JPS59202396A - Heat-recovering method - Google Patents

Heat-recovering method

Info

Publication number
JPS59202396A
JPS59202396A JP7704883A JP7704883A JPS59202396A JP S59202396 A JPS59202396 A JP S59202396A JP 7704883 A JP7704883 A JP 7704883A JP 7704883 A JP7704883 A JP 7704883A JP S59202396 A JPS59202396 A JP S59202396A
Authority
JP
Japan
Prior art keywords
tower
gas
liquid contact
aqueous
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7704883A
Other languages
Japanese (ja)
Other versions
JPH0434073B2 (en
Inventor
Kenichi Nakagawa
健一 中川
Nobuo Ishimoto
石本 暢男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7704883A priority Critical patent/JPS59202396A/en
Publication of JPS59202396A publication Critical patent/JPS59202396A/en
Publication of JPH0434073B2 publication Critical patent/JPH0434073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To enhance heat-recovering efficiency, by a method wherein thermal energy of an exhaust gas is recovered by an aqueous solution of a salt, and thermal energy of the solution is indirectly used for heating water. CONSTITUTION:Counterflow-type gas-liquid contact towers 2, 4 are provided, and an aqueous solution of a salt contained at the bottom of each of the towers is drained through a lower part of the tower. An exhaust gas is passed upward through the tower 2 from a lower part of the tower 2, while air is passed upward through the tower 4 from a lower part of the tower 4, and is introduced into a packed tower 6 in which pure water is circulated by a pump 7. By this, thermal energy of the exhaust gas is recovered by the aqueous solution, and thermal energy of the solution is used indirectly for heating water through air. Accordingly, heat-recovering efficiency can be enhanced.

Description

【発明の詳細な説明】 技術分野 本発明は高エネルギーガス(高温、高湿度または両者)
により加熱する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to high energy gases (high temperature, high humidity or both).
The present invention relates to a heating method.

ここで言う高エネルギーガスとしては、種種の乾燥器(
箱型乾燥器、トンネル乾燥器、ドラム卓乞燥器、7ラツ
シユ乾燥器、塔乾燥器、噴霧乾燥器など)の排ガス、燃
焼炉、加熱炉、ボイラーの排ガスなどがある。
The high-energy gas mentioned here includes various types of dryers (
These include exhaust gas from box dryers, tunnel dryers, drum dryers, 7-rush dryers, tower dryers, spray dryers, etc., and exhaust gas from combustion furnaces, heating furnaces, and boilers.

従来技術 排ガスの熊エネルギーを水の予熱に利用する方法トシて
は、ボイラーのエコノマイザのように間接熱交換する方
法、水性ガス反応(−酸化炭素と水蒸気とを反応させて
水素と二酸化炭豪に変える方法)に利用された廃熱回収
用の直接接触式のいわゆる加熱塔などがある。前者は熱
伝導さらに詳しくいうと熱貫流を利用した単位操作に属
し、後者は冷却により発生した微小水滴を洗浄除去する
特殊な熱移動を伴なう物質移動と熱伝達とを含む。後者
について、さらに、具体的に述べると、飽和した空気中
鎖浮遊する水滴を洗浄除去することと)含噴霧気相から
液相(水)へ伝熱による熱回収が行われるものと考えら
れる。
Conventional technology Methods of using the energy of exhaust gas to preheat water; methods of indirect heat exchange such as in boiler economizers; There are so-called direct contact type heating towers for waste heat recovery that are used in The former belongs to unit operations that utilize heat conduction, or more specifically, heat flow, and the latter includes mass transfer and heat transfer that involve special heat transfer to wash away microscopic water droplets generated by cooling. Regarding the latter, to be more specific, it is thought that heat is recovered by heat transfer from the atomized gas phase to the liquid phase (water).

本発明は、前記した公知の加熱塔とは異なる方法で、排
ガスの持つ熱を、水に比べて蒸気圧の低い塩類m液(し
たがっていわゆる沸点上昇を起こし、その沸点での蒸気
は過熱蒸気である。)と直接接触させる新規な方法であ
る。
The present invention utilizes a method different from the above-mentioned known heating tower to utilize the heat possessed by the exhaust gas into a salt liquid (which has a lower vapor pressure than water) (therefore, the so-called boiling point rises, and the steam at that boiling point is superheated steam). This is a new method of directly contacting the human body.

発明の目的 本発明の1月的は、排ガスの熱的エネルギーヲ塩頌溶液
により回収し、その塩類の熱的エネルギーを間接的に水
の加熱に用いる方法を提供することである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for recovering the thermal energy of exhaust gas using a salt solution and using the thermal energy of the salts indirectly for heating water.

発明の根1氏となる理、倫 本発明の熱回収の原理を第1図および1石2図に示した
湿度図表により説明する。
The principle of heat recovery of the present invention will be explained with reference to the humidity chart shown in Fig. 1 and Fig. 2.

周知のように、断熱冷却線(図中右下りの線AAなどの
1′l:)は、水温が一定値(ts)に保たれると仮定
した場合に、全圧1 atmの下で、不飽和の空気がそ
の水から蒸発する水蒸気で飽和される過程をたて軸に湿
度、横軸に温度をとって示したものである。この線上で
、気相から液相(水郷に伝わる熱量に相当する水蒸気の
蒸発があるので、気相の(換言すれば乾空気あたりの)
エンタルピは一定であり、接触する水相の温度はtsな
る一定値をとり、七8は断熱飽和温度である。
As is well known, the adiabatic cooling line (1'l: such as the line AA on the lower right in the figure) is as follows under a total pressure of 1 atm, assuming that the water temperature is kept at a constant value (ts). This diagram shows the process by which unsaturated air becomes saturated with water vapor evaporated from water, with humidity on the vertical axis and temperature on the horizontal axis. On this line, from the gas phase to the liquid phase (there is evaporation of water vapor equivalent to the amount of heat transferred to the water village, so the gas phase (in other words, per dry air)
The enthalpy is constant, the temperature of the aqueous phase in contact takes a constant value ts, and 78 is the adiabatic saturation temperature.

このことから、例えば、この線上の点X(第2図参照)
で示される湿度H1温度tの空気中の水分を適宜方法で
液化除去してやると、はぼ断熱冷却線に浴って、xlで
示される鐘度[1,温度t1を示すことになる。
From this, for example, point X on this line (see Figure 2)
If the moisture in the air with the humidity H1 and the temperature t is liquefied and removed using an appropriate method, it will be exposed to the adiabatic cooling line and exhibit a temperature of 1 and a temperature of t1, which is indicated by xl.

本発明では、水蒸気の液化除握剤として塩類(Mg01
2、LiBr  など)の水溶液を用いる。
In the present invention, salts (Mg01
2, LiBr, etc.) is used.

塩類水浴液が液化除去剤に使用できることは、不揮発物
質を溶解した場合に一般に認められる沸点上昇現象から
明らかである。
That a salt water bath can be used as a deliquefaction agent is evident from the boiling point increase phenomenon generally observed when non-volatile substances are dissolved.

いま、簡単のため、希薄溶液について言うと、沸点上昇
△TBは、溶媒の沸点をTO1蒸発熱をλv1ガス常欽
をR,XBをモル分率とすると、で表わされる(例えば
W、J、Moore; PhysicalChemis
try、 p。132、Prentice −Hall
 1962参照)。沸点上昇現象は換言すると蒸気圧降
下を意味し、そのため脱水(液化除去)の効果が生ずる
Now, for the sake of simplicity, regarding a dilute solution, the boiling point rise △TB is expressed as (for example, W, J, Moore; Physical Chemistry
try, p. 132, Prentice-Hall
(see 1962). In other words, the boiling point increase phenomenon means a decrease in vapor pressure, which results in the effect of dehydration (liquefaction removal).

第2図に水、34%MEO12水溶液、50%LiBr
水浴液の師種の温度における平′#温度を示す。
Figure 2 shows water, 34% MEO12 aqueous solution, and 50% LiBr.
It shows the normal temperature of the water bath liquid at the temperature of the master.

これらの塩類水溶液は、蒸気圧降下作用が大で、固体を
析出することがなく、毒性が少なく安定である点で優れ
ている。
These aqueous salt solutions are excellent in that they have a large vapor pressure lowering effect, do not precipitate solids, have little toxicity, and are stable.

発明の具体例(実施例) 第3図において、熱源ガスは導管(1)から向流式気液
接触装置の1例である充てん塔(2)の下Ql< (2
aンに導入され、塩類水溶液(例えばMIF−12の3
4%水溶液)と然伝阜および液化気相間の水の移動を含
む広義の熱交換をして冷却されスタック(2b)から放
出される。熱源ガスの断熱飽和温度を60℃とすると、
その温度、湿度のいかんに限らずその乾空気基準のエン
タルピ(以下ffl 6’Jエンタルピというo  )
 ld 109 (kcal/kg %ガス、以下この
シメンジョンを省略する。)であり、スタック(2b)
から放出される排ガスの断熱飽和温度を31℃[例えば
50℃、湿度0.018 kg水/kg乾ガスで表わさ
れる状態]とすれば、湿潤エンタルピは約25kcal
/kg 乾ガスである。
Specific Examples of the Invention (Embodiments) In FIG. 3, heat source gas is passed from the conduit (1) to the bottom of the packed tower (2), which is an example of a countercurrent gas-liquid contact device, Ql< (2
A saline solution (e.g. MIF-12 3
A 4% aqueous solution) is cooled and discharged from the stack (2b) through extensive heat exchange involving water transfer between the liquefied gas phase and the liquefied gas phase. Assuming that the adiabatic saturation temperature of the heat source gas is 60°C,
Regardless of temperature or humidity, the enthalpy of the dry air standard (hereinafter referred to as ffl6'J enthalpy)
ld 109 (kcal/kg% gas, hereinafter this dimension will be omitted), and the stack (2b)
If the adiabatic saturation temperature of the exhaust gas released from is 31°C [for example, 50°C, humidity 0.018 kg water/kg dry gas], the wet enthalpy is approximately 25 kcal.
/kg dry gas.

塩類水溶液は充てん塔(2)では熱源ガスと向流接触し
て塔を落下中に昇温しく例えば塔上部において45℃、
塔下部において88℃)、ポンプ(3)により引抜かれ
充てん塔(4)の上部から濯下し、送風機(5)から吹
送1れる空気により減温される(例えば15℃の空気を
吹込んで、塔頂(4b)を出る空気の温度は80℃とな
る。)。充てん塔(4)の底部に溜った前記塩類水溶液
(45℃)はポンプ(d)により引抜かれ、前述のよう
に充填塔(2)の上部から面下され、循環をくり返す。
In the packed tower (2), the aqueous salt solution contacts the heat source gas countercurrently and rises in temperature while falling down the tower, for example, to 45°C at the top of the tower.
88°C at the bottom of the tower), is drawn out by the pump (3) and rinsed from the upper part of the packed tower (4), and the temperature is reduced by air blown from the blower (5) (for example, by blowing air at 15°C, The temperature of the air leaving the column top (4b) is 80° C.). The aqueous salt solution (45° C.) accumulated at the bottom of the packed tower (4) is drawn out by the pump (d) and, as described above, is poured down from the top of the packed tower (2), and the circulation is repeated.

充てん塔(2)および(4)にはラシヒリングその他の
充てん物が充てんしである。充てん塔(4)の塔頂から
出る温品空気(80℃)は次に充てん塔(6)の下部(
6a)から塔内に導入され、塔上部(6b)から放出さ
れる( 3(1℃)。塔(6)には純水(直接ではない
。)がポンプ(7)により図示のように循に4浦流して
おり、空気と水と直接接触して、前記温湿空気の熱エネ
ルギーを熱、物質両者の移動により回収する(塔下部水
温20℃、塔下部水温55℃)。
Packing towers (2) and (4) are filled with Raschig rings and other packing materials. The hot air (80°C) exiting from the top of the packed tower (4) is then transferred to the lower part of the packed tower (6) (
6a) and discharged from the upper part of the column (6b) (3 (1°C). Pure water (not directly) is circulated in the column (6) by a pump (7) as shown in the figure. The air and water are in direct contact with each other, and the thermal energy of the hot and humid air is recovered through the transfer of both heat and matter (water temperature at the bottom of the tower: 20°C, water temperature at the bottom of the tower: 55°C).

熱回収するための給水(15℃)は導管(11)から系
に入り、間接熱交換器”’4内で、充てん塔16)の循
環水(!:熱交換して例えば48℃となり、充てん塔(
2)の溶液循環経路(塔(2)の底部溶液をポンプ(8
)で引抜き、熱交換器−1騰で冷却され塔(2)の上部
から面下する。)中の熱交換器・1濁でさらに加熱され
(81°C)、他の熱エネルギー使用設備(図示せず)
に製品として送られ使用される。
Feed water (15°C) for heat recovery enters the system from the conduit (11), and in the indirect heat exchanger "'4, the circulating water (!: heat exchanges to 48°C, for example, of the packed tower 16), and the water is heated to 48°C, for example, Tower (
2) solution circulation path (the bottom solution of the column (2) is pumped (8)
), cooled by heat exchanger 1, and flowed down from the top of tower (2). ) is further heated (81°C) by the heat exchanger in
It is sent to and used as a product.

本実施例で、乾燥空気100tlOkφ について計算
すると、入熱109 X 109kcal (断i1相
温度60℃)、充てん塔12)の塔頂(2b)を出る排
空気の熱量を25 X 109kcal(断熱飽和温度
31℃)とした場合、上記実施例に示し、た各部の温度
が期待され、81℃の温水を12.7t/h作ることが
でき、エネルギー効率は77%である。
In this example, when calculating for 100 tlOkφ of dry air, the heat input is 109 x 109 kcal (insulation I1 phase temperature 60°C), and the amount of heat of the exhaust air exiting the top (2b) of the packed column 12) is 25 x 109 kcal (adiabatic saturation temperature 31° C.), the temperature of each part shown in the above example is expected, 12.7 t/h of 81° C. hot water can be produced, and the energy efficiency is 77%.

次に第4図に他の実施例を示す。Next, FIG. 4 shows another embodiment.

充てん塔(2)および充てん塔(4)けgQ記実施例の
場合と実質的に同じ作用をする。すなわち高エネルギー
ガス(水による断熱飽和温度60℃)は導管(1)をと
おり充てん塔(2)の下部(2a)から塔内に入り塔上
部(2b) 7yhら放出される(断熱飽和温度31℃
)。
The packed tower (2) and the packed tower (4) function substantially the same as in the embodiment described above. That is, high-energy gas (adiabatic saturation temperature due to water 60°C) enters the column from the lower part (2a) of the packed tower (2) through the conduit (1) and is released from the upper part (2b) of the column (adiabatic saturation temperature 31 ℃
).

一方垣頌水縛液は、充てん塔(2)の−上部から泌下し
く45℃)、塔底に溜った液(88°C)はポンプ(3
)により引抜かれ熱交換器−で給水(被加熱水)に熱を
与えた後(66,5℃)、充てん塔(4)の上部から層
下され、送風機(5)により吹込まれる空気(1,5℃
)と同流接触して、脱水#細され(45°C)、塔下部
からポンプ(6′)によシ引抜かれ、充てん塔(2)の
上部から潅下される形式の鎖環を行う。塩類水心液は充
てん塔(1)で脱水にエリ薄められ、充てん塔(4)で
績縮され、バランスが保た7Lる。端紬用空気は充てん
塔(4)の上m (4b)から放出される(62°C)
On the other hand, the liquid is secreted from the upper part of the packed tower (2) (45°C), and the liquid accumulated at the bottom of the tower (88°C) is pumped (3).
) and heat the feed water (water to be heated) in a heat exchanger (66.5°C), then the air ( 1.5℃
) in the same flow, dehydrated and refined (at 45°C), pulled out from the bottom of the column by a pump (6'), and then pumped down from the top of the packed column (2). . The saline pericardial fluid is dehydrated and diluted in the packed tower (1), and reduced in the packed tower (4) to maintain a balance of 7L. Air for pongee is released from the upper m (4b) of the packing tower (4) (62°C)
.

本実施例の場合、乾燥空気10t)00 kF!7h 
 についで計算すると、入熱109 X 109kca
l (断熱飽相温Ji 6Q’C)、充てん4 (2)
の塔頂(2b)を出る排空気の熱量を25 X 10 
kcal (断熱砲相温gin°C)とした場合、上記
した各部温度が期待され、14t/hの水を50℃から
80℃に加熱することができ、回収率け38.鴫である
In the case of this example, dry air 10t)00 kF! 7h
Then, the heat input is 109 x 109 kca.
l (adiabatic saturation temperature Ji 6Q'C), filling 4 (2)
The amount of heat of the exhaust air leaving the tower top (2b) is 25 x 10
kcal (insulated gun phase temperature gin°C), the above-mentioned temperatures at each part are expected, 14t/h of water can be heated from 50°C to 80°C, and the recovery rate is 38. It's a crow.

向流式気液接触装置uとしでは充てん塔のほかに段塔、
邪魔根基、その他のものが周知である。
In addition to the packed tower, the countercurrent gas-liquid contact device also has a tray tower,
Disturbing roots and others are well known.

発明の構成 上記発明の原理、実施例でその作用効果を含めて述べた
ように、本発明は、向流式気液接触装置(2)と向流式
気液接触装置−4)の2基を用いて、向流式気液接触装
置(2)を741丁しit塩類水m液を回流式気液接触
装置(4)の上部から、潅下さて、向流式気液接触装置
(4)の塔底液を回流式気液接触装置(2)の上部に戻
し循環させる儂環経路勿有し、回流式気液接触装置(2
)に高エネルギーガス(被処理ガス)を通過させ、自流
式気液接触装置(4)には空気を通過させて、塩類水溶
液の磯度の定常化を図ることと、この循環塩類水d液か
ら間接熱交換方法で給水に然エイ・ルギーを移動させる
構成を含むことに特徴かある。
Structure of the Invention As described above, including the principle of the invention and its effects in the examples, the present invention comprises two units: a countercurrent gas-liquid contact device (2) and a countercurrent gas-liquid contact device-4). Using a counter-current gas-liquid contact device (2), 741 pieces of salt water was poured from the upper part of the counter-current gas-liquid contact device (4). ) is included in the circulation type gas-liquid contacting device (2).
), and air is passed through the self-flow gas-liquid contact device (4) to stabilize the roughness of the salt aqueous solution. It is characterized in that it includes a configuration in which natural energy is transferred from the feed water to the water supply using an indirect heat exchange method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は説明用の周知混炭図表、第2図は鳩知湿度図表
を拡大した説明用湿度図表、第3図は本発明の1実施例
の工程図、第4図は本発明の他の実施例の工程図である
。 (2)・・・充てん塔、(3)・・・ポンプ、(4)・
・・充てん塔、(5)・・・送風機、(6)・・・充て
ん塔、(1匂・・・間接熱交換器、州・・・間接熱交換
器、u’)・・・間接熱交換器。
Fig. 1 is a well-known mixed coal chart for explanation, Fig. 2 is an explanatory humidity chart that is an enlarged version of the Hatochi humidity chart, Fig. 3 is a process diagram of one embodiment of the present invention, and Fig. 4 is a diagram of another embodiment of the present invention. It is a process diagram of an example. (2)... Packed tower, (3)... Pump, (4)...
...Filled tower, (5)...Blower, (6)...Filled tower, (1 smell...Indirect heat exchanger, state...Indirect heat exchanger, u')...Indirect heat exchanger.

Claims (1)

【特許請求の範囲】 1 向流式気液接触塔(2)と向流式気液接触装置(4
)を用い、同流式気液接触塔fi+を面下した塩類水溶
液を向流式気液接触塔(4)の上部から浦下させ、向流
式気液接触塔]4)の塔底液を向流式気液接触塔(2)
の塔上部に戻し、かくして循環させる塩類水容液の循環
経路を有し、向流式気液接触塔(2)には高エネルギー
ガスを下部から上方に通過させてエネルギー回収を行い
、回流式気液接触塔(4)には空気を下部から上方に通
過させて、塩類水溶液の濃縮を行い、これら両塔の併用
で塩類濃度変化を防ぎ、この循環塩類水m液から間接熱
交換器方法で被加熱水に熱エネルギーを移動させる方法
を含む熱回収方法。 2 塩類水m液が塩化マグネシクム水溶液である特許請
求の範囲gg1項記載の方法。 3 塩類水m液が臭化リチクム水溶液である特許請求範
囲第1項記載の方法。
[Scope of Claims] 1 Countercurrent gas-liquid contact tower (2) and countercurrent gas-liquid contact device (4
), the aqueous salt solution that has passed through the cocurrent gas-liquid contact tower (fi+) is brought down from the upper part of the countercurrent gas-liquid contact tower (4), and the bottom liquid of the countercurrent gas-liquid contact tower (4) is obtained. Countercurrent gas-liquid contact tower (2)
The counterflow type gas-liquid contact tower (2) has a circulation path for the salt aqueous solution that is returned to the upper part of the tower and is thus circulated. Air is passed through the gas-liquid contact tower (4) from the bottom to the top to concentrate the aqueous salt solution, and these two towers are used together to prevent changes in salt concentration, and the circulating salt aqueous liquid is transferred to an indirect heat exchanger method. A heat recovery method that involves transferring thermal energy to water to be heated. 2. The method according to claim gg1, wherein the aqueous salt solution is an aqueous magnesium chloride solution. 3. The method according to claim 1, wherein the aqueous salt solution is an aqueous lyticum bromide solution.
JP7704883A 1983-04-30 1983-04-30 Heat-recovering method Granted JPS59202396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7704883A JPS59202396A (en) 1983-04-30 1983-04-30 Heat-recovering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7704883A JPS59202396A (en) 1983-04-30 1983-04-30 Heat-recovering method

Publications (2)

Publication Number Publication Date
JPS59202396A true JPS59202396A (en) 1984-11-16
JPH0434073B2 JPH0434073B2 (en) 1992-06-04

Family

ID=13622890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7704883A Granted JPS59202396A (en) 1983-04-30 1983-04-30 Heat-recovering method

Country Status (1)

Country Link
JP (1) JPS59202396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348295C (en) * 2006-02-17 2007-11-14 绍兴永利环保科技有限公司 Exhaust gas treatment device
CN102116583A (en) * 2011-01-26 2011-07-06 吴增伟 Vulcanizing dead steam waste heat recovery device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101254A (en) * 1975-03-04 1976-09-07 Inst Gas Technology KOONNETSUKOKANNOHOHO
JPS55131477U (en) * 1979-03-14 1980-09-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101254A (en) * 1975-03-04 1976-09-07 Inst Gas Technology KOONNETSUKOKANNOHOHO
JPS55131477U (en) * 1979-03-14 1980-09-17

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348295C (en) * 2006-02-17 2007-11-14 绍兴永利环保科技有限公司 Exhaust gas treatment device
CN102116583A (en) * 2011-01-26 2011-07-06 吴增伟 Vulcanizing dead steam waste heat recovery device

Also Published As

Publication number Publication date
JPH0434073B2 (en) 1992-06-04

Similar Documents

Publication Publication Date Title
US3841382A (en) Glycol regenerator using controller gas stripping under vacuum
US1906467A (en) Distilling hydrochloric acid
CN107376384B (en) A kind of vapo(u)rization system based on air adiabatic humidification
US3370636A (en) Apparatus for reconcentrating liquid desiccant
WO1991000759A1 (en) Method and apparatus for evaporation of liquids
US2355828A (en) Combined cooling and dehumdifxing
US4860548A (en) Air conditioning process and apparatus therefor
WO1999011348A1 (en) Device and process for dehydration of water absorbent
JPH0233645B2 (en)
CS268808B2 (en) Method of used laundry agent reclaiming process
JPS59202396A (en) Heat-recovering method
US3106515A (en) Process and apparatus for concentrating nitric acid
JPH08261600A (en) Recovering method for exhaust heat
JPS58214782A (en) Method and device for recovering heat from wetted gas by absorption of steam
SE462300B (en) PROCEDURE FOR EXTRACTION OF REACTION HEATER
US2880146A (en) Apparatus for evaporating fluids
US1943345A (en) Recovery of ammonia from cook liquor
US2161055A (en) Recovery of so2 from ammonium sulphite solutions
US1719130A (en) Process for recovering heat and chemicals
US3679549A (en) Separation of ammonia in a thermosyphon evaporator
US2134482A (en) Process of recovering so from waste gases
US2146792A (en) Sulphuric acid manufacture
US1901794A (en) Absorption refrigerating machine
JPS5926926A (en) Apparatus for removing co2 with hot potassium carbonate
GB1263867A (en) Improvements in or relating to the dehydration of aqueous hydrochloric acid