JPS59203000A - Control material for heat - Google Patents

Control material for heat

Info

Publication number
JPS59203000A
JPS59203000A JP58077737A JP7773783A JPS59203000A JP S59203000 A JPS59203000 A JP S59203000A JP 58077737 A JP58077737 A JP 58077737A JP 7773783 A JP7773783 A JP 7773783A JP S59203000 A JPS59203000 A JP S59203000A
Authority
JP
Japan
Prior art keywords
lattice
control material
metal
polymer material
metal film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58077737A
Other languages
Japanese (ja)
Inventor
俊雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58077737A priority Critical patent/JPS59203000A/en
Publication of JPS59203000A publication Critical patent/JPS59203000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Forging (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は人工衛星等の宇宙飛しょう体の熱制御を行う
熱制御材の改良に関するもので、詳しくは帯電による静
電放電の発生を防止するため熱制御材の導電面を接地す
る接地機構を備えた熱制御材を提供するものである。
[Detailed Description of the Invention] This invention relates to the improvement of a thermal control material that controls the heat of a space vehicle such as an artificial satellite. Specifically, the present invention relates to the improvement of a thermal control material that controls the heat of a spacecraft such as an artificial satellite. The present invention provides a thermal control material equipped with a grounding mechanism that grounds the surface.

人工衛星等の宇宙飛しょう体が宇宙空間を飛しょうする
とき宇宙空間プラズマや宇宙線により帯(1) 電する事は広く知られている。この帯電により静電放電
が発生し、宇宙飛しヨウ体の動作上好ましくない影響を
与える。それは例えば受信機の破壊。
It is widely known that when a spacecraft such as an artificial satellite flies through outer space, it generates electric charges due to space plasma and cosmic rays. This charging causes electrostatic discharge, which has an unfavorable effect on the operation of the spacecraft. For example, destroying the receiver.

熱制御材の劣化、誤動作などであり、実際に軌道上で発
生した事が数多く報告されている。この様な静電放電の
ほとんどが熱制御材で発生する事から熱制御材において
帯電を防止する必要がある。
These include deterioration of thermal control materials and malfunctions, and there have been many reports of these incidents actually occurring in orbit. Since most of such electrostatic discharge occurs in the heat control material, it is necessary to prevent the heat control material from being charged.

まず従来の熱制御材を図を用いて簡単に説明する。第1
図は従来の熱制御材の構成図である。図中(1)は熱制
御材(例えば銀蒸着テフロンなど)。
First, conventional heat control materials will be briefly explained using figures. 1st
The figure is a configuration diagram of a conventional heat control material. In the figure, (1) is a heat control material (for example, silver-deposited Teflon).

(2)はシート状の高分子材(例えばテフロンシート)
、(3)はこの高分子材(2)の裏面に蒸着された金属
膜(例えば銀)で、上記高分子材(2)と金属膜(3)
で上記熱制御材(1)を構成している。(4)は上記熱
制御材(1)の縁を構体(5)へ取りつけるネジで、こ
れが接地機構である。(5)は導電材で構成され電位の
基準となる宇宙飛しょう体の構体、(6)は上記熱制御
材(1)に入射する電子で、帯電の主要因である。
(2) is a sheet-like polymer material (e.g. Teflon sheet)
, (3) is a metal film (for example, silver) deposited on the back surface of the polymer material (2), and the polymer material (2) and the metal film (3)
This constitutes the heat control material (1). (4) is a screw that attaches the edge of the heat control material (1) to the structure (5), and this is a grounding mechanism. (5) is the structure of the spacecraft which is made of a conductive material and serves as a reference for electric potential; (6) is the electron incident on the thermal control material (1), which is the main cause of electrification.

この様な構成において、上記熱制御材(1)は構体(5
)の内部と宇宙空間との間で熱の遮断を行う。宇(2) 宙空間プラズマから電子(6)が熱制御(1)に入射す
ると高分子材(2)に電子(6)が捕捉され、高分子材
(2)の内部に蓄積され電位が上昇する。実際に人工衛
星により観測されたデータによれば最高−20,0OO
Vの絶対ポテンシャルに達する事が知られている。
In such a configuration, the heat control material (1) is attached to the structure (5).
) and space. Space (2) When electrons (6) from the space plasma enter the thermal control (1), the electrons (6) are captured by the polymer material (2), accumulated inside the polymer material (2), and the potential increases. do. According to data actually observed by artificial satellites, the maximum is -20,0OO
It is known that the absolute potential of V is reached.

このように高いポテンシャルに達するため熱制御材(1
)と構体(5)との間に高い電位差が生じ易く1両者の
間で静電放電が発生することになる。そこで。
In order to reach such a high potential, thermal control material (1
) and the structure (5), a high potential difference is likely to occur, and electrostatic discharge will occur between the two. Therefore.

上記金属膜(3)をその周囲の縁でネジ(4)で構体(
5)へ圧着して電気的導通を保ち上記高分子材(2)に
蓄積された電子(6)を構体(5)側へ逃がし、つまり
洩れ電流を大きくする事によって上記電位差を小さくし
ようとしていた。
Attach the above metal film (3) to the structure (
5) to maintain electrical continuity and release the electrons (6) accumulated in the polymer material (2) to the structure (5), thereby increasing the leakage current and thereby reducing the potential difference. .

ところが上記熱制御材(1)の面積が大きくなると。However, when the area of the heat control material (1) increases.

それに併って流入する電子(6)の数は多(なり、大き
なエネルギーが蓄積され、静電放電の大きさが増大する
。これに併って静電放電によって発生する電磁波のエネ
ルギーも大きくなり上記宇宙飛しょう体に搭載される機
器に大きな干渉を及ぼすことになる。また上記高分子材
(2)の内部で金属膜(3)(3) へ向って生ずる静電放電のエネルギーが増大する結果、
材料の劣化や破損が生じ易くなるという問題があった。
At the same time, the number of electrons (6) flowing in increases, and a large amount of energy is accumulated, increasing the size of electrostatic discharge. Along with this, the energy of electromagnetic waves generated by electrostatic discharge also increases. This will cause significant interference to the equipment mounted on the spacecraft.Also, the energy of electrostatic discharge generated inside the polymer material (2) toward the metal film (3) (3) will increase. result,
There is a problem in that the material tends to deteriorate and break.

そこで約207の面積に1点以上の接地を行う必要があ
り、熱制御材(1)の面積はIR程度以上あることから
、熱制御材(1)の縁だけでなく全面にわたって多点接
地できるものが望まれていた。
Therefore, it is necessary to conduct grounding at one or more points over an area of about 207 mm, and since the area of the thermal control material (1) is larger than the IR, it is possible to ground at multiple points not only at the edges but also over the entire surface of the thermal control material (1). Something was desired.

この発明はこのような従来の問題を改善するもので以下
図を用いて詳述する。第2図はこの発明の一実施例の構
成を示す断面図、第3図はこの発明の一実施例の構成を
示す平面図である。
The present invention improves these conventional problems and will be explained in detail below with reference to the drawings. FIG. 2 is a sectional view showing the structure of an embodiment of the present invention, and FIG. 3 is a plan view showing the structure of an embodiment of the invention.

図中、(1)から(6)は第1図と同じ、(7)は金属
箔を格子状に形成した金属格子(例えば銅箔の格子)で
前記金属膜(3)に付着される。(8)はこの金属格子
(7)の格子点、C9)はこの格子点において、前記熱
制御材(1)と上記金属格子(7)を貫通するようあけ
られた穴、 110)は熱制御材(1)と金属格子(7
)を貫通する導電性のリベット状の接地電極で頭部(1
1)を高分子材(2)の表面に露出し、末端部(1りを
金属格子(7)の格子点(8)に熔着させている。上記
金属格子(7)と接地型(4) 極(lαとで接地機構を構成する。
In the figure, (1) to (6) are the same as in FIG. 1, and (7) is a metal lattice (for example, a copper foil lattice) formed of metal foil in the form of a lattice, which is attached to the metal film (3). (8) is a lattice point of this metal lattice (7), C9) is a hole drilled at this lattice point so as to penetrate the thermal control material (1) and the metal lattice (7), and 110) is a thermal control Material (1) and metal grid (7
) with a conductive rivet-like ground electrode passing through the head (1
1) is exposed on the surface of the polymer material (2), and the end portion (1) is welded to the lattice point (8) of the metal lattice (7). ) constitutes a grounding mechanism with the pole (lα).

次にこの発明の動作を図を用いて詳述する。第2図にお
いて電子(6)が高分子材(2)に蓄積される過程は第
1図と同様である。第2図の高分子材(2)に蓄積され
た電子(2)は接地電極11αの頭部fullが構体(
5)と同電位になっているから、高分子材(2)の表面
で上記接地電極f1αの頭部(11)へ流れる。上記金
属格子(7)の格子点(8)の間隔を十分小さく(例え
ば4.5m)することによって、高分子材(2)中の各
格子点(8)で囲まれる面積を小さくすることができる
から(例えば207)、 ここで蓄積、放電するエネル
ギーを小さく抑える事ができる。したがって静電放電の
電磁波を抑圧し、さらに熱制御材(1)の劣化も抑える
事ができる。また上記高分子材(2)の内部から金属膜
(3)へ向って流れる放電も前述のように小さく抑える
事ができる。さらに熱制御(1)の熱特性については、
上記接地電極叫の頭部qυの面積を004%(頭部fi
llの直径を1m程度とした場合)にとどめる事ができ
るため太陽光吸収率や反射率に与える影響が極くわずか
となる。
Next, the operation of the present invention will be explained in detail using figures. In FIG. 2, the process in which electrons (6) are accumulated in the polymer material (2) is the same as in FIG. The electrons (2) accumulated in the polymer material (2) in FIG.
5), it flows to the head (11) of the ground electrode f1α on the surface of the polymer material (2). By making the interval between the lattice points (8) of the metal lattice (7) sufficiently small (for example, 4.5 m), it is possible to reduce the area surrounded by each lattice point (8) in the polymer material (2). (for example, 207), the energy accumulated and discharged here can be kept small. Therefore, electromagnetic waves due to electrostatic discharge can be suppressed, and deterioration of the thermal control material (1) can also be suppressed. Furthermore, the discharge flowing from the interior of the polymer material (2) toward the metal film (3) can also be suppressed to a small level as described above. Furthermore, regarding the thermal characteristics of thermal control (1),
The area of the head qυ of the above ground electrode is 004% (head fi
(If the diameter of ll is about 1 m), the influence on sunlight absorption and reflectance is extremely small.

(5) なお、熱制御材(1)と金属格子(7)に穴191をあ
けるにはドリル様の工具では不適で、ビーム径0.2m
m程度のパルスレーザによる穴明けを行う。また上記接
地電極11αの末端部(1のを金属格子(7)の格子点
(8)に熔着させるにもレーザによる爆接を行う。
(5) Note that a drill-like tool is not suitable for drilling the holes 191 in the thermal control material (1) and the metal grid (7), and the beam diameter is 0.2 m.
Drill a hole with a pulsed laser of approximately 1.5 m. Further, explosive welding using a laser is also performed to weld the end portion (1) of the ground electrode 11α to the lattice point (8) of the metal lattice (7).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来め熱制御材の構成図、第2図はこの発明の
一実施例の構成を示す断面図、第3図はこの発明の一実
施例の構成を示す平面図である。 図中(1)は熱制御材、(2)は高分子材、(3)は金
属膜。 (4)はネジ、(5)は構体、(6)は電子、(7)は
金属格子。 (8)は格子点、(9)は穴、叫は接地電極、 111
)は頭部。 0りは末端部である。 なお9図中同一あるいは相当部分は同一符号を付して示
しである。 代理人大岩増雄 (6)
FIG. 1 is a block diagram of a conventional heat control material, FIG. 2 is a sectional view showing the structure of an embodiment of the present invention, and FIG. 3 is a plan view showing the structure of an embodiment of the present invention. In the figure, (1) is a thermal control material, (2) is a polymer material, and (3) is a metal film. (4) is a screw, (5) is a structure, (6) is an electron, and (7) is a metal grid. (8) is the grid point, (9) is the hole, and the hole is the ground electrode, 111
) is the head. 0 is the terminal part. In FIG. 9, the same or corresponding parts are designated by the same reference numerals. Agent Masuo Oiwa (6)

Claims (1)

【特許請求の範囲】[Claims] シート状の高分子材の裏面に金属膜を付着した熱制御材
において、金属箔を格子状に形成し、かつ上記金属膜に
付着された金属格子と、上記高分子材と上記金属膜と上
記金属格子の格子点とを貫通する穴と、この穴に貫通さ
れ1頭部を上記高分子材の表面に露出させ末端部を上記
金属格子の格子点に溶着させた導電性リベット状の接地
電極とを備えたことを特徴とする熱制御材。
In a heat control material in which a metal film is attached to the back side of a sheet-like polymer material, the metal foil is formed in a lattice shape, and the metal lattice attached to the metal film, the polymer material, the metal film, and the a hole that penetrates through the lattice points of the metal lattice, and a conductive rivet-shaped ground electrode that is penetrated through the hole and has one head exposed on the surface of the polymer material and a terminal end welded to the lattice point of the metal lattice. A heat control material characterized by comprising:
JP58077737A 1983-05-02 1983-05-02 Control material for heat Pending JPS59203000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58077737A JPS59203000A (en) 1983-05-02 1983-05-02 Control material for heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58077737A JPS59203000A (en) 1983-05-02 1983-05-02 Control material for heat

Publications (1)

Publication Number Publication Date
JPS59203000A true JPS59203000A (en) 1984-11-16

Family

ID=13642216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58077737A Pending JPS59203000A (en) 1983-05-02 1983-05-02 Control material for heat

Country Status (1)

Country Link
JP (1) JPS59203000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151030A (en) * 1992-11-07 1994-05-31 Kanegafuchi Chem Ind Co Ltd Earthing structure and earthing method for laminated heat insulating member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151030A (en) * 1992-11-07 1994-05-31 Kanegafuchi Chem Ind Co Ltd Earthing structure and earthing method for laminated heat insulating member
JP2689833B2 (en) * 1992-11-07 1997-12-10 鐘淵化学工業株式会社 Grounding method for laminated insulation

Similar Documents

Publication Publication Date Title
EP0312225B1 (en) Particle accelerator
US4178524A (en) Radioisotope photoelectric generator
US3751701A (en) Convergent flow hollow beam x-ray gun with high average power
Grard et al. Spacecraft charging effects
US4329731A (en) Discharge suppressing dielectric film for use on spacecraft surfaces
US20040232847A1 (en) Electromagnetic pulse device
US20190295801A1 (en) Low sputtering, cross-field, gas switch and method of operation
US2538836A (en) Barrier grid storage tube
US6373921B1 (en) X-ray unit including electromagnetic shield
JPS59203000A (en) Control material for heat
EP0315435A2 (en) Improvements in or relating to a streaking or framing image tube
Ferguson Solar array arcing in plasmas
KR100396289B1 (en) Three-electrode-discharge surge arrester
US5020087A (en) Diode for providing X-rays
CN109804514A (en) The spark gap without krypton -85 with cantilever members
Pick et al. Detection of a solar particle event at an heliolatitude of 73.8° S
Mattern et al. A new approach for constructing sensitive surfaces: the gaseous pixel chamber
Pedersen et al. Measurements of low energy electrons and spacecraft potentials near comet P/Halley
JPH08284803A (en) Ion engine
DE3740996C1 (en) Gun emitting electromagnetic energy
JP2515738B2 (en) Display device using cathode ray tube
WO2000042631A1 (en) High energy x-ray tube
GB2194674A (en) Gas discharge devices
JP2757963B2 (en) Ion source accelerating electrode
EP1670017A1 (en) Electron beam window, window assembly, and electron gun