JPS59202143A - Prevention method of clogging of molten metal charging nozzle in continuous casting - Google Patents

Prevention method of clogging of molten metal charging nozzle in continuous casting

Info

Publication number
JPS59202143A
JPS59202143A JP7658983A JP7658983A JPS59202143A JP S59202143 A JPS59202143 A JP S59202143A JP 7658983 A JP7658983 A JP 7658983A JP 7658983 A JP7658983 A JP 7658983A JP S59202143 A JPS59202143 A JP S59202143A
Authority
JP
Japan
Prior art keywords
molten metal
nozzle
injection nozzle
metal
clogging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7658983A
Other languages
Japanese (ja)
Inventor
Takateru Nomura
野村 高照
Kiyomi Shio
塩 紀代美
Shigeyuki Maeno
前野 重行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel Corp filed Critical Mishima Kosan Co Ltd
Priority to JP7658983A priority Critical patent/JPS59202143A/en
Publication of JPS59202143A publication Critical patent/JPS59202143A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent surely clogging of a charging nozzle owing to solidification of a molten metal by impressing a voltage between the molten metal in a tundish and the molten metal in a casting mold and heating the molten metal in the charging nozzle. CONSTITUTION:The molten metal 2 in a tundish 1 is charged via a charging nozzle 4 into a casting mold 5, by which a billet is cast. An electrode 7 is immersed into the metal 6 in the mold 5 to provide a cathode, and an electrode 3 is immersed in the metal 2 in the tundish 1 to provide an anode. Electricity is conducted to said electrodes to pass the current from the electrode 3 through the nozzle 4 and the molten metal 8 in the charging nozzle to the electrode 7. The max. calorific value is thus obtd. in the nozzle 4 part to heat the nozzle 4 and the metal 8 by which the formation of the solidified metal and the clogging of the nozzle 4 are prevented.

Description

【発明の詳細な説明】 この発明に、たとえは溶鋼のような浴融金属の連続鋳造
プロセスにおいて、溶融金属を鋳型内へ注入するノズル
の閉塞(ノズル詰う)を防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing blockage of a nozzle for injecting molten metal into a mold in a continuous casting process for bath molten metal, such as molten steel.

一般に、溶融金属を連続鋳造するに際し、溶融金属を鋳
型内へ注入するためのノズルは、溶融金属収納容器(タ
ンディツシュ)底部に取付けられ、多くの場合、その先
端部が鋳型内鋳造金属の浴面下に浸漬されている。
Generally, when continuously casting molten metal, the nozzle for injecting the molten metal into the mold is attached to the bottom of the molten metal storage container (tundish), and in many cases, the tip of the nozzle is attached to the bath surface of the cast metal in the mold. It is immersed below.

処で、この注入ノズルは、外気と接触して冷却されるた
め、注入ノズル内を流通している溶融金属が凝固し、該
凝固金属が成長して注入ノズルの閉塞(ノズル詰り)を
起すことがある。
Since the injection nozzle is cooled by contact with the outside air, the molten metal flowing through the injection nozzle solidifies, and the solidified metal grows to cause blockage of the injection nozzle (nozzle clogging). There is.

近年の連続鋳造技術は、多様化し、わけても極めて薄い
帯状鋳片を得るプロセスが指向されこの場合の注入ノズ
ル部は、極めて大きな比表面積を有することとなり、注
入ノズルが閉塞され易い状態下で鋳造を遂行しなければ
々らない。そこで溶融全国注入ノズルの閉塞防止技術が
強く要請されるようになってきた。
In recent years, continuous casting technology has diversified, and in particular, the process of obtaining extremely thin strips has become the focus.The injection nozzle in this case has an extremely large specific surface area, making it difficult to perform casting under conditions where the injection nozzle is easily clogged. I have to carry it out. Therefore, there is a strong demand for technology to prevent clogging of melt injection nozzles.

かかる要請に応えて、注入ノズルの材質を改良する等種
々のノズル閉塞防止策が採られている。
In response to such demands, various measures have been taken to prevent nozzle clogging, such as improving the material of the injection nozzle.

これらノズル閉塞防止技術の1つに注入ノズルの外気と
の接触部分に誘導加熱装置を嵌装した装置がある。即ち
、注入ノズルの周囲に誘導加熱コイルを設置し注入ノズ
ル内の溶融金属内に渦電流全発生さt1ジュール熱によ
り、ノズル内溶融金属を加熱し、その凝固によるノズル
の閉塞を防止するのである。
One of these techniques for preventing nozzle blockage is a device in which an induction heating device is fitted to the part of the injection nozzle that comes into contact with the outside air. That is, an induction heating coil is installed around the injection nozzle, and the eddy current generated in the molten metal inside the injection nozzle heats the molten metal inside the nozzle using t1 Joule heat, thereby preventing the nozzle from clogging due to solidification. .

しかしながら、かかる構成の装置は、複雑な注入ノズル
形状に対応した誘導加熱コイルならびべこの誘導加熱コ
イルを冷却するだめの装置を必要とし、装置が複雑で大
がかりとなるという問題がある。
However, a device having such a configuration requires an induction heating coil corresponding to a complicated injection nozzle shape and a device for cooling the induction heating coil, resulting in a problem that the device becomes complicated and large-scale.

また特開昭55−130364号公報には、溶鋼注入ノ
ズル内を通過中の溶鋼に高周波電流を通電し、その表皮
効果によシノズル内溶鋼表面に電流を集中させて、ノズ
ル内面と溶鋼の界面を加熱して、ノズル閉塞を防止する
技術が開示されている。
Furthermore, in Japanese Patent Application Laid-Open No. 55-130364, a high-frequency current is applied to the molten steel passing through the molten steel injection nozzle, and the current is concentrated on the surface of the molten steel in the nozzle due to the skin effect, thereby creating an interface between the inner surface of the nozzle and the molten steel. A technique has been disclosed for heating the nozzle to prevent nozzle clogging.

しかしながら、鋳片に偏析を生成せしめないようにする
等、鋳片の高品質化を計るだめに、溶鋼を能う限シ低温
に維持して鋳造しなければならない。また、鋳造過程で
ブレークアウトを生ぜしめないためにも能う限り低い温
度で溶鋼を鋳造しなければならない。
However, in order to improve the quality of the slab by preventing segregation in the slab, it is necessary to maintain the molten steel at the lowest possible temperature during casting. Further, in order to prevent breakout during the casting process, the molten steel must be cast at as low a temperature as possible.

一方、既に述べたように1注入ノズルを通過する溶融金
属の比表面積は、拡大の一途を辿っていて、前記低温鋳
造と相俟ってノズル閉塞を生じ易い鋳造になっている。
On the other hand, as already mentioned, the specific surface area of the molten metal passing through one injection nozzle continues to increase, and this, combined with the low-temperature casting, makes casting more likely to cause nozzle clogging.

従ってここにノズル内に凝固金属の付着を生じ吐出量が
減じた場合、又はノズル詰)を起した場合の何れの場合
にも対応できる技術が必要であるけれども、先に述べた
特開昭55−130364号公報に開示された技術では
、本発明における技術的課題を解決するだめの十分条件
とはなり得なh5このように、注入ノズルの閉塞を防止
するだめの従来技術は問題を有していた。
Therefore, there is a need for a technology that can deal with both the cases where solidified metal adheres inside the nozzle and the discharge rate is reduced, or when the nozzle is clogged. The technology disclosed in Japanese Patent No. 130364 cannot be a sufficient condition for solving the technical problems of the present invention.H5 As described above, the conventional technology for preventing injection nozzle clogging has problems. was.

この発明は、上に述べた従来技術における問題を解決し
た簡潔な注入ノズル閉塞防止方法を得ることを目的とし
、その要旨は、溶融金属を連続鋳造するプロセスにおし
て、タンディツシュ内溶融金属と%鋳型内溶融金属間に
電圧を印加し、鋳型内へ溶融金属を注入するノズル内の
溶融金属又は。
The purpose of this invention is to obtain a simple method for preventing clogging of an injection nozzle that solves the problems in the prior art described above. A voltage is applied between the molten metal within the nozzle or the nozzle to inject the molten metal into the mold.

該注入ノズルの何れか一方または双方を加熱することを
特徴とする連続鋳造における溶融金属注入ノズル詰り防
止方法である。
A method for preventing clogging of a molten metal injection nozzle in continuous casting, characterized by heating one or both of the injection nozzles.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明は、溶融金属注入ノズル或は、その内部を加熱
するに際し、従来技術における如く誘導加熱によらずに
、タンディツシュ内溶融金属と。
The present invention heats the molten metal injection nozzle or the inside of the molten metal in the tundish without using induction heating as in the prior art.

鋳型内溶融金属間に電圧を印加することによって、鋳型
内へ溶融金属を注入するノズル内の溶融金属および前記
ノズルの何れか一方または双方に直接通電し加熱するよ
うにして、この発明における技術的課題をよりよく解決
したものであり、第1図にこの発明を実施するときの装
置構成の一態様を示す。
By applying a voltage between the molten metal in the mold, the molten metal in the nozzle for injecting the molten metal into the mold and either or both of the nozzles are directly energized and heated. This problem has been solved better, and FIG. 1 shows one aspect of the device configuration when implementing this invention.

第1図において、1はタンディツシュ、2は溶融金属、
たとえば溶鋼である。3および7は電極であり、これら
の間に電圧が印加される。4は注入ノズルであり、り/
ディツシュから鋳型5内へ溶融金属2を注入する。その
先端は、鋳凰5内溶融金属6に浸漬している。8は注入
ノズル4内溶融金属である。9は鋳片支持ロール% 1
0は鋳片における凝固殻でちる。
In Figure 1, 1 is tanditsh, 2 is molten metal,
For example, molten steel. 3 and 7 are electrodes, and a voltage is applied between them. 4 is an injection nozzle;
Molten metal 2 is injected into the mold 5 from the dish. Its tip is immersed in the molten metal 6 inside the casting hood 5. 8 is the molten metal inside the injection nozzle 4. 9 is slab support roll% 1
0 is the solidified shell in the slab.

而して、鋳型5内部の浴融金属6へ浸漬せしめた電極7
を陰極、タンディツシュ1内の溶融金属2へ浸漬せしめ
几電極3を陽極として通電すると、電流は電極3から、
注入ノズル4および注入ノズル内溶融金属8を経由して
電極7に流れ込む。
The electrode 7 is immersed in the molten metal 6 inside the mold 5.
When the electrode 3 is immersed in the molten metal 2 in the tundish 1 as a cathode and energized with the electrode 3 as the anode, the current flows from the electrode 3.
It flows into the electrode 7 via the injection nozzle 4 and the molten metal 8 in the injection nozzle.

上に述ぺた電流の流通路に:おいて注入ノズル4の部分
が最も断面積の小さい部分である場合には。
In the case where the injection nozzle 4 is the part with the smallest cross-sectional area in the current flow path mentioned above.

この部分で電流密度が最大となる。電流による発熱(ジ
ュール熱)量は、電流密度の2乗に比例するから、前記
ノズル部分で最大の発熱量となり、ノズル内の溶融金属
自体の電圧印加による加熱よりも主として該ノズルの発
熱によシ、ノズルと接触する溶融金属を加熱し凝固金屑
の発生を防止しノズル閉塞を防ぐ。
The current density is maximum in this part. The amount of heat generated by the current (Joule heat) is proportional to the square of the current density, so the maximum amount of heat is generated at the nozzle, and the amount of heat generated by the nozzle is mainly due to the heat generated by the nozzle rather than the heating of the molten metal itself in the nozzle due to the voltage application. The method heats the molten metal that comes into contact with the nozzle to prevent the generation of solidified metal debris and prevent nozzle clogging.

ノズル断面積が最小でない場合に、溶融金属が注入ノズ
ル内全体に充満しているときには、注入ノズル内溶融金
属内部で発生し次ジュール熱で主として溶融金属は加熱
され凝固金属を生ぜず、凝  ゛固金属を生じたとして
も、該凝固金属における昇温か著しいので博解され、閉
塞されることはない。
When the nozzle cross-sectional area is not the minimum and the injection nozzle is completely filled with molten metal, the molten metal is heated mainly by the Joule heat generated inside the molten metal in the injection nozzle, and solidified metal is not produced. Even if solid metal is formed, the temperature rise in the solidified metal is significant, so it is easy to understand and will not be blocked.

仮に注入ノズル4が閉塞し、この閉塞部と鋳型内溶融金
篇6間に空隙を生じ、浴融金属による電気回路が遮断さ
れたとしても、注入ノズル4を回路要素として機能する
材料で形成しておくことにより、タンディツシュ1内の
溶融金属2から鋳型5内の溶融金属6へ電流がノズルを
介して流れ。
Even if the injection nozzle 4 were to become clogged, creating a gap between this blockage and the molten metal section 6 in the mold, and interrupting the electric circuit caused by the bath molten metal, the injection nozzle 4 could be made of a material that functions as a circuit element. As a result, current flows from the molten metal 2 in the tundish 1 to the molten metal 6 in the mold 5 through the nozzle.

注入ノズル4が発熱し、周囲から閉塞部の凝固金属を加
熱溶解し閉塞を解除する。
The injection nozzle 4 generates heat, heats and melts the solidified metal in the blockage from the surrounding area, and releases the blockage.

従って、この場合は注入ノズルは、電気的に完壁な絶縁
体であってはならず、通電によって発熱体とならなけれ
ばならない。たとえば、アルミナグラファイト製の注入
ノズルを用いればよい。
Therefore, in this case, the injection nozzle must not be an electrically perfect insulator, but must become a heating element when energized. For example, an injection nozzle made of alumina graphite may be used.

このようにして、本発明方法によれば、何れの場合にお
いても注入ノズル4における閉塞を防止し或は、閉塞状
態から流通状態へ回復させることが可能となる。
In this way, according to the method of the present invention, it is possible to prevent the injection nozzle 4 from being blocked in any case, or to restore the injection nozzle 4 from the blocked state to the flowing state.

尚、電極3,7を設ける位置は、溶融金属と導電性の良
い位置であれば何処でもよい。たとえば図に示す実施例
における陰極7の代りに鋳型5銅版または、鋳片支持ロ
ール9を陰極とし、鋳片の凝固殻10を介して通電させ
ることもできる。
Note that the electrodes 3 and 7 may be provided at any position as long as it has good conductivity with the molten metal. For example, instead of the cathode 7 in the embodiment shown in the figure, the copper plate of the mold 5 or the slab support roll 9 may be used as the cathode, and electricity may be applied through the solidified shell 10 of the slab.

この場合は、接触抵抗を小さくするために、電極と鋳片
の接解面積を大きくする必要がある。
In this case, in order to reduce the contact resistance, it is necessary to increase the contact area between the electrode and the slab.

上に説明した構成とすることにより、電気抵抗は、注入
ノズル40部分で最大となり、供給電力の大半は、注入
ノズル部に集中し、電力消費効率も良好となる。
With the configuration described above, the electrical resistance is maximized at the injection nozzle 40 portion, most of the supplied power is concentrated in the injection nozzle portion, and power consumption efficiency is also improved.

仄に、この発明の方法の実施態様例を説明する。An embodiment of the method of the present invention will be briefly described.

溶融金に’Attよ、前記の通り能う限り低温で鋳造さ
れる。そして鋳型内の溶1秒金属液面レベルを、たとえ
ば静心容量式の変位計によって連続的に検出していて、
鋳片引抜速度が変化しないにも不拘、液面レベルが1′
、−f、下して所定限界レベルよシも降下したことを検
知すると、電極3.7間に電圧を自動的に印加する。そ
こで注入ノズル4内の溶融金属は昇温し、凝固金属は溶
肩され吐出令は旧に復する。
Molten gold is cast at the lowest temperature possible, as described above. The level of the molten metal within the mold is continuously detected using, for example, a static capacitive displacement meter.
Even though the slab drawing speed does not change, the liquid level is 1'
, -f, and when it is detected that the voltage has fallen below a predetermined limit level, a voltage is automatically applied between the electrodes 3.7. Thereupon, the temperature of the molten metal in the injection nozzle 4 increases, the solidified metal is melted, and the discharge command is restored to the previous value.

凝固金属の漬解前に注入ノズル4が閉塞され、この閉塞
部分から下が滴状落下して空隙を生じ、溶融金属が通電
要素として機能しなくなったときは、注入ノズル4に、
たとえば20s!φの注入ノズルの場合、3000Aで
130KWの電流を流して30℃/bec  の昇温を
行なう。
When the injection nozzle 4 is blocked before the solidified metal is soaked, and the bottom drops from the blocked part to form a gap, and the molten metal no longer functions as a current-carrying element, the injection nozzle 4
For example, 20s! In the case of an injection nozzle of φ, a current of 130 KW at 3000 A is applied to raise the temperature by 30° C./bec.

こうすることで、注入ノズルを閉塞状態から流通状態へ
回復できる。
By doing so, the injection nozzle can be restored from the blocked state to the flowing state.

このときの昇温速度と′−力、昇温速度と電流値の関係
を注入ノズル径水準別に、第2図、第3図に示す。
The relationships between the temperature increase rate and '-force, and the temperature increase rate and current value at this time are shown in FIGS. 2 and 3 for each injection nozzle diameter level.

この発明によれば、比表面積の大きな注入ノズルを用い
た溶融金属の連続鋳造プロセスにおいても、確実に注入
ノズルの閉塞を防止し或は、閉塞状態から流通状態へ回
復させることができ、本発明は、連続鋳造プロセスの多
様化を可能ならしめるという大きな効果を萎するもので
ある。
According to this invention, even in a continuous casting process of molten metal using an injection nozzle with a large specific surface area, it is possible to reliably prevent the injection nozzle from clogging or to restore it from a blocked state to a flowing state. This negates the great effect it has had on making continuous casting processes more diversified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明を実施するときの装置の一態様を示
す図である。第2図は、注入ノズルを加熱するときの消
費電力とノズルの昇温速度の関係を示す図、第3図は、
注入ノズルを加熱するときの投入電流の大きさとノズル
の昇温速度の関係を示す図である。 3.7・・・電極、4・・・注入ノズル、5・・・鋳型
。 代理人 弁理士 秋 沢 政 光 外2名 テ1m 弁?凹 ″に3[¥]
FIG. 1 is a diagram showing one aspect of an apparatus for implementing the present invention. Figure 2 is a diagram showing the relationship between power consumption and nozzle heating rate when heating the injection nozzle, and Figure 3 is a diagram showing the relationship between power consumption and nozzle temperature increase rate when heating the injection nozzle.
FIG. 3 is a diagram showing the relationship between the magnitude of input current when heating the injection nozzle and the rate of temperature increase of the nozzle. 3.7... Electrode, 4... Injection nozzle, 5... Mold. Agent: Patent attorney Masaaki Akizawa, 2 people, 1m Ben? 3 [¥] in the concave

Claims (1)

【特許請求の範囲】[Claims] (1)溶融金属を連続鋳造するプロセスにおいて、タン
ディツシュ内溶融金属と、鋳型内溶融金属間に電圧を印
加し、鋳型内へ溶融金属全注入するノズル内の浴融金属
又は、該注入ノズルの倒れか一方または双方を加熱する
ことを特徴とする連続鋳造における溶融金属注入ノズル
詰シ防止方法。
(1) In the process of continuous casting of molten metal, a voltage is applied between the molten metal in the tundish and the molten metal in the mold, and the molten metal in the nozzle that injects all the molten metal into the mold or the injection nozzle collapses. A method for preventing clogging of a molten metal injection nozzle in continuous casting, characterized by heating one or both of them.
JP7658983A 1983-04-30 1983-04-30 Prevention method of clogging of molten metal charging nozzle in continuous casting Pending JPS59202143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7658983A JPS59202143A (en) 1983-04-30 1983-04-30 Prevention method of clogging of molten metal charging nozzle in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7658983A JPS59202143A (en) 1983-04-30 1983-04-30 Prevention method of clogging of molten metal charging nozzle in continuous casting

Publications (1)

Publication Number Publication Date
JPS59202143A true JPS59202143A (en) 1984-11-15

Family

ID=13609484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7658983A Pending JPS59202143A (en) 1983-04-30 1983-04-30 Prevention method of clogging of molten metal charging nozzle in continuous casting

Country Status (1)

Country Link
JP (1) JPS59202143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
EP4230305A1 (en) 2022-02-18 2023-08-23 Ebara Corporation Thermal spraying apparatus, method of detecting molten adhered substance in thermal spraying apparatus, and electrode for thermal spraying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
EP4230305A1 (en) 2022-02-18 2023-08-23 Ebara Corporation Thermal spraying apparatus, method of detecting molten adhered substance in thermal spraying apparatus, and electrode for thermal spraying apparatus

Similar Documents

Publication Publication Date Title
JP2954896B2 (en) Device for extracting melt from cold crucible induction melting furnace
US3608618A (en) Electroslag ingot production
JPS59202143A (en) Prevention method of clogging of molten metal charging nozzle in continuous casting
JP2002336942A (en) Immersion nozzle for continuous casting and continuous casting method
US4903753A (en) Casting technique for lead storage battery grids
US5197535A (en) Liquid metal stirring during casting
US3610318A (en) Electroslag ingot production
PL98546B1 (en) INJECTOR SUPPLY FOR INGOT MANUFACTURING ELECTROSOLUTION METHOD
JPS6150065B2 (en)
JPH0452067A (en) Production of cast ingot
JPH05285632A (en) Method for electrically melting slag
KR100694332B1 (en) Bottom pour electroslag refining systems and methods
JP3462822B2 (en) Continuous casting machine for molten metal
CZ375796A3 (en) Induction heating of refractory casting mould and a corresponding casting mould therefor
JPS59218246A (en) Prevention of clogging in molten metal charging nozzle in continuous casting
JP2000271706A (en) Twin roll type continuous casting method and device thereof
JPS6146357A (en) Molten steel heater for continuous casting installation
JPS5775265A (en) Pouring nozzle for molten metal
JPS6313659A (en) Manufacture of steel ingot
JPH04238652A (en) Pouring device for sheet continuous casting machine
JPH0242018B2 (en)
US3952792A (en) Method and apparatus for casting a plurality of ingots
JPS6153143B2 (en)
JP4064542B2 (en) Electromagnetic casting method
JP2005214438A (en) Electromagnetic tapping nozzle and metal melting/tapping device using it