JPS592041B2 - Drive signal correction method for shaking table device - Google Patents

Drive signal correction method for shaking table device

Info

Publication number
JPS592041B2
JPS592041B2 JP52062855A JP6285577A JPS592041B2 JP S592041 B2 JPS592041 B2 JP S592041B2 JP 52062855 A JP52062855 A JP 52062855A JP 6285577 A JP6285577 A JP 6285577A JP S592041 B2 JPS592041 B2 JP S592041B2
Authority
JP
Japan
Prior art keywords
transfer function
waveform
input
acceleration
vibration table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52062855A
Other languages
Japanese (ja)
Other versions
JPS53148674A (en
Inventor
克哉 五十嵐
憲彦 足立
外気晴 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP52062855A priority Critical patent/JPS592041B2/en
Publication of JPS53148674A publication Critical patent/JPS53148674A/en
Publication of JPS592041B2 publication Critical patent/JPS592041B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Description

【発明の詳細な説明】 本発明は摩擦機構を有する機器の加速度波形の乱れを補
正する方法に関し、特に油圧サーボ系に与えられる入力
信号をその出力において忠実に再現できるようにした振
動台装置における駆動信号の補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for correcting disturbances in acceleration waveforms of equipment having a friction mechanism, and in particular to a method for use in a vibration table device that can faithfully reproduce an input signal given to a hydraulic servo system in its output. The present invention relates to a drive signal correction method.

一般に油圧サーボ機構を用いた機器は被試験体を移動さ
せたり、振動を加える際に使用されているが、振動を加
える場合にはその応答を測定する必要がある。
Generally, equipment using hydraulic servomechanisms is used to move a test object or apply vibrations, but when applying vibrations, it is necessary to measure the response.

応答を測定する成分は、通常は変位であるが、機器によ
つては加速度で測定される。たとえば油圧サーボ系を用
いた振動台装置では、この加速度が測定上最も重要な要
素となつている。従来技術によれば、上記振動台を駆動
する場合、関数発生器等の入力信号源があり、この入力
信号を制御装置を介して加振装置に直接与えられる。こ
の場合、入力信号をたとえば正弦波のような単純な信号
で駆動すると、変位波形は充分きれいに再現されるが、
加速度波形を測定すると正弦波の山と谷の部分、すなわ
ちピーク付近でパルス状の乱れが観測されるのである。
これは加速度で最大付近、つまり振動台の速度がゼロに
なり、その運動方向が変わる時点で発生する。このよう
なパルス状の波形乱れの発生原因には主として3つの要
因があることがわかつた。
The component by which the response is measured is usually displacement, but some instruments measure acceleration. For example, in a shaking table device using a hydraulic servo system, this acceleration is the most important element in measurement. According to the prior art, when driving the vibration table, there is an input signal source such as a function generator, and this input signal is directly applied to the vibration excitation device via a control device. In this case, if the input signal is driven by a simple signal such as a sine wave, the displacement waveform will be reproduced clearly enough, but
When measuring the acceleration waveform, pulse-like disturbances are observed near the peaks and troughs of the sine wave, that is, near the peaks.
This occurs near the maximum acceleration, that is, when the speed of the shaking table reaches zero and its direction of motion changes. It has been found that there are three main factors responsible for the occurrence of such pulse-like waveform disturbances.

すなわち、ひとつは振動台支持機構および駆動装置に・
おけるアクチュエータ、シーベル部、静圧軸受等の摩
擦抵抗の影響であり、他のふたつはサーボ弁の流量特性
によるものである。しかも、これらの要因はいずれも非
線形な特性を有し、振動台の振幅、加速度、油の流量、
,駆動周波数など多くの不確定な要素に依存しているの
である。このような波形乱れに対しては、従来ではフイ
ルタ等を用いて乱れ成分をカツトする等の方法をとつて
いたが、この方法だと前述の本質的な波形乱れの発生原
因を補正するまでには至らず、見掛け上応答波形を入力
波形に似せるだけの作用しかなかつた。
In other words, one is the vibration table support mechanism and drive device.
This is due to the frictional resistance of the actuator, seat belt, static pressure bearing, etc., and the other two are due to the flow characteristics of the servo valve. Moreover, all of these factors have nonlinear characteristics, such as vibration table amplitude, acceleration, oil flow rate,
, and many uncertain factors such as driving frequency. To deal with such waveform disturbances, conventional methods have been used such as using filters to cut out the disturbance components, but with this method, it is necessary to correct the essential cause of the waveform disturbance mentioned above The effect was merely to make the response waveform look similar to the input waveform.

さらに波形乱れの主な原因は摩擦抵抗によるものがほと
んどであることが判明したが、加速度波形を改善するこ
とを目的として振動台を機械的に改良することは非常に
困難である。したがつて、本発明は加速度波形を機械的
ではなく電気的に処理して波形乱れを補正する方法を目
的とするものである。以下添付図面に例示した本発明の
好適な実施例について詳述する。
Furthermore, it has been found that the main cause of waveform disturbance is mostly due to frictional resistance, but it is extremely difficult to mechanically improve the vibration table for the purpose of improving the acceleration waveform. Therefore, the object of the present invention is to provide a method for correcting waveform disturbances by processing acceleration waveforms electrically rather than mechanically. DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below as illustrated in the accompanying drawings.

第1図は本発明による方法が適用される油圧サーボ系の
一例を示すもので、水平・垂直方向同時加振型振動台の
側面図を示し、第2図はその加力装置(加振装置)の例
を示している。
Figure 1 shows an example of a hydraulic servo system to which the method according to the present invention is applied, and shows a side view of a horizontal and vertical vibration type vibration table, and Figure 2 shows its applying device (vibrator ) shows an example.

振動台2は、水平方向アクチユエータ4により水平に、
垂直方向アクチユエータ6により垂直に,駆動され、し
かも同時に水平・垂直方向に加振することができる。
The vibration table 2 is horizontally moved by a horizontal actuator 4.
It is driven vertically by a vertical actuator 6, and can be vibrated in both horizontal and vertical directions at the same time.

これらのアクチユエータ4および6はシーベルヘツド8
によつて一端は振動台2に、他端は内方壁に固定される
。振動台側のシーベルヘツド8はアクチユエータ内のピ
ストン12のピストンロツドに直接連結され、側壁のシ
ーベルヘツド8はアクチユエータ4および6のシリンダ
に固定される。ピストン12の作動はサーボ弁10によ
つて制御され、サーボ弁10は入力信号によつてシリン
ダへの油圧注入・排出が制御される。ピストンロツドの
先端部には振動台2の運動を検出する差動トランス14
が取付けられている。第3図は本発明方法を実施するに
好適なこの振動台装置を用いたシステムのプロツク図で
ある。第3図によれば、振動台加振システムは、第1図
および第2図で示した振動台加振機系20と、コンピユ
ータおよびそれに付属する周波数解析装置、デイスクあ
るいは磁気テープ装置、カードリーダー、紙テープリー
ダー・パンチヤ一、CRTデイスプレイ等を包含するデ
ジタル処理装置22およびアナログ/デジタル変換器、
デジタル/アナログ変換器、バツフアメモリ等を包含す
る入出力インターフエース24を含めたデジタル制御・
データ処理系26と、関数発生器28およびデータレコ
ーダ30と、垂直方向制御器32、水平方向制御器34
およびアナログ制御装置36等を含めたアナログ制御系
38と、油圧ポンプおよびクーリングタワー等を包含す
る油圧系40と加速度計、動歪計、変位計、フイルタ等
を含む計測系42とより構成される。加振しようとする
波形はたとえば磁気デイスクに集録されたデジタル信号
をデジタル/アナログ変換器で変換したアナログ信号か
または関数発生器28あるいはデータレコーダ38の出
力信号が用いられ、アナログ制御装置36に入力される
These actuators 4 and 6 are connected to the siebel head 8
One end is fixed to the vibration table 2, and the other end is fixed to the inner wall. The sive head 8 on the side of the shaking table is connected directly to the piston rod of the piston 12 in the actuator, and the sive head 8 on the side wall is fixed to the cylinders of the actuators 4 and 6. The operation of the piston 12 is controlled by a servo valve 10, and the servo valve 10 controls the injection and discharge of hydraulic pressure into the cylinder based on an input signal. A differential transformer 14 for detecting the movement of the vibration table 2 is installed at the tip of the piston rod.
is installed. FIG. 3 is a block diagram of a system using this shaking table apparatus suitable for carrying out the method of the present invention. According to FIG. 3, the vibration table vibration system includes the vibration table vibration machine system 20 shown in FIGS. 1 and 2, a computer and its attached frequency analyzer, a disk or magnetic tape device, and a card reader. , a paper tape reader/puncher, a digital processing device 22 including a CRT display, etc., and an analog/digital converter;
Digital control system including input/output interface 24 including digital/analog converter, buffer memory, etc.
Data processing system 26, function generator 28, data recorder 30, vertical controller 32, horizontal controller 34
and an analog control system 38 including an analog control device 36, a hydraulic system 40 including a hydraulic pump, a cooling tower, etc., and a measurement system 42 including an accelerometer, a dynamic strain meter, a displacement meter, a filter, etc. The waveform to be excited is, for example, an analog signal obtained by converting a digital signal recorded on a magnetic disk with a digital/analog converter, or an output signal from the function generator 28 or data recorder 38, and is input to the analog control device 36. be done.

アナログ制御装置は水平および垂直方向制御器34およ
び32を介してサーボ弁に入力信号を送り、油圧系40
には油圧ポンプ等への制御信号を送る。入力信号によつ
て加振された振動はセンサ44によつて検出され、計測
系42にて調整された後デジタル制御・データ処理系2
6に入力される。次に本発明による波形補正方法につい
て説明する。
The analog controller sends input signals to the servo valves via horizontal and vertical controls 34 and 32 to control the hydraulic system 40.
sends control signals to hydraulic pumps, etc. The vibration excited by the input signal is detected by the sensor 44, adjusted by the measurement system 42, and then sent to the digital control/data processing system 2.
6 is input. Next, a waveform correction method according to the present invention will be explained.

この補正方法は次のふたつの仮定に基いている。This correction method is based on the following two assumptions.

(1)振動台システムは全体として線形の伝達関数をも
つとみなす。(2)入力波の平均はゼロかそれに近い一
定値であり、エルゴード性を有する弱定常確率過程であ
る。
(1) The shaking table system is assumed to have a linear transfer function as a whole. (2) The average of the input wave is zero or a constant value close to zero, and it is a weakly stationary stochastic process with ergodicity.

このふたつの仮定をもとに第4図および第5図に示すよ
うな行程に従つて補正を行なうのである。
Based on these two assumptions, correction is performed according to the steps shown in FIGS. 4 and 5.

(a)被試験体をも含めた振動台の逆伝達関数を求める
。この逆伝達関数を求めるには、その一例として第5図
の1〜8に示したように、まず、最適なパワースペクト
ルを有する入力変位を作り、これを振動台に与えて応答
加速度を測定し、入力変位と応答加速度から振動台の伝
達関数を求め、この伝達関数から逆伝達関数を求めるの
である。
(a) Find the inverse transfer function of the shaking table including the test object. To find this inverse transfer function, as shown in 1 to 8 in Figure 5 as an example, first create an input displacement with an optimal power spectrum, apply this to the shaking table, and measure the response acceleration. , the transfer function of the shaking table is determined from the input displacement and response acceleration, and the inverse transfer function is determined from this transfer function.

(b)入力したい波(目的加速度波形)で振動台を駆動
してその応答加速度波形を測定する(第5図のS[相]
)。
(b) Drive the vibration table with the wave you want to input (target acceleration waveform) and measure its response acceleration waveform (S [phase] in Figure 5)
).

(c)目的加速度波形と応答加速度波形とを比較し、合
否を判定する(第5図の@)。
(c) Compare the target acceleration waveform and the response acceleration waveform to determine pass/fail (@ in FIG. 5).

(d)判定に合格ならばこの行程は停止し、不合格なら
ば目的加速度波形と応答加速度波形との誤差(誤差加速
度波形)を求める。
(d) If the judgment is passed, this process is stopped; if the judgment is not passed, the error (error acceleration waveform) between the target acceleration waveform and the response acceleration waveform is determined.

(第5図[相])。(e)逆伝達関数を用いて誤差を補
正する補正量を決定する。すなわち誤差加速度波形より
求めた誤差のスペクトルと逆伝達関数との重量積分によ
つて変位波形の補正量を求める(第5図@)。(f)前
回の入力変位波形を補正量だけ補正する。以下判定が合
格するまで(b)〜(f)を繰り返す。この繰り返しは
コンピユータによつて求められる逆伝達関数の精度に依
存し、たとえばデジタルイクイプメント社、PDPll
/45程度のミニコンピユータであれば2ないし3回、
多くても10回位繰り返すことにより目的波形に近似し
た波形を得ることができるのである。本発明による方法
を用い、入力信号に正弦波を用いた応答出力波形例を第
7図に示す。
(Figure 5 [phase]). (e) Determine the amount of correction for correcting the error using the inverse transfer function. That is, the amount of correction of the displacement waveform is determined by weight integration of the error spectrum determined from the error acceleration waveform and the inverse transfer function (Fig. 5@). (f) Correct the previous input displacement waveform by the correction amount. Steps (b) to (f) are repeated until the judgment passes. This repetition depends on the accuracy of the inverse transfer function determined by the computer; for example, Digital Equipment Co., Ltd., PDPll
If it is a minicomputer of /45, 2 or 3 times,
By repeating this process about 10 times at most, a waveform that approximates the target waveform can be obtained. FIG. 7 shows an example of the response output waveform using the method according to the present invention and using a sine wave as the input signal.

第7図によれば本発明方法を用いない応答出力波形例を
示した第6図と比較し、きわめて入力波に近似した波形
が再現されており、このことからも加速度波形の乱れ原
因のほとんどは前述のような摩擦抵抗による影響である
ことがわかる。このように正弦波は伝達関数では補足で
きない局所的な非線形性があるが、地震波のような不規
則波でははとんど入力波に一致する良好な結果が得られ
ている。上述のように、従来では油圧サーボ系でみられ
る加速度波形の乱れの原因がわかつていたとしても、そ
れを機械的に改善することは技術的にもコスト的にも非
常に困難であつたが、本発明によれば、これら波形乱れ
の原因も油圧サーボ系のひとつの伝達関数と見て、応答
波形を入力波形と比較しながら入力波形を逆伝達関数で
補正するようにしたことにより、波形乱れを容易に改善
することができるようになつた。その結果、機器の動作
を正確かつ確実なものとすることができ、そのためたと
えば振動実験などではより信頼性の高いデータを得るこ
とができるようになつたのである。また耐震工学や制御
工学など他の分野においても、アクチユエータ等摩擦抵
抗を有する機器の正確な動作・制御が可能となるのであ
る。以上本発明をその具体例について詳述したが、本発
明はこの特定の実施例に限定されるものではなく、本発
明の精神を逸脱しないで幾多の変化変形がなし得ること
はもちろんである。
According to FIG. 7, compared to FIG. 6 which shows an example of the response output waveform without using the method of the present invention, a waveform that is extremely close to the input wave is reproduced, and from this, most of the causes of disturbance in the acceleration waveform are It can be seen that this is due to the effect of frictional resistance as mentioned above. In this way, sine waves have local nonlinearity that cannot be captured by the transfer function, but good results are obtained for irregular waves such as seismic waves that almost always match the input wave. As mentioned above, in the past, even if the cause of the disturbance in the acceleration waveform seen in hydraulic servo systems was known, it was extremely difficult to improve it mechanically, both technically and cost-wise. According to the present invention, the cause of these waveform disturbances is considered to be one of the transfer functions of the hydraulic servo system, and the response waveform is compared with the input waveform while the input waveform is corrected by the inverse transfer function. It is now possible to easily correct the disturbance. As a result, the operation of the equipment can be made more accurate and reliable, making it possible to obtain more reliable data in, for example, vibration experiments. Furthermore, in other fields such as seismic engineering and control engineering, it becomes possible to accurately operate and control devices that have frictional resistance, such as actuators. Although the present invention has been described above in detail with reference to specific examples, the present invention is not limited to these specific examples, and it goes without saying that many changes and modifications can be made without departing from the spirit of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は油圧サーボ系を用いた機器の例を示す図、第2
図は加力装置の例を示す図、第3図は本発明による方法
を実施するに好適な振動台,駆動のプロツク図、第4図
は本発明による方法を図式的に示した図、第5図は本発
明方法の内容を示すフローチヤート、第6図は本発明方
法を使用しない油圧サーボ機構の正弦波入力に対する応
答波形例を示す図、第7図は本発明方法による油圧サー
ボ機構の応答波形例を示す図である。 2・・・・・・振動台、4,6・・・・・・アクチユエ
ータ、8・・・・・・シーベルヘツド、10・・・・・
・サーボ弁、12・・・・・・ピストン、14・・・・
・・差動トランス、20・・・・・・振動台加振機系、
22・・・・・・デジタル処理装置、24・・・・・・
入出力インターフエース、26・・・・・・デジタル制
御・データ処理系、28・・・・・・関数発生器、30
・・・・・・データレコーダ、32・・・・・・水平方
向制御器、34・・・・・・水平方向制御器、36・・
・・・・アナログ制御装置、38・・・・・・アナログ
制御系、40・・・・・・油圧系、42・・・・・・計
測系、44・・・・・・センサ。
Figure 1 shows an example of equipment using a hydraulic servo system, Figure 2
3 is a diagram showing an example of a force applying device, FIG. 3 is a block diagram of a vibration table and drive suitable for carrying out the method according to the present invention, and FIG. 4 is a diagram schematically showing the method according to the present invention. Fig. 5 is a flowchart showing the contents of the method of the present invention, Fig. 6 is a diagram showing an example of a response waveform to a sine wave input of a hydraulic servo mechanism that does not use the method of the present invention, and Fig. 7 is a diagram showing a response waveform of a hydraulic servo mechanism using the method of the present invention. FIG. 6 is a diagram showing an example of a response waveform. 2... Vibration table, 4, 6... Actuator, 8... Siebel head, 10...
・Servo valve, 12...Piston, 14...
... Differential transformer, 20 ... Vibration table vibrator system,
22...Digital processing device, 24...
Input/output interface, 26...Digital control/data processing system, 28...Function generator, 30
...Data recorder, 32...Horizontal direction controller, 34...Horizontal direction controller, 36...
... Analog control device, 38 ... Analog control system, 40 ... Hydraulic system, 42 ... Measurement system, 44 ... Sensor.

Claims (1)

【特許請求の範囲】 1 振動台と、この振動台を水平および垂直方向に加振
する水平および垂直方向アクチュエータとで構成され、
これらアクチュエータはサーボ機構によつて駆動され、
そのサーボ機構は前記振動台を駆動すべき信号によつて
制御されるようにした人工的に地震を再現する振動台装
置の駆動信号補正方法において、予め水平および垂直方
向の標準入力変位を定めて前記装置に入力し、この入力
変位とその応答加速度とから前記装置の伝達関数を求め
、この伝達関数から逆伝達関数を求めるステップと、前
記振動台を駆動すべき信号の目的加速度とその応答加速
度との誤差を求め、この誤差のスペクトルと前記逆伝達
関数との重畳積分から補正量を求め、前記装置への入力
信号を前記補正量だけ補正するステップとを包含するこ
とを特徴とする振動台装置の駆動信号補正方法。 2 前記補正するステップは、前記補正量だけ補正した
入力信号の応答加速度と前記目的加速度との間にまだ誤
差がある場合、その誤差のスペクトルと前記逆伝達関数
との重畳積分から新補正量を決定し、前回補正した入力
信号を前記新補正量で再度補正することを特徴とする特
許請求の範囲第1項記載の方法。
[Claims] 1. Consisting of a vibration table and horizontal and vertical actuators that vibrate the vibration table in the horizontal and vertical directions,
These actuators are driven by servo mechanisms,
In a drive signal correction method for a shaking table device that artificially reproduces an earthquake, the servo mechanism is controlled by a signal to drive the shaking table, and standard input displacements in the horizontal and vertical directions are determined in advance. a step of inputting the input displacement to the device, determining a transfer function of the device from this input displacement and its response acceleration, and determining an inverse transfer function from this transfer function, and a target acceleration of a signal to drive the vibration table and its response acceleration. A vibration table comprising the steps of: determining an error between the two, determining a correction amount from a convolution of the spectrum of this error and the inverse transfer function, and correcting an input signal to the device by the correction amount. Device drive signal correction method. 2. In the step of correcting, if there is still an error between the response acceleration of the input signal corrected by the correction amount and the target acceleration, a new correction amount is calculated from the convolution of the spectrum of the error and the inverse transfer function. 2. The method according to claim 1, wherein the input signal determined and previously corrected is corrected again using the new correction amount.
JP52062855A 1977-05-31 1977-05-31 Drive signal correction method for shaking table device Expired JPS592041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52062855A JPS592041B2 (en) 1977-05-31 1977-05-31 Drive signal correction method for shaking table device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52062855A JPS592041B2 (en) 1977-05-31 1977-05-31 Drive signal correction method for shaking table device

Publications (2)

Publication Number Publication Date
JPS53148674A JPS53148674A (en) 1978-12-25
JPS592041B2 true JPS592041B2 (en) 1984-01-17

Family

ID=13212323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52062855A Expired JPS592041B2 (en) 1977-05-31 1977-05-31 Drive signal correction method for shaking table device

Country Status (1)

Country Link
JP (1) JPS592041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158068A1 (en) * 2019-01-31 2020-08-06 Imv株式会社 Vibration control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57151840A (en) * 1981-03-13 1982-09-20 Kobe Steel Ltd Method for controlling digital vibration of oil hydraulic vibration stand

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158068A1 (en) * 2019-01-31 2020-08-06 Imv株式会社 Vibration control device
JP2020122734A (en) * 2019-01-31 2020-08-13 Imv株式会社 Vibration controller
US11879816B2 (en) 2019-01-31 2024-01-23 Imv Corporation Vibration control system

Also Published As

Publication number Publication date
JPS53148674A (en) 1978-12-25

Similar Documents

Publication Publication Date Title
CA2220275C (en) High fidelity vibration source seismic method
US5715213A (en) High fidelity vibratory source seismic method using a plurality of vibrator sources
US5703833A (en) One step inversion/separation scheme using a plurality of vibrator sources
US3946598A (en) Method and apparatus for determining the dynamic parameters of soil in situ
JP3361529B2 (en) Shaking table and control method thereof
US3815704A (en) Method for determining optimum seismic pulse
US5177709A (en) Method for determining velocity and confidence level of acoustic waves in penetrable ground
JPS592041B2 (en) Drive signal correction method for shaking table device
JPH07113721A (en) Vibration testing device, vibration testing method, and vibration testing jig for structure
CN106989880A (en) Simulate ground seismic wave function lower member forces testing method and apparatus
Esmonde et al. Modelling and identification of nonlinear squeeze film dynamics
GB2190746A (en) Improvements in or relating to methods of collecting data using seismic vibrators
Ogino Correlation between motion of source bender element and feedback signal induced by self-monitoring
JPS5852241B2 (en) Acceleration waveform correction device
Smith et al. Vibration testing of full-scale structures
Rowe et al. A technique for simulation of cylindrical grinding processes by hybrid computation
Joh et al. Alleviation of numerical instability in geophone-based measurement of track vibrations by utilizing a priori information
Hanna et al. Identification of machine tool receptances by random force excitation
Kalinyuk et al. Evaluation of maximum residual displacements using velocimeter records: Part 1. Velocimeter calibration
Pathak et al. Analysis Of Vibration Characteristics For Annular Disc Cutters
Simova et al. OK-LINE CONTROL OF THE SINGLE COMPONENT SHAKING TABLE
CN114608796A (en) Test device and test method for measuring liquid shaking force of liquid-filled storage tank
JPH0257936A (en) Method for testing torsional vibration of rotary body
Ellis Dynamic testing
CN2031522U (en) Nondestructive shift survey for concrete pile bed