JPS59203389A - Ignition plug - Google Patents

Ignition plug

Info

Publication number
JPS59203389A
JPS59203389A JP7869183A JP7869183A JPS59203389A JP S59203389 A JPS59203389 A JP S59203389A JP 7869183 A JP7869183 A JP 7869183A JP 7869183 A JP7869183 A JP 7869183A JP S59203389 A JPS59203389 A JP S59203389A
Authority
JP
Japan
Prior art keywords
discharge
wear
oxidation
plug
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7869183A
Other languages
Japanese (ja)
Inventor
伊藤 信衛
欣也 渥美
水野 真仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP7869183A priority Critical patent/JPS59203389A/en
Publication of JPS59203389A publication Critical patent/JPS59203389A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は点火プラグの電極材料に関するもので、耐久性
にすぐれたプラグ電極材料を提供しようとするものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode material for a spark plug, and an object thereof is to provide a plug electrode material with excellent durability.

従来よりのプラグ電極材料としては耐熱金属であるNi
合金系を使用しているが、エンジンシリンダ内の高温高
圧での放電により損耗して電極間距離が変化し、着火性
が悪化するため定期的にプラグを交換する必要があった
。特に排気ガス規制後、エンジン内の燃焼に対し、種々
の制御を施すことで燃焼を微少に制御している現在では
、プラグの損耗自体が燃焼に与える影響は大きく、損耗
の少ないプラグの出現が望まれている。
The conventional plug electrode material is Ni, which is a heat-resistant metal.
Although an alloy type plug is used, the plug needs to be replaced periodically because it wears out due to discharge at high temperature and pressure inside the engine cylinder, causing the distance between the electrodes to change and ignitability to deteriorate. Particularly in today's world, after exhaust gas regulations were passed, the combustion inside the engine is now finely controlled through various controls, and the wear and tear of the plugs itself has a large effect on combustion, and the emergence of plugs with less wear and tear is expected. desired.

このため、高融点金属材料に高融点であるセラミックを
混入し、サーメントとした中心電極を用いる提案が出さ
れている(特公昭34−965.3、特開昭55−15
0579)。セラミ・ツクとしては、炭化物、ホウ化物
、ケイ化物などの高融点物質が挙げられている。これら
のことから極めて融点の高いセラミックによりプラグ電
極を構成するという発想は容易に生まれる。
For this reason, a proposal has been made to use a ceramic center electrode made of a ceramic material with a high melting point mixed with a high melting point metal material (Japanese Patent Publication No. 34-965.3, Japanese Unexamined Patent Publication No. 55-15
0579). Ceramics include high melting point substances such as carbides, borides, and silicides. From these facts, the idea of constructing the plug electrode from a ceramic with an extremely high melting point was easily generated.

しかしながら、これらの高融点セラミックによりプラグ
電極を構成してもプラグの耐損耗にはそれほど効果がな
いことが実験により判明した。
However, it has been found through experiments that even if the plug electrode is made of these high melting point ceramics, it is not very effective in improving the wear resistance of the plug.

そこで、本発明者は鋭意研究の結果、次の点を見い出し
た。(1)高融点セラミックには耐酸化損耗性のものと
耐放電損耗性のものとが存在し、両者共有効なものは、
見出せない。(2)また、プラグ損耗を小さくするため
には、耐酸化損耗セラミックと耐放電損耗セラミックの
混合が有効で且つそれらがある特殊な構造を持つ場合に
真に有効である。
Therefore, as a result of intensive research, the present inventor discovered the following points. (1) There are two types of high melting point ceramics: those with oxidation wear resistance and those with discharge wear resistance.
I can't find it. (2) Furthermore, in order to reduce plug wear, it is effective to mix oxidation wear-resistant ceramics and discharge wear-resistant ceramics, and this is truly effective when they have a certain special structure.

本発明は上記の点に基いて提案されたものであり、以下
に詳細に説明する。
The present invention has been proposed based on the above points, and will be explained in detail below.

プラグの損耗原因を、高温での酸化及び放電エネルギー
による放電損耗の2つに分け、種々の高融点材料の損耗
度合を測定した。第1図に酸化テストの結果を示す。酸
化テストは各々のサンプルを1000°CX15)1r
、大気雰囲気の電気炉内で放置し耐久1Iil後の重量
測定を行なった。第2図に放電テストの結果を示す。放
電テストは点火コイル外径62mmのものを使用し、放
電間隔60m5で放電エネルギーが40mJの試験条件
である。この放電を3011r連続耐久し、前後の重量
変化を調べた。
The causes of plug wear were divided into two: oxidation at high temperatures and discharge wear due to discharge energy, and the degree of wear of various high melting point materials was measured. Figure 1 shows the results of the oxidation test. For the oxidation test, each sample was heated at 1000°C
The test pieces were left in an electric furnace in an air atmosphere, and their weight was measured after a durability test of 1Iil. Figure 2 shows the results of the discharge test. The discharge test used an ignition coil with an outer diameter of 62 mm, and the test conditions were a discharge interval of 60 m5 and a discharge energy of 40 mJ. This discharge was continuously endured for 3011 r, and weight changes before and after were examined.

比較品として現在市販のプラグ電極材であるNi −C
r−Mn−3iのNi合金を同等の耐久にかけた。テス
ト品の寸法は酸化テスト、放電テストサンプル共に5x
5x20mの大きさに統一した。酸化テストは重量変化
が大きいため変化率で示し、放電テストは重量変化量が
小さいためmgの単位でそのまま示した。第1図の酸化
テストにおいて、耐酸化性を示したのはMo5i2とS
iCであり、一方第2図の放電テストにおいて放電損耗
の小さいのは、TiC,、TiNXZrB2で、M o
”S i 2は放電損耗もそれほど大きくないがSiC
は非常に大きな放電損耗を示す。以上より、酸化、放電
損耗共に損耗が非常に小さい物質は見出されず、今回テ
ストした炭化物、ケイ物、ホウ化物といった高融点物質
を単独で用いても損耗の小さいプラグ電極材を提供する
ことはできない。
As a comparison product, Ni-C, which is currently a commercially available plug electrode material,
An r-Mn-3i Ni alloy was subjected to comparable durability. The dimensions of the test product are 5x for both oxidation test and discharge test samples.
The size was unified to 5x20m. In the oxidation test, the change in weight was large, so it was shown as a rate of change, and in the discharge test, the change in weight was small, so it was shown in units of mg. In the oxidation test shown in Figure 1, Mo5i2 and S showed oxidation resistance.
iC, while TiC, TiNXZrB2 had the least discharge wear in the discharge test shown in Figure 2, and Mo
``S i 2 does not have as much discharge wear and tear, but SiC
shows very large discharge loss. From the above, no material has been found that causes very little wear in both oxidation and discharge wear, and it is not possible to provide a plug electrode material with little wear even if the high melting point substances tested this time, such as carbides, silicates, and borides, are used alone. .

そこで、耐酸化損耗材と耐放電損耗材を混合し、双方の
損耗に強い材料ができないか検討した。耐酸化損耗材と
してSiC,MoSi2を用い、耐放電損耗材として”
I”1Cs−FiN、ZrB2を用い、SiC,MoS
i2のいずれかを30モル%、T i C1T’iN、
ZrB2のいずれかを70モル%の割合で混合し、炭化
放電耐久をした結果を第3図、第4図に示す。第3図が
酸化耐久、第4図が放電耐久を示し、各試験条件は第1
.2図と同しである。混合により、単体の場合に比べ酸
化放電耐久共に良好な結果を示すが、SiCの場合はそ
の効果は小さく、M o S i 2の混合体は焼成条
イシ1によって結果が異なり、図中※印の条件で焼成し
たM o S i 2混合体は極めて良好な結果を示す
Therefore, we investigated whether it is possible to create a material that is resistant to wear and tear by mixing oxidation wear-resistant materials and discharge wear-resistant materials. SiC and MoSi2 are used as oxidation wear-resistant materials, and as discharge wear-resistant materials.
I"1Cs-FiN, using ZrB2, SiC, MoS
30 mol% of any of i2, T i C1T'iN,
Figures 3 and 4 show the results of carbonizing discharge durability test using ZrB2 mixed at a ratio of 70 mol%. Figure 3 shows oxidation durability, Figure 4 shows discharge durability, and each test condition is
.. It is the same as Figure 2. Mixing shows better results in terms of oxidation discharge durability than when using SiC alone, but in the case of SiC, the effect is small, and in the case of a mixture of M o Si 2, the results vary depending on the firing strip 1. The M o S i 2 mixture calcined under these conditions shows very good results.

第3.4図のαグループは、1800″Cの焼成温度で
300kg/cfflの加圧下で焼成を行ない、βグル
ープは1600°Cの焼成温度で300 kg/crA
の加圧、Tグループは1800℃の焼成温度で300k
g/eJの加圧条件での焼成を行なったものである。各
々の焼成後の組織を電子顕微鏡で観察した結果を第5図
に示す。第5(1)図はαグループの5iC−TiC1
@5 (21図はβグルー7”17)Mo S i 2
−T i C,第5(3)図はγグループ(D※M o
 S i 2  T’ i C(7)組織であり、E、
P、M、A分析により■が Sic、2がTiC,3が
M o S i 2であることを確認しティる。第5(
1)図、第5(2)図は5iC1、MOS i 23の
粒子がT i C2の中に点々と分散しているのに対し
、第5(3)図はT i C粒子2の周囲  ゛を取り
囲むようにしてM o S i 23が存在しているの
が判明した。第3.4図でγグループが良好な結果を示
すのは、このような構造をとるためではないかと考えら
れる。このような構造はTiCM o 3 i 2だけ
でなくγグループの ZrB2−MoSi2、TiN−
MoSi2でも同様な構造を示していた。このような構
造をとるためには、M o、 S i 2混合体の場合
1700℃以上(好ましくは1700〜2100℃)の
温度テ200〜600kg/ cn+17)加圧状態で
不活性雰囲気中で焼成することが不可欠である。なお、
’ S I C混合体では、温度、圧力の条件に関係な
くこのような構造をとることばなかった。
The α group in Figure 3.4 is fired under a pressure of 300 kg/cffl at a firing temperature of 1800"C, and the β group is fired under a pressure of 300 kg/crA at a firing temperature of 1600"C.
Pressure is applied, T group is 300K with firing temperature of 1800℃
Firing was performed under pressure conditions of g/eJ. FIG. 5 shows the results of observing the structures after each firing using an electron microscope. Figure 5(1) shows 5iC-TiC1 of the α group.
@5 (Figure 21 shows β glue 7”17) Mo S i 2
-T i C, Figure 5 (3) shows the γ group (D*Mo
S i 2 T' i C (7) organization, E,
By P, M, and A analysis, it was confirmed that ■ is Sic, 2 is TiC, and 3 is Mo Si 2. Fifth (
In Figure 1) and Figure 5 (2), particles of 5iC1 and MOS i 23 are dispersed in spots in T i C2, whereas in Figure 5 (3), particles of 5iC1 and MOS i 23 are scattered around T i C particle 2. It was found that M o S i 23 was present in such a way as to surround it. It is thought that the reason why the γ group shows good results in FIG. 3.4 is because it has such a structure. Such structures include not only TiCM o 3 i 2 but also γ group ZrB2-MoSi2, TiN-
MoSi2 also showed a similar structure. In order to obtain such a structure, in the case of a Mo, Si 2 mixture, it must be fired in an inert atmosphere at a temperature of 1700 °C or higher (preferably 1700 to 2100 °C) and under pressure (200 to 600 kg/cn+17). It is essential to do so. In addition,
' SIC mixtures have never had such a structure regardless of temperature and pressure conditions.

次に、実際にプラグに仕立てエンジン耐久を行なった結
果を示す。第6.7図はセラミック電極材をプラグに仕
立てた構造を示したもので、セラミック材は、セラミ・
2クチツブ4に加工され、Ni系の耐熱合金よりなる金
属筒6の内部に先端が露出するように組み込まれ、また
筒6の内部には銅よりなる内部導電体5が詰めこまれて
いる。このような構成にしたのは、中心電極全てをセラ
ミック材で構成した場合、プラグ熱価が小さくなり、プ
レイグニツシヨン現象が起こることを防ぐためであり、
これを回避すべく熱伝導性のよい銅を内部にセラミック
に接して詰め込むことで市販品プラグの熱価に近づける
ようにしたものである。勿論、他の手段でブレイングを
回避できれば、全体をセラミック材で構成してもよい。
Next, we will show the results of actual engine durability tests on plugs. Figure 6.7 shows a structure in which a ceramic electrode material is made into a plug.
The tube 4 is machined into a two-cut tube 4 and assembled into a metal tube 6 made of a Ni-based heat-resistant alloy so that its tip is exposed, and an internal conductor 5 made of copper is packed inside the tube 6. The reason for this configuration is to prevent the plug heat value from occurring if the entire center electrode is made of ceramic material, which would result in a pre-ignition phenomenon.
In order to avoid this, copper, which has good thermal conductivity, is packed inside the plug in contact with the ceramic, thereby making the heat value close to that of commercially available plugs. Of course, if bracing can be avoided by other means, the entire structure may be made of ceramic material.

第6図の中心電極は、第7図のプラグに組み立てられる
。即ち、プラグは碍子10、中心電極棒9、導電性ガラ
ス8、接地電極7、ハウジング11等により構成されて
いる。なお、12は火花放電ギャップを示している。こ
のプラグをエンジンに取り付け、エンジン耐久を行なっ
た。第8図はそ結果を示すもので、試験条件は排気量2
000ccのエンジンを用い、回転数400Orpm、
 −120+tn+ l1gの連続運転下で点火時期を
85°−→40°BTDCで交互に50回ずつ繰返す促
進耐久で、耐久試験時間は5011rである。第8図の
結果より、Tグループの構造を示すMo5i2−TiC
製の中心電極の消耗が最も小さいのがわかる。なお、第
8図において、α、β、γグループの材料組成、その製
造条件は前述したものと同じである。
The center electrode of FIG. 6 is assembled into the plug of FIG. 7. That is, the plug includes an insulator 10, a center electrode rod 9, conductive glass 8, a ground electrode 7, a housing 11, and the like. Note that 12 indicates a spark discharge gap. This plug was installed in the engine and the engine was tested for durability. Figure 8 shows the results, and the test conditions were 2 displacements.
Using a 000cc engine, rotation speed 400Orpm,
-120 + tn + 1 g under continuous operation, the ignition timing was alternately repeated 50 times at 85° - → 40° BTDC, and the durability test time was 5011 r. From the results in Figure 8, Mo5i2-TiC showing the structure of T group
It can be seen that the wear of the center electrode made of aluminum is the least. In FIG. 8, the material compositions of the α, β, and γ groups and the manufacturing conditions are the same as those described above.

本発明は中心電極の他に接地電極を上述の材料で構成し
てもよく、両電極をその材料で構成してもよい。また、
MOSi2にTic、、ZrB2、TiNの3つを混合
してもよい。
In the present invention, the ground electrode in addition to the center electrode may be made of the above-mentioned material, and both electrodes may be made of the same material. Also,
Three of Tic, ZrB2, and TiN may be mixed with MOSi2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図はは説明に供する特性図、第5(1)
図乃至第5(3)図は本発明の説明に供する電極材料の
模式的組織図、第6図および第7図は本発明点火プラグ
の一実施例を示すもので、第6図は中心電極を示す部破
断面図、第7図は全体構成を示す半断面図、第8図は本
発明の詳細な説明に供する特性図である。 4・・・中心電極のセラミックチップ、7・・・接地電
極、12・・・火花放電ギャップ。 代理人弁理士 岡 部   隆 第1図 Ni TiCSiCZrB2 MoB2 ZrSi2 
MoSi2 TiN第2図 第4図 第5図
Figures 1 to 4 are characteristic diagrams for explanation, Section 5 (1)
Figures 5(3) to 5(3) are schematic organization diagrams of electrode materials provided for explanation of the present invention, Figures 6 and 7 show an embodiment of the spark plug of the present invention, and Figure 6 shows the center electrode. FIG. 7 is a half sectional view showing the overall configuration, and FIG. 8 is a characteristic diagram for explaining the present invention in detail. 4... Ceramic chip of center electrode, 7... Ground electrode, 12... Spark discharge gap. Representative Patent Attorney Takashi Okabe Figure 1 Ni TiCSiCZrB2 MoB2 ZrSi2
MoSi2 TiNFigure 2Figure 4Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)中心電極と側方電極とを具備し、両電極間に形成
された火花放電ギャップで火花放電を行なうよう構成さ
れた点火プラグであって、前記両電極・のうち少なくと
も一方が導電性のセラミック材料で構成され、このセラ
ミック材料は耐放電損耗性能を有する材料と耐酸化損耗
性能を有する材料との混合材料で成り立っており、更に
前記耐放電損耗性材料の粒子の周りが前記耐酸化損耗性
材料の層で被覆されている点火プラグ。
(1) An ignition plug comprising a center electrode and side electrodes, and configured to generate a spark discharge in a spark discharge gap formed between the two electrodes, wherein at least one of the electrodes is electrically conductive. This ceramic material is made of a mixed material of a material with discharge wear resistance and a material with oxidation wear resistance, and furthermore, the particles of the discharge wear resistance material are surrounded by the oxidation resistance. A spark plug that is coated with a layer of wearable material.
(2)前記耐酸化損耗性材料は2ケイ化モリブデンであ
り、前記耐放電損耗性材料は、炭化チタン、窒化チタン
、ホウ化ジルコニウムのいずれか1つである特許請求の
範囲第1項記載の点火プラグ。
(2) The oxidation wear-resistant material is molybdenum disilicide, and the discharge wear-resistant material is any one of titanium carbide, titanium nitride, and zirconium boride. spark plug.
(3)前記耐酸化損耗性材料と前記耐放電損耗性材料と
の総量中に占める前記耐酸化損耗性材料の量は10〜5
0モル%である特許請求の範囲第2項記載の点火プラグ
(3) The amount of the oxidation wear resistant material in the total amount of the oxidation wear resistant material and the discharge wear resistant material is 10 to 5.
The spark plug according to claim 2, wherein the content is 0 mol%.
JP7869183A 1983-05-04 1983-05-04 Ignition plug Pending JPS59203389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7869183A JPS59203389A (en) 1983-05-04 1983-05-04 Ignition plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7869183A JPS59203389A (en) 1983-05-04 1983-05-04 Ignition plug

Publications (1)

Publication Number Publication Date
JPS59203389A true JPS59203389A (en) 1984-11-17

Family

ID=13668886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7869183A Pending JPS59203389A (en) 1983-05-04 1983-05-04 Ignition plug

Country Status (1)

Country Link
JP (1) JPS59203389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159860A (en) * 1991-12-03 1993-06-25 Ngk Spark Plug Co Ltd Manufacture of center electrode for spark plug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05159860A (en) * 1991-12-03 1993-06-25 Ngk Spark Plug Co Ltd Manufacture of center electrode for spark plug

Similar Documents

Publication Publication Date Title
JPS6144392B2 (en)
CN101717243B (en) Ceramic with improved high temperature electrical properties for use as a spark plug insulator
EP0805534B1 (en) Spark plug for internal combustion engine
US4173731A (en) Resistor composition for spark plug having a resistor enclosed therein
JP2019079792A (en) Spark plug for internal combustion engine
EP0353196B1 (en) Electroconductive cermet compositions for ignition and heating appliances
BR7307074D0 (en) ELECTRONCONDUCTIVE SEALING MASS FOR CONNECTION BETWEEN CERAMICS AND METAL, PARTICULARLY MICA
US5510667A (en) Spark plug with an electrode having a platinum-nickel fiber composite material
JPS59203389A (en) Ignition plug
US3037140A (en) Electrically semi-conducting ceramic body
JP4271458B2 (en) Spark plug
JP2001505712A (en) Spark plug
JP4309592B2 (en) Contact glass formulation used for spark plugs
JP7350148B2 (en) Precious metal tips for spark plugs, electrodes for spark plugs, and spark plugs
US2146722A (en) Spark plug
EP0817341B2 (en) Spark plug
JPH0554954A (en) Ain sintering and spark plug
JPS61230283A (en) Spark plug
CA1046369A (en) Internal combustion engine spark plug having composite electrode structure
JPS6144391B2 (en)
JPS6126748A (en) Electrode material for ignition plug
RU2787509C1 (en) Electrically conductive composite material based on ceramic
JPH09326289A (en) Double polarity power source ignition system
JPS59169087A (en) Ignition plug for internal combustion engine
GB2044849A (en) A spark plug