーネスカーボンブラックの特性は、よう
素吸着MC86q/f、吸油量(J工S−B法)123
 cc/1oof、電気抵抗(50Kg/−圧縮時)0
.560−αであったが、併産された電導性カーポンプ
フックの特性は上記条件因子の変更により相違した。そ
の結果を表Vに示した。
The characteristics of the produced furnace carbon black are: iodine adsorption MC86q/f, oil absorption (J-Ko S-B method) 123
cc/1oof, electrical resistance (50Kg/- when compressed) 0
.. 560-α, but the characteristics of the co-produced conductive car pump hook were different due to changes in the above condition factors. The results are shown in Table V.

表■ (注)*カーボンブラック懸濁ガス流 表■の結果は各側ともに高位の電気伝導性を示すもので
あったが、ガス流の温度が450℃を下期る例(Run
 Nn 1 )およびガス流と冷却反応塔壁面の温度差
が100℃未満の例(Run1%2)では電導性カーボ
ンブラックの析出度合が低下し、またガス流速が35m
/秒を越える例(Run Nn3)を含めこれら3例に
おいては電気抵抗が若干増大する傾向が認められた。
Table ■ (Note) *The results of the carbon black suspended gas flow table ■ show high electrical conductivity on both sides, but in an example where the gas flow temperature is below 450℃ (Run
In cases where the temperature difference between the gas flow and the cooling reaction tower wall was less than 100°C (Run 1%2), the degree of precipitation of conductive carbon black decreased, and the gas flow rate was 35 m
In these three cases, including the case where the resistance exceeded 1/sec (Run Nn3), a tendency for the electrical resistance to increase slightly was observed.

第2図および第3図は、本実施例で得られたファーネス
カーボンブラックおよび電導性カーボンブラック(uu
nNn4)の電子顕微鏡写真(倍率40、000倍)で
ある。第5図の電導性カーボンブラックは、同時に製造
されたファーネスカーボンブラックに比べ著るしく発達
した粒子凝集性状を示すことが観察される。
Figures 2 and 3 show the furnace carbon black and conductive carbon black (uu
This is an electron micrograph (40,000x magnification) of nNn4). It is observed that the conductive carbon black of FIG. 5 exhibits significantly more developed particle agglomeration properties than the simultaneously produced furnace carbon black.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る製造装置の一実施例を示した縦
断面略図である。第2図および第3図は、それぞれ本発
明により得られたファーネスカーボンブラックおよび電
導性カーボンブラックの粒子構造を示す電子顕微鏡写真
(図面代用写真)である。 第1図の符号説明−:1・・・発生炉、5・・・冷却反
応塔、6・・・空冷ジャケット、7・・・スクレーパー
装置、8・ホッパ一部位、  11.12・・・流通切
換バルブ。 13・・ロータリーフィーダー、ト←・・スクリューコ
ンベア。 特許出願人 東海カーボン株式会社 代理人弁理士高畑正也
FIG. 1 is a schematic vertical cross-sectional view showing an embodiment of a manufacturing apparatus according to the present invention. FIGS. 2 and 3 are electron micrographs (photographs substituted for drawings) showing the particle structures of furnace carbon black and conductive carbon black obtained by the present invention, respectively. Explanation of symbols in Fig. 1: 1...Generation furnace, 5...Cooling reaction tower, 6...Air cooling jacket, 7...Scraper device, 8.One part of hopper, 11.12...Distribution switching valve. 13...Rotary feeder, ←...Screw conveyor. Patent applicant Masaya Takahata, patent attorney representing Tokai Carbon Co., Ltd.

Claims (1)

【特許請求の範囲】 1、ファーネス法により生成した高温のカーボンブラッ
ク懸濁ガス流を冷却壁と接触させてその壁面に電導性カ
ーボンブラックを析出し、余剰のカーボンブラック懸濁
ガス流から常法により通常品種のカーボンブラックを捕
集する工程からなる電導性カーボンブラックを併産する
ファーネスカーボンブラックの製造法。 2450℃以上の高温カーボンブラック懸濁ガス流を少
くとも10]Cの温度差をもつ冷却壁に35m/秒以下
の流速で接触させる特許請求の範囲第」項記載の電導性
カーボンブラックを併産するファーネスカーボンブラッ
クの製造法。 1発生炉1の下流端と、空冷ジャケット6、スクレーパ
ー装置7およびポツパ一部位8を各配設しその内部を高
温カーボンブラック懸濁ガス流が冷却壁と接触しながら
上書流通する機構の冷却反応塔5とを導管9を介して接
続し、前記冷却反応塔5の上部に捕集系統と連結する導
管10を接続してなる構造の電導性カーボンブラックを
併産するファーネスカーボンブラックの製造装置。 毛冷却反応塔5を複数個設置し、各接続導管にカーボン
ブラック懸濁ガス流の流通切換バルブ11.12を介設
する特許請求の範囲第3項記載の電導性カーボンブラッ
クの製造装置。
[Claims] 1. A high-temperature carbon black suspended gas stream generated by the furnace method is brought into contact with a cooling wall to deposit conductive carbon black on the wall surface, and the surplus carbon black suspended gas stream is extracted by a conventional method. A method for producing furnace carbon black that simultaneously produces conductive carbon black, which consists of a process of collecting ordinary types of carbon black. Co-production of conductive carbon black according to claim 1, in which a high-temperature carbon black suspension gas flow of 2450° C. or higher is brought into contact with a cooling wall having a temperature difference of at least 10] C at a flow rate of 35 m/sec or less A method for producing furnace carbon black. 1 A cooling mechanism in which a downstream end of the generating furnace 1, an air-cooling jacket 6, a scraper device 7, and a pot section 8 are arranged, and a high-temperature carbon black suspended gas flow flows over the inside while contacting the cooling wall. Furnace carbon black manufacturing apparatus that co-produces conductive carbon black, which has a structure in which a reaction tower 5 is connected to the reaction tower 5 via a conduit 9, and a conduit 10 connected to a collection system is connected to the upper part of the cooling reaction tower 5. . 4. The apparatus for producing electrically conductive carbon black according to claim 3, wherein a plurality of hair cooling reaction towers 5 are installed, and each connecting conduit is provided with a flow switching valve 11, 12 for a flow of carbon black suspended gas.
JP8019283A 1983-05-10 1983-05-10 Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product Granted JPS59204665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8019283A JPS59204665A (en) 1983-05-10 1983-05-10 Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8019283A JPS59204665A (en) 1983-05-10 1983-05-10 Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product

Publications (2)

Publication Number Publication Date
JPS59204665A true JPS59204665A (en) 1984-11-20
JPS6158498B2 JPS6158498B2 (en) 1986-12-11

Family

ID=13711513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8019283A Granted JPS59204665A (en) 1983-05-10 1983-05-10 Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product

Country Status (1)

Country Link
JP (1) JPS59204665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264869A (en) * 1985-07-16 1987-03-23 ベラ・アンシユタルト Method and apparatus for manufacture of electroconductive carbon black with small quantity of ash content

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264869A (en) * 1985-07-16 1987-03-23 ベラ・アンシユタルト Method and apparatus for manufacture of electroconductive carbon black with small quantity of ash content

Also Published As

Publication number Publication date
JPS6158498B2 (en) 1986-12-11

Similar Documents

Publication Publication Date Title
US1857799A (en) Production of water gas
DE3019937C2 (en)
KR20150011353A (en) Removing carbon nanotubes from a continuous reactor effluent
US2619415A (en) Supply of heat to fluidized solids beds for the production of fuel gas
JP3816017B2 (en) Tubular carbon material production apparatus, production equipment, and carbon nanotube production method
JP2888487B2 (en) Method for producing carbon black
US2443854A (en) Fluidized-solid process for forming carbon disulfide
CN107500269A (en) A kind of high temperature purification equipment of high-purity CNT or graphite powder and preparation method thereof
JPS59204665A (en) Method and apparatus for producing furnace carbon black and giving electrically conductive carbon black as by-product
US2794709A (en) Preparation of carbon black and hydrogen
JPH0563407B2 (en)
JPH0473472B2 (en)
KR101738168B1 (en) Integrated Gasification Apparatus for Carbonaceous Fuel
JP2832734B2 (en) Method for producing carbon black
KR101960578B1 (en) Method and system for gasifying carbon carriers and further treating the produced gases
US2495925A (en) Process of producing carbon black products
US4078989A (en) Coal conversion process
JP4462834B2 (en) Method and apparatus for producing carbon black
JP3400498B2 (en) Method for producing carbon black
US2248509A (en) Method for producing carbon bisulphide
US911494A (en) Process of purifying gas.
US1490469A (en) Process of and apparatus for making gas black
US389567A (en) Apparatus for the manufacture of gas
GB2025453A (en) Recovery of ungasified solid fuel particles from suspension in water
JP3908511B2 (en) Carbon black manufacturing method and apparatus