JPS59203896A - Cryogenic liquefied gas pump - Google Patents
Cryogenic liquefied gas pumpInfo
- Publication number
- JPS59203896A JPS59203896A JP7825783A JP7825783A JPS59203896A JP S59203896 A JPS59203896 A JP S59203896A JP 7825783 A JP7825783 A JP 7825783A JP 7825783 A JP7825783 A JP 7825783A JP S59203896 A JPS59203896 A JP S59203896A
- Authority
- JP
- Japan
- Prior art keywords
- liquefied gas
- pump
- housing
- tank
- heat insulating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、極低温液化ガスを供給するポンプに係り、特
に液体ヘリウムを供給するのに好適なポンプに関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pump for supplying cryogenic liquefied gas, and particularly to a pump suitable for supplying liquid helium.
従来の極低温液化ガスポンプでは、液化ガス貯槽あるい
は、クライオスタット上部督こモータを設置し、駆動軸
を槽内に挿入し、その下端に羽根車を接続しており、軸
受には玉軸受を使用している。Conventional cryogenic liquefied gas pumps have a liquefied gas storage tank or cryostat with a motor installed above it, a drive shaft inserted into the tank, and an impeller connected to its lower end. Ball bearings are used for the bearings. ing.
その−例を第1図で説明する。モータ4を上部に置き、
駆動軸2を介して羽根車1を回転する。駆動軸2は汎用
の玉軸受3で支持する。極低温の液化ガスは、吸込口8
より入り、吐出口9より送り出される。ポンプのハウジ
ング6は不銹鋼のパイプで形成され、フランジでクライ
オスタットの上部フランジ5に固着され、さらにモータ
4のカバー7を止めている。ポンプのハウジング6には
、コイル10を巻き付け、液化ガス11を通して冷却す
る。An example thereof will be explained with reference to FIG. Place motor 4 on the top,
The impeller 1 is rotated via the drive shaft 2. The drive shaft 2 is supported by a general-purpose ball bearing 3. The extremely low temperature liquefied gas is transported through the suction port 8.
The liquid enters the body and is sent out from the discharge port 9. The housing 6 of the pump is formed of a stainless steel pipe and is fixed to the upper flange 5 of the cryostat with a flange, and also fastens the cover 7 of the motor 4. A coil 10 is wound around the housing 6 of the pump, and liquefied gas 11 is passed through it for cooling.
常温のモータ4と極低温の羽根車lとは、不銹鋼の駆動
軸2やハウジング6Iこよる伝熱抵抗で温度差を保って
いる。The temperature difference between the motor 4 at normal temperature and the impeller l at extremely low temperature is maintained by the heat transfer resistance caused by the drive shaft 2 and the housing 6I made of stainless steel.
従来の極低温液化ガスポンプはこのような構造となって
いるため、駆動軸2が長−なり、高速回転することがで
きず構造が複雑になる。Since the conventional cryogenic liquefied gas pump has such a structure, the drive shaft 2 is long, and cannot rotate at high speed, resulting in a complicated structure.
また、羽根車lの軸受3は極低温で使用されるため、液
化ガスによる潤滑となり、摩耗が大きいなどの欠点があ
った。Furthermore, since the bearing 3 of the impeller 1 is used at extremely low temperatures, it is lubricated by liquefied gas, which has the disadvantage of causing large wear.
一方、浸漬型のモータを使用した液化ガスポンプが発表
されているが、このポンプでは駆動軸は短いが、全体が
極低温となり、軸受に玉軸受を使用しているので、摩耗
が太き(て信頼性が低く、また、モータの発熱が液化ガ
スの損失になるという欠点があった。On the other hand, a liquefied gas pump using an immersion type motor has been announced, but although this pump has a short drive shaft, the entire body is kept at extremely low temperatures, and ball bearings are used for the bearings, so wear is high. The reliability was low, and the heat generated by the motor resulted in a loss of liquefied gas.
本発明の目的は、従来の極低温液化ガスポンプにおける
欠点を解決して、コンパクトで信頼性の高い極低温液化
ガスポンプを提供することにある。An object of the present invention is to solve the drawbacks of conventional cryogenic liquefied gas pumps and to provide a compact and highly reliable cryogenic liquefied gas pump.
本発明は、液化ガス貯槽暦こ挿入して取付けられた外部
断熱槽内に内部断熱槽を設置し、かつ、内部断熱槽の先
端部を外部断熱槽より突出させ、両断熱槽開音こ真空層
を形成し、内部断熱槽の先端部こ液化ガスの吸込口およ
び吐出口を設け、羽根14I。The present invention installs an internal insulation tank in an external insulation tank installed by inserting a liquefied gas storage tank, and also makes the tip of the internal insulation tank protrude from the external insulation tank, so that both insulation tanks can be opened without vacuum. A layer is formed, and a suction port and a discharge port for the liquefied gas are provided at the tip of the internal heat insulation tank, and the blade 14I.
駆動軸2回転子よりなる回転体と、軸受および固定子よ
りなる駆動部で構成されたポツプ本体をハウジング内に
収容し、該ハウジングを内部断熱槽内に着脱可能昏こ挿
入し、前記ハウジングの先端に前記液化ガスの吸込口G
こ接するシールリノグを着脱可能に装着して、ポンプ本
体の内部断熱槽への取(=Jけ、取外しならびに保守を
簡略化すると共に、前記内部断熱槽の上部に内部断熱槽
内で気化した液化ガスを抜き出す排気管を設けて、低温
域で気化したガスを内部断熱槽上部より取出すことによ
り、気化ガスの顕熱を利用して低温域への熱侵入を減少
させてポンプ効率を向上させるようにしたものである。A pop main body consisting of a rotating body consisting of two drive shaft rotors and a driving section consisting of a bearing and a stator is housed in a housing, and the housing is removably inserted into an internal heat insulating tank. The liquefied gas suction port G at the tip
By detachably attaching the seal linog that comes into contact with the pump body, it is possible to simplify the removal and maintenance of the pump body into the internal insulation tank. By installing an exhaust pipe to take out the gas vaporized in the low temperature range from the top of the internal insulation tank, the sensible heat of the vaporized gas is used to reduce heat intrusion into the low temperature range and improve pump efficiency. This is what I did.
以下、本発明の一実施例を第2図、第3図により説明す
る。第2図において、外部断熱槽13の内部に内部断熱
槽14を先端部を外部断熱槽13より突出させて設け、
さらをこ、この内部断熱槽14内にポの吸込口8および
吐出口9が設けられている。ポンプ本体は羽根車1.駆
動軸2.モータ4.軸受冴、25および列からなる。外
部断熱槽13と内部断熱槽14の1一部はフランジ17
に固定され、下端はベロー19を介して熱収縮Gこよる
位置ずれを吸収できるよう1こ固定する。両断熱槽ia
、14間には輻射ソールド板21を設け、その下部はス
ペーサ22により保持する。また、外部断熱槽13の内
表面、および内部断熱槽14の外表面1こは、積層断熱
材刀を取付け、さらに、フランジ咀に真空排気管40を
設けて、両断熱槽13.14は真空層を形成し断熱する
。ポツプ本体を収納したハウジング15は、支持管16
1こより、上部フランジ18に固定する。上部フランジ
18には気化したガス抜き用の排気管61.62および
モータ4のリード線祠の導管45を設ける。断熱槽13
゜14組込み用のフランジ17は、液化ガス貯槽あるい
は、クライオスタットなどの上部プレート5に取付けら
れ、ポンプ本体を収容したハウジング1541込み用の
フランジ1Bは、さらに断熱槽組込みフランジ17に取
付けられる。An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. In FIG. 2, an internal heat insulating tank 14 is provided inside the external heat insulating tank 13 with its tip protruding from the external heat insulating tank 13,
Additionally, a suction port 8 and a discharge port 9 are provided within this internal heat insulating tank 14. The pump body has an impeller 1. Drive shaft 2. Motor 4. The bearing part consists of 25 and rows. One part of the external heat insulating tank 13 and the internal heat insulating tank 14 has a flange 17.
The lower end is fixed by a bellows 19 to absorb positional deviation caused by heat shrinkage G. Both insulation tanks ia
, 14 is provided with a radiation sole plate 21, the lower part of which is held by a spacer 22. In addition, laminated heat insulating material is attached to the inner surface of the external heat insulating tank 13 and the outer surface of the internal heat insulating tank 14, and a vacuum exhaust pipe 40 is provided on the flange. Forms a layer and insulates. The housing 15 that houses the pop body is connected to the support tube 16.
1. It is fixed to the upper flange 18 with one twist. The upper flange 18 is provided with exhaust pipes 61 and 62 for venting vaporized gas and a conduit 45 for the lead wire of the motor 4. Heat insulation tank 13
The flange 17 for assembling the housing 1541 containing the pump body is attached to the flange 17 for assembling the heat insulating tank.
ポンプ本体を第3図により詳細に説明する。駆動軸2の
下端1こ羽根車1を取付け、上部中央)こモータ4の回
転子蜀を取付け、上端督こはスラスト軸受用のディスク
四が取付けられている。モータ4の固定子31を回転子
菊に相対する位置に設置し、その上、下両側にジャーナ
ル軸受冴および乙を設厘する。本実施例では、ティルテ
ィングパッド型の動圧ガス軸受を使用しており、ティル
ティングパッド加をピボット27″c支持する。スラス
ト軸受別も動圧ガス軸受を使用する。羽根車lと下部の
ジャーナル軸受U間の駆動軸2の周囲には固形の断熱材
36を取付ける。しかして、羽根車lを除くポンプ本体
部分はハウジング15内に収容されている。The pump body will be explained in detail with reference to FIG. One impeller 1 is attached to the lower end of the drive shaft 2, the rotor shaft of the motor 4 is attached to the upper center, and a disk 4 for a thrust bearing is attached to the upper end. The stator 31 of the motor 4 is installed at a position facing the rotor, and journal bearings 31 and 31 are installed on both upper and lower sides. In this embodiment, a tilting pad type dynamic pressure gas bearing is used, and the tilting pad is supported by the pivot 27''c.A dynamic pressure gas bearing is also used for the thrust bearing. A solid heat insulating material 36 is attached around the drive shaft 2 between the journal bearings U.The pump main body except the impeller 1 is housed in the housing 15.
モータ4の固定子311こ通電してポンプを回転すると
、液体ヘリウムは羽根車lの回転音こより吸込口8より
吸入され、吐出口9より送り出される。When the stator 311 of the motor 4 is energized to rotate the pump, liquid helium is sucked in through the suction port 8 and sent out through the discharge port 9 due to the rotation sound of the impeller 1.
ポンプ本体を一体構造としたことにより、この吸込口8
と吐出口9の流体の圧力差に耐えるシール構造を必要と
する。本実施例では、このシールにハウジング15の先
端に着脱可能にテフロンリング51を装着して、ポンプ
本体を収容したハウジング15上部より内部断熱槽14
内に挿入して据付ける際の据付誤差、加工上の寸法誤差
を補償できるような構造とし、据付時の調整が容易なも
のとした。By making the pump body into an integrated structure, this suction port 8
A seal structure that can withstand the pressure difference between the fluid and the discharge port 9 is required. In this embodiment, a Teflon ring 51 is removably attached to the tip of the housing 15 for this seal, and the internal heat insulating tank 14 is opened from the upper part of the housing 15 that accommodates the pump body.
The structure is designed to compensate for installation errors during installation and dimensional errors during processing, making it easy to make adjustments during installation.
また、本構造によれば、シール部の劣化による手直1ノ
も、シールリングの取換えが簡単であるため、メンテナ
ンスが容易である。Further, according to the present structure, maintenance is easy because the seal ring can be easily replaced even if the sealing portion has deteriorated due to deterioration.
また、常温部に位置するハウジング15.軸受Mより、
液体ヘリウムに接する極低温部の羽根用lへの熱侵入経
路は、駆動軸2.ソヤフトケース52の伝導、および外
ケース田、内ケースヌの伝導が主なものであるが、この
伝導による侵入熱は、内部断熱槽14内で気化したヘリ
ウムガスの顕熱を利用して1/2o 程度に減少させ
ることができる。本実施例では、羽根車1の出口圧力と
、テ゛イフユーザの出口圧力が異なるため、それぞれに
ガス流れを考慮する必要がある。Furthermore, the housing 15. located in the room temperature section. From bearing M,
The heat intrusion path from the cryogenic part in contact with liquid helium to the blade l is through the drive shaft 2. The main causes are conduction through the soyaft case 52 and conduction through the outer case and inner case, and the heat introduced by this conduction is reduced to about 1/2 o by using the sensible heat of the helium gas vaporized in the internal heat insulating tank 14. can be reduced to In this embodiment, since the outlet pressure of the impeller 1 and the outlet pressure of the tiff user are different, it is necessary to consider the gas flow for each.
したがって、ガス抜き出し経路としては、駆動軸2とシ
ャフトケース52の間のガス抜き、および外ケース53
と内ケースヌとの間のガス抜きの二つの経路を分離させ
る。この内側ガス抜き経路55と外側ガス抜き経路間は
、それぞれ内側ガス抜き経路55は駆動軸2外周部の空
間37.)ヤーナル軸受24、25.モータ4の回転子
(資)と固定子31の空間およびハウジング15上部の
連通孔32を介して支持管16の内側に連通され、外側
ガス抜き経路(資)はハウジング15の外側と内部断熱
槽14内側との空間あを介して支持管16の外側督こ連
通されている。Therefore, the gas venting paths include the gas venting between the drive shaft 2 and the shaft case 52 and the outer case 53.
The two paths for gas venting between the inner case and the inner case are separated. Between the inner gas venting path 55 and the outer gas venting path, the inner gas venting path 55 is a space 37 on the outer periphery of the drive shaft 2. ) Yarnal bearings 24, 25. The space between the rotor and stator 31 of the motor 4 and the inside of the support tube 16 are communicated through the communication hole 32 in the upper part of the housing 15, and the outer gas venting path is connected to the outside of the housing 15 and the internal insulation tank. The outside of the support tube 16 is communicated with the inside of the support tube 16 through a space.
しかして、内側ガス抜き経路55および外側ガス抜き経
路56内の低温部で気化したヘリウムガスは両ガス抜き
経路55.56内を上昇する過程でポンプ本体およびハ
ウジング15を有効に冷却した後、排気管61. 62
より取出される。Thus, the helium gas vaporized in the low-temperature parts of the inner gas venting path 55 and the outer gas venting path 56 effectively cools the pump body and housing 15 while rising in both gas venting paths 55 and 56, and then is exhausted. Tube 61. 62
taken out from
なお、上述の実施例では、内側ガス抜き経路55および
外側ガス抜き経路関内のガスをそれぞれ別個に取出す場
合について説明したが、合流させて1個所より取出すこ
ともできる。In the above-described embodiment, a case has been described in which the gas inside the inner gas venting path 55 and the outer gas venting path are taken out separately, but they can also be combined and taken out from one location.
本発明は以上述べたように、液化ガス貯槽に挿入して取
付けられた外部断熱槽内に内部断熱槽を設置し、かつ、
内部断熱槽の先端部を外部断熱槽より突出させ、両断熱
槽間に真空層を形成し、内部断熱槽の先端に液化ガスの
吸込口および吐出口を設け、羽根車、駆動軸2回転子よ
りなる回転体と、軸受および固定子よりなる駆動部で構
成されたポンプ本体をハウジング内部こ収容し、該ハウ
ジングを内部断熱槽内に着脱可能に挿入し、前記ハウジ
ングの先端に前記液化ガスの吸込口に接するシールリン
グを着脱可能嘗こ装着したものであるから、ポンプ本体
の内部断熱槽内への取付け、取外しならびに保守を簡略
化することができると共に、前記内部断熱槽の上部に内
部断熱槽内で気化した液化ガスを抜き出す排気管を設け
て、低温域で気化したガスを内部断熱槽上部より取出す
ことにより、気化ガスの顕熱を利用してポンプ本体およ
びハウジング等をガス冷却するようにしたものであるか
ら、低温域への熱侵入を低減させることができ、ポンプ
効率を向上させることができる。As described above, the present invention includes an internal insulation tank installed within an external insulation tank inserted and attached to a liquefied gas storage tank, and
The tip of the internal insulation tank protrudes from the external insulation tank to form a vacuum layer between the two insulation tanks, and the liquefied gas suction and discharge ports are provided at the top of the internal insulation tank. The pump body, which is composed of a rotating body consisting of a rotating body and a driving section consisting of a bearing and a stator, is housed inside a housing, and the housing is removably inserted into an internal heat insulating tank, and the liquefied gas is inserted into the tip of the housing. Since the seal ring in contact with the suction port is removably attached, it is possible to simplify the installation and removal of the pump body into the internal insulation tank, as well as maintenance. By installing an exhaust pipe to extract the liquefied gas vaporized in the tank and extracting the gas vaporized in the low temperature range from the top of the internal insulation tank, the pump body and housing can be cooled using the sensible heat of the vaporized gas. Therefore, heat intrusion into the low temperature region can be reduced, and pump efficiency can be improved.
@1図は従来の極低温液化ガスポンプの縦断面図、第2
図は本発明による極低温液化ガスポンプの一実施例を示
す縦断面図、第3図は同じくポンプ本体部分の拡大詳細
図である。
l・・・・・・羽根車、2 ・・・駆動軸、3・・・
玉軸受、4・・・・・・モータ、5 ・・・上部プレー
ト、6.15 ・ハウジング、7・・・・・・カバー、
8・・・・・・吸込口、9・・・吐出口、10・・・・
・・コイル、11・・・・・・液化ガス、13・・・・
・外側断熱槽、14・・・・・・内側断熱槽、16・・
・・・・支持管、17・・・・・・フランジ、18・・
・・・・上部フランジ、19・・・・・・ベロー、21
・・・・・・輻射シールド板、n・・・・・・スペーサ
、器・・・・・・積層断熱材、冴、25・・・・・・ジ
ャーナル軸受、が・・・・・ティルティングパッド、n
・・・・・ピボット、Z・・・・・・スラスト軸受、四
・・・・・・ディスク、(資)・・・・・・回転子、3
1・・・・・・固定子、諺・・・・・・連通孔、37.
38・・・・・・空間、40・・・・・真空排気管、躬
・・・・・・リード線、朽・・・導管、51・・・・・
・テフロンリング、52・・・・・・シャフトケース、
団・・・・・・外ケース、M・・・・・・内ケース、5
5・・・・・・内側ガス抜き経路、%・・・・外側ガス
抜き経路、61゜才1図
才30@ Figure 1 is a vertical cross-sectional view of a conventional cryogenic liquefied gas pump, Figure 2
The figure is a longitudinal sectional view showing one embodiment of the cryogenic liquefied gas pump according to the present invention, and FIG. 3 is an enlarged detailed view of the pump main body. l... Impeller, 2... Drive shaft, 3...
Ball bearing, 4...Motor, 5...Upper plate, 6.15 Housing, 7...Cover,
8...Suction port, 9...Discharge port, 10...
... Coil, 11 ... Liquefied gas, 13 ...
・Outer heat insulation tank, 14...Inner heat insulation tank, 16...
...Support pipe, 17...Flange, 18...
...Top flange, 19 ... Bellow, 21
...Radiation shield plate, n...Spacer, container...Laminated insulation material, Sae, 25...Journal bearing,...Tilting pad, n
...Pivot, Z...Thrust bearing, 4...Disc, (capital)...Rotor, 3
1...Stator, proverb...Communication hole, 37.
38... Space, 40... Vacuum exhaust pipe, Passage... Lead wire, Decay... Conduit, 51...
・Teflon ring, 52...Shaft case,
Group: outer case, M: inner case, 5
5...Inner gas venting route, %...Outer gas venting route, 61° 1 figure 30
Claims (1)
内に内部断熱槽を設置し、かつ、内部断熱槽の先端部を
外部断熱槽より突出させ、両断熱槽間に真空層を形成し
、内部断熱槽の先端に液化ガスの吸込口および吐出口を
設け、羽根車。 駆動軸9回転子よりなる回転体と、軸受および固定子よ
りなる駆動部で構成されたポンプ本体をハウジング肉量
こ収容し、該ハウジングを内部断熱層内蚤こ着脱可能に
挿入し、前記ハウジングの先端に前記液化ガスの吸込口
に接するシールリングを着脱可能に装着したことを特徴
とする極低温液化ガスポンプ。 2 前記シールリングをテフロンで形成した特許請求の
範囲第1項記載の極低温液化ガスポンプ03 液化ガス
貯槽に挿入して取付けられた外部断熱槽内に内部断熱槽
を設置し、かつ、内部断熱槽の先端部を外部断熱槽より
突出させ、両断熱槽間に真空層を形成し、内部断熱槽の
先端fこ液化ガスの吸込口および吐出口を設け、羽根車
。 駆動軸2回転子よりなる回転体と、軸受および固定子よ
りなる駆動部で構成されたポンプ本体とハウジング内に
収容し、該ハウジングを内部断熱層内に着脱可能に挿入
し、前記内部断熱槽の上部に内部断熱層内で気化した液
化ガスを抜き出す排気管を設けたことを特徴とする極低
温液化ガスポンプ。[Claims]! An internal insulation tank is installed in the external insulation tank installed by inserting the liquefied gas storage tank, and the tip of the internal insulation tank is made to protrude from the external insulation tank to form a vacuum layer between both the insulation tanks, A liquefied gas inlet and outlet are provided at the tip of the internal insulation tank, and an impeller is installed. A pump body consisting of a rotating body consisting of a drive shaft and nine rotors, and a driving section consisting of a bearing and a stator is accommodated in a housing, and the housing is removably inserted into the internal heat insulating layer, and the housing is A cryogenic liquefied gas pump, characterized in that a seal ring in contact with the liquefied gas suction port is detachably attached to the tip of the pump. 2 Cryogenic liquefied gas pump 03 according to claim 1, in which the seal ring is made of Teflon. An internal insulation tank is installed in an external insulation tank inserted and attached to a liquefied gas storage tank, and the internal insulation tank is The tip of the internal heat insulating tank is made to protrude from the external heat insulating tank to form a vacuum layer between the two heat insulating tanks, and the end of the internal heat insulating tank is provided with an inlet and a discharge port for the liquefied gas. A pump body consisting of a rotating body consisting of two drive shaft rotors and a driving section consisting of a bearing and a stator is housed in a housing, and the housing is removably inserted into an internal heat insulating layer, and the internal heat insulating tank is A cryogenic liquefied gas pump characterized in that an exhaust pipe is provided on the upper part of the pump for extracting liquefied gas vaporized within an internal heat insulating layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7825783A JPS59203896A (en) | 1983-05-06 | 1983-05-06 | Cryogenic liquefied gas pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7825783A JPS59203896A (en) | 1983-05-06 | 1983-05-06 | Cryogenic liquefied gas pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59203896A true JPS59203896A (en) | 1984-11-19 |
Family
ID=13656934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7825783A Pending JPS59203896A (en) | 1983-05-06 | 1983-05-06 | Cryogenic liquefied gas pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59203896A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361738A (en) * | 1986-09-01 | 1988-03-17 | Hitachi Ltd | Fuel control device |
JP2020112098A (en) * | 2019-01-11 | 2020-07-27 | 株式会社Ihi | Rotary machine |
-
1983
- 1983-05-06 JP JP7825783A patent/JPS59203896A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361738A (en) * | 1986-09-01 | 1988-03-17 | Hitachi Ltd | Fuel control device |
JP2020112098A (en) * | 2019-01-11 | 2020-07-27 | 株式会社Ihi | Rotary machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0127752B1 (en) | Liquefied gas pump | |
US11542950B2 (en) | Vacuum pump | |
WO2019087869A1 (en) | Centrifugal compressor | |
CN102985699B (en) | Vacuum pump control device and vacuum pump | |
US4860545A (en) | Cryogenic storage tank with a retrofitted in-tank cryogenic pump | |
CN205638963U (en) | From inhaling type canned motor pump | |
JP2011252442A (en) | Very low temperature rotary machine | |
US4727724A (en) | Crysosorption pump for the rotor of an electric machine having a superconducting exciter winding | |
JPS59203896A (en) | Cryogenic liquefied gas pump | |
SU1682628A1 (en) | Cryoabsorption pump | |
WO2024149086A1 (en) | Pump system and motor portion testing device | |
KR20180127685A (en) | Pump for cryogenic fluid circulation type module using magnetic | |
KR102172829B1 (en) | The pump for the cryogenic fluid circulation | |
JPH02502559A (en) | low temperature sorption pump | |
EP3739210A1 (en) | Apparatus for pumping cryogenic fluids | |
CN105952665B (en) | Turbomolecular pump | |
JP2000034905A (en) | Heat-insulating structure for rotary machine | |
JP2024006181A (en) | Pump device | |
JPH09322523A (en) | Continuous vacuum exhaust device of superconducting rotary electric machine | |
CN219733653U (en) | Submerged pipeline type low-temperature pump | |
JP2023172660A (en) | Electric fluid machinery | |
US20230048319A1 (en) | Rotating device and vacuum pump | |
CN208348052U (en) | A kind of motor is packaged in the liquid pump of gas phase cavity | |
JP2024041519A (en) | Fluid circulation pump and fluid transfer device | |
JPS6194558A (en) | Superconductive rotary electric machine |