JPS59202067A - Acceleration detecting apparatus - Google Patents

Acceleration detecting apparatus

Info

Publication number
JPS59202067A
JPS59202067A JP58077738A JP7773883A JPS59202067A JP S59202067 A JPS59202067 A JP S59202067A JP 58077738 A JP58077738 A JP 58077738A JP 7773883 A JP7773883 A JP 7773883A JP S59202067 A JPS59202067 A JP S59202067A
Authority
JP
Japan
Prior art keywords
light
axis
sphere
hollow container
cylindrical lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58077738A
Other languages
Japanese (ja)
Inventor
Toshio Abe
俊雄 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58077738A priority Critical patent/JPS59202067A/en
Publication of JPS59202067A publication Critical patent/JPS59202067A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/093Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by photoelectric pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To simplify the constitution of a three-axial direction acceleration detecting apparatus of a rolling axis, a pitching axis and a yawing axis, by optically detecting the projection image movement of a light nontransmittable sphere freely supported in a light transmittable hollow container in respective axial directions. CONSTITUTION:A light nontransmittable sphere 11 is freely supported in a light transmittable hollow container 9 by a support mechanism 12 such as a spring. The movement of a projection image corresponding to the acceleration of said sphere 11 is optically detected by a light source 13 supported by a yawing axis, a slit 17 equipped with a pinhole, a cylindrical lens 20 and a photoelectric converter element array 23. Detection due to optical systems supported by a rolling axis and a pitching axis is similarily performed. Therefore, a three-axial direction acceleration detecting apparatus of the rolling axis, the pitching axis and the yawing axis is brought to simple constitution using one accelerometer.

Description

【発明の詳細な説明】 この発明は人工衛星等の加速度運動全検出する加速度検
出装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an acceleration detection device that detects all the accelerated motion of an artificial satellite or the like.

まず従来の加速度検出装置について簡単に説明する。First, a conventional acceleration detection device will be briefly explained.

オ1図は従来のこの種装置の構成図である。図中(IJ
は第1のコイル、 (21t;t第2のコイA=、 +
31U第1のコイルにケーブル(7)経由励磁信号を送
出する励磁回路、(4)は第2のコイル(2ンに誘起さ
れる誘導起電力電力をケーブル(7)経由検出する検出
機構としての検出回路、(5)は第1のコイル(1)と
第2のコイル(2)との間のギャップ(8)に挿入され
、支持m構としての軸(6)の回シに回動する分動子で
磁性体で板状に構成されている。
FIG. 1 is a block diagram of a conventional device of this type. In the figure (IJ
is the first coil, (21t;t second coil A=, +
The excitation circuit (4) sends an excitation signal to the 31U first coil via the cable (7), and the excitation circuit (4) serves as a detection mechanism to detect the induced electromotive force induced in the second coil (2) via the cable (7). The detection circuit (5) is inserted into the gap (8) between the first coil (1) and the second coil (2) and rotates around the shaft (6) as a support structure. The molecule is made of magnetic material and has a plate shape.

このaな構成において第1のコイル(υと第2のコイル
(2)との間に形成されるギャップ(8)にはf@磁磁
路路3)が送出する励磁信号によって磁場が形成されて
いる。そしてこの磁場ハ第2のコイル(2)によって検
出されたケーブル(7)経由検出回路に入力される。
In this a-shaped configuration, a magnetic field is formed in the gap (8) formed between the first coil (υ and the second coil (2)) by the excitation signal sent by f@magnetic path 3. ing. This magnetic field is then detected by the second coil (2) and input to the detection circuit via the cable (7).

加速度検出装置に加速度運動が加えられると儂動子(5
)全軸(6)まわりに回動させる慣住力が発生し。
When an acceleration motion is applied to the acceleration detection device, the movement element (5
) A habitual force is generated that rotates around the entire axis (6).

ffi!動子(5)#jギャップ(8)内で回動する。ffi! Mover (5) rotates within #j gap (8).

このときギャップ(8)の透磁率が変化するので第2の
コイル(2)へ誘起される電力は変動する。したがって
検出回路(4)で第2のコイル(2)の誘導電力を検出
することで前記加速度の入きさを検出することができる
から人工衛星の加速度検出装置として広く用いられる。
At this time, the magnetic permeability of the gap (8) changes, so the power induced in the second coil (2) changes. Therefore, by detecting the induced power of the second coil (2) with the detection circuit (4), the intensity of the acceleration can be detected, so that it is widely used as an acceleration detection device for artificial satellites.

また、ここでは磁気検出型の例を述べたが、さらに上記
儂動子(5)の変位を靜電容景分の変化として検出する
静電容量検出型も使用されてbる。ざらに、上記伽動子
(5)にサーボ機構を取シつけ、伽動子(5)全加速度
の変化に対応して一定の位置に保持するに必要なサーボ
モータ駆動電力全検出するサーボ型加速度検出装置も使
われている。
In addition, although a magnetic detection type example has been described here, a capacitance detection type that detects the displacement of the movable member (5) as a change in electrostatic capacity may also be used. In general, a servo mechanism is attached to the above-mentioned Kayo element (5), and the servo type detects all the servo motor drive power necessary to hold the Kayo element (5) at a constant position in response to changes in total acceleration. Acceleration detection devices are also used.

しかし従来の加速度検出装置でFi振動子(5)の1方
向における変位量を利用しているため、加速度を1方向
しか検出することかできなりので人工衛星のロール軸、
ピッチ軸及びヨー軸各方向成分を検出しようとすると3
台の加速度検出装置が必要となシ重量が増加し、構成が
複雑となシ重量管理の厳しい要求に適合しにくいという
問題かあった。
However, since the conventional acceleration detection device uses the amount of displacement of the Fi oscillator (5) in one direction, it is only possible to detect acceleration in one direction.
3 when trying to detect each direction component of pitch axis and yaw axis
There are problems in that the weight of the platform increases and the structure is complicated, making it difficult to meet the strict demands of weight management.

この発明はこの様な従来の加速度検出装置における問題
点を解決し、構成が簡単でロール、ピッチ、ヨー軸の3
軸方向の加速度を検出する加速度検出装置を提供するも
ので以下図を用いて詳述する。第2図はこの発明の一実
施例の構成を示す構成因、第3図は加速度検出機構の平
面図、第4図は加速度検出機構の立面図、第5図は光電
変換素子の構成図である。
This invention solves the problems with conventional acceleration detection devices, has a simple configuration, and can handle three axes: roll, pitch, and yaw.
The present invention provides an acceleration detection device that detects acceleration in the axial direction, and will be described in detail below with reference to the drawings. Fig. 2 shows the components of an embodiment of the present invention, Fig. 3 is a plan view of the acceleration detection mechanism, Fig. 4 is an elevational view of the acceleration detection mechanism, and Fig. 5 is a configuration diagram of the photoelectric conversion element. It is.

図中(9)は光透過性の板で内部に壁間GO)を形成す
るように構成された中空容器、 (11)は上記空間α
0)に置かれた光不透過性の球体、aatriこの球体
ODを上記中空容器(9)内部で支持する支持機構で例
えばスプリングf:6方向に球体aIJと中空容器(9
)の間で取シつけ球体αυを等しい力で引き合うように
する。
In the figure, (9) is a hollow container configured with a light-transmissive plate to form an inter-wall GO) inside, and (11) is the space α.
A support mechanism that supports the light-impermeable sphere OD placed in the hollow container (9) inside the hollow container (9), for example, a spring f: supports the sphere aIJ and the hollow container (9) in six directions.
) so that the attached spheres αυ are pulled together with equal force.

0」は珂・2図のロール軸Xの方向に光06)を投射す
る2′1の光源(f9IJえば発光ダイオ−トン圓は第
2図のピッチ軸Yの方向に光06)全投射する第2の光
源。
0'' is a light source of 2'1 that projects light 06) in the direction of the roll axis Second light source.

05)は第2図のヨー軸Zの方向に光を(161を投射
する2・3の光源、07)は上記第1の光源Q31,1
′2の光源(14+及び第3の光源(15)から生ずる
光061に空間コヒーレンス性を与えるため中央部にヒ
ン示−ルuWを有する不透明板で構成されたスクリーン
で、上記第1の光源a3)9第2の光源0Φ及び第3の
光像0ωそれぞれと上記中空容器(9)との間に設置さ
れる。(19)は上記第1の光源a3)、第2の光分α
4及び第3の光源05)から発する光(16)を受光し
、上記球体圓の影を写すため、半透明板で構成され、上
記中空容器(9)に付着し取シつけられた第1の受光板
、 (20+は上記第1の光源(131から発する光(
1(il ’i集光する第1の円柱レンズ、 (211
に上記第2の光源αりから発する光116J¥C集光す
る第2の円柱レンズ、囚は上記第3の光源a9力・ら発
する光tJB)f集光する23の円柱レンズ。
05) is the 2nd and 3rd light source that projects light (161) in the direction of the yaw axis Z in FIG. 2, and 07 is the first light source Q31, 1
The screen is composed of an opaque plate having a hint mark uW in the center to give spatial coherence to the light 061 generated from the light source (14+) and the third light source (15). )9 is installed between each of the second light source 0Φ and the third optical image 0ω and the hollow container (9). (19) is the first light source a3), the second light component α
In order to receive the light (16) emitted from the light source 4 and the third light source 05) and to project the shadow of the spherical circle, a first light source made of a translucent plate is attached and attached to the hollow container (9). light receiving plate, (20+ is the light emitted from the first light source (131)
1 (il 'i first cylindrical lens that focuses light, (211
The second cylindrical lens condenses the light 116J\C emitted from the second light source α, and the 23 cylindrical lens condenses the light tJB)f emitted from the third light source a9.

(ハ)は上記2何の円柱レンズ□□□の焦点付近に置か
れ集光された光06)を受光し光電変換する第1の光電
変換素子アレイ(例えばCCDなと)、(2)は上記第
2の円柱レンズQ]Jの焦点付近に置かれ集光された光
06)を受光し光電変換する第2の光電変換素子アレイ
(ハ)は上記第3の円柱レンズ(22Jの焦点付近に置
かれ集光された光06)を受光し光電変換する第3の光
電変換素子アレイ、勿)Fi上記オ・1の光電変換素子
アレイは及び第3の光電変換素子アレイにケーブル(2
9)で接続された駆動回路、@はこの駆動回路l)にケ
ーブル唖で接続されるデータ処理回路、 c!8+は上
記第1の光源[131の、第2の光源(141及び第3
の光源α5)にケーブル@経由接続される電源、■は上
記オlの光電変換素子アレイL23)と第2の光電変換
素子アレイ(至)及び第3の光電変換素子アレイの)の
光電変換素子、al)は上記球体(IIの影像である。
(C) is a first photoelectric conversion element array (such as a CCD) that is placed near the focal point of the cylindrical lens □□□ and receives the condensed light 06) and converts it into electricity. A second photoelectric conversion element array (c) placed near the focal point of the second cylindrical lens Q]J receives and photoelectrically converts the condensed light 06), is placed near the focal point of the third cylindrical lens (22J). A third photoelectric conversion element array (of course) Fi which receives and photoelectrically converts the condensed light 06) placed in
9) is the drive circuit connected, @ is the data processing circuit connected to this drive circuit l) with a cable, c! 8+ is the first light source [131], the second light source (141 and the third light source)
The power supply connected to the light source α5) via the cable @, ■ is the photoelectric conversion element of the above-mentioned photoelectric conversion element array L23), the second photoelectric conversion element array (to), and the third photoelectric conversion element array) , al) is an image of the sphere (II).

次に動作を説明する。第2図において中空容器(9)の
内部に球体(litが支持機構(121によって全方向
に自由度をもって支持されているから、中空容器(9)
が運動するとき球体and慣性によ)、相対的fj:進
動を行う事になる。一方、第1の光源03)から放射さ
れる光(161はスクリーンαηへ到達する。スク9−
ンaηにはピンホール(1&が設けられてbるから、上
記光+161にはピンホールけ&で空間コヒーレンス性
に与えられて中空容器(9)へ入射する1、第3図にお
いて、中空容器(9)へ入射した光(+61ij:球体
0υによって逆光され、受光板(19)上に像をつくる
。この像は円柱レンズ(20)で集光され第1の光電変
換素子アレイ(23)上に第5図のように影像(31)
を作る。
Next, the operation will be explained. In FIG. 2, a sphere (lit) is supported with a degree of freedom in all directions by a support mechanism (121) inside the hollow container (9).
When it moves, relative fj: advances due to the sphere and inertia). On the other hand, the light (161) emitted from the first light source 03) reaches the screen αη.
Since the light +161 is provided with a pinhole (1 & b), the light +161 is given spatial coherence by the pinhole & and enters the hollow container (9). The light incident on (9) (+61ij: is backlit by the sphere 0υ and forms an image on the light receiving plate (19). This image is focused by the cylindrical lens (20) and is directed onto the first photoelectric conversion element array (23). image (31) as shown in Figure 5.
make.

第1の光電変換素子アレイ臼)の影像情報は第2図の駆
動回路□□□jによって読み出され、データ処理回路際
で編集されて加速度検出デ7夕として送出される。さて
、第3図及び第4図において2球体圓が任意方向へ3次
元的な運動をするとき、ロール軸Xとピッチl7ill
IYの方向の偏位量は円柱レンズ(20)で圧縮され、
ヨー軸Z方向の偏位量が、影像(3]〕の移動量として
検出される。したがって上記第1の光電変換素子アレイ
c!3)の光電変換素子t301は複数列配置の必要が
なく、単一の9ニアアレイで十分となる。したがってデ
ータ取得が高速化きれる。
The image information of the first photoelectric conversion element array is read out by the drive circuit □□□j in FIG. 2, edited by the data processing circuit, and sent out as acceleration detection data. Now, in Figures 3 and 4, when the two spheres move three-dimensionally in any direction, the roll axis X and the pitch l7ill
The amount of deviation in the IY direction is compressed by the cylindrical lens (20),
The amount of deviation in the yaw axis Z direction is detected as the amount of movement of the image (3).Therefore, the photoelectric conversion elements t301 of the first photoelectric conversion element array c!3) do not need to be arranged in multiple rows. A single 9-near array would be sufficient. Therefore, data acquisition can be speeded up.

以上の動作はピッチ軸Yとヨー軸Zの方向についても同
様であるから、第2の光電変換素子アレイ弼及び第3の
光電変換素子アンイ幻にも第5図の影像(31)が投影
されることになる。しfcかって、上記′A′1の光電
変換素子アレイ□□□)、第2の光電変換素子アレイ(
2)及び第3の光電変換素子アレイ1.25+それぞれ
から影像f3′IJの位置を読みとることによってロー
ル軸X、ピッチ軸Y、′3−軸Z各方向の加速度全検出
し3次元の加速度ベクトルを検出することができる。
Since the above operation is the same for the directions of the pitch axis Y and the yaw axis Z, the image (31) in FIG. 5 is also projected on the second photoelectric conversion element array 2 and the third photoelectric conversion element array That will happen. fc, the photoelectric conversion element array □□□) of above 'A'1), the second photoelectric conversion element array (
2) By reading the position of the image f3'IJ from each of the third photoelectric conversion element array 1.25+, all accelerations in each direction of the roll axis X, pitch axis Y, and '3-axis Z are detected and a three-dimensional acceleration vector is obtained. can be detected.

以上説明したように、この発明によれば、従来3個の加
速度Jtにより検出していた3次元加速度ベクトル1個
の加速度検出装置で検出することができ2重量か@減さ
れ(従来に40f〜80Fであったが約201程度にな
る)J−型化され(従来は1個が30−X 40 +、
血程贋であったが30聴×30朔程度となる)a々の応
用に供することができる。例えば、この加速度検出装置
を人工衛星の太陽電池パドルの分動モニタに用いれば同
一位置で3次元加速度ベクトルの検出ができ、分動の状
況を適確に把握することができる。ざらにi@址なため
駆動に対する外乱要因上を力にくいからa度の高い洲定
か可能となる。
As explained above, according to the present invention, it is possible to detect one three-dimensional acceleration vector with an acceleration detection device, which was conventionally detected using three accelerations Jt, and the weight is reduced by 2 (compared to 40f~ (It used to be 80F, but it becomes about 201.) It has been made into a J-type (conventionally, one piece was 30-X 40 +,
Although it was a fake, it is about 30 pieces x 30 pieces) It can be used for various applications. For example, if this acceleration detection device is used to monitor the partial movement of a solar array paddle of an artificial satellite, a three-dimensional acceleration vector can be detected at the same position, and the situation of partial movement can be accurately grasped. Since it is roughly i@, it is difficult to apply disturbance factors to the drive, so it is possible to achieve a high degree of a.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の加速度検出機構の構成図、第2図はこの
発明の一実施例の構成図2第3図は加速度検出機構の平
面図、第4図は加速度検出機構の立面図、第5図に光電
変換素子の構成図である。 図中fl)は第1のコ・fル、(2)は第2のコイル、
(3)は励磁回路、(4)に検出回路、(5)は振動子
、(6)は軸。 (7)はケーブル、(8)はギャップ、 +91rri
中全容器、 notは空間、Oj)は球体、 (121
は支持機構、03)は第1の光DL (14Iu3−2
 O光電、 (H+li’i73 〕光光電(161U
光。 Q71はスクリーる(I〜はビンポール、a9)は受光
板。 (20)は第1の円柱レンズ、(2Dけ第2の円柱レン
ズ。 @Fi第3の円柱レンズ、 (23+は第1光電変換累
子アレイ、 1241は第2の光電変換素子アレー1.
(ハ)は第3の光電変換素子アレイ、しG)は駆動回路
、際はデータ処理回路、(支)jは電源、(5))はケ
ーブル、媚は光電変換素子、(3Dは影像である。 なお1図中助−または相当部分には同一符号を付して示
しである。 第ユ図 第2図 第3図
FIG. 1 is a configuration diagram of a conventional acceleration detection mechanism, FIG. 2 is a configuration diagram of an embodiment of the present invention, FIG. 3 is a plan view of the acceleration detection mechanism, and FIG. 4 is an elevation view of the acceleration detection mechanism. FIG. 5 is a block diagram of a photoelectric conversion element. In the figure, fl) is the first coil, (2) is the second coil,
(3) is the excitation circuit, (4) is the detection circuit, (5) is the vibrator, and (6) is the shaft. (7) is cable, (8) is gap, +91rri
A medium container, not is a space, Oj) is a sphere, (121
is the support mechanism, 03) is the first light DL (14Iu3-2
O photoelectric, (H+li'i73) photoelectric (161U
light. Q71 is a screen (I~ is a vinyl pole, a9) is a light receiving plate. (20) is the first cylindrical lens, (2D second cylindrical lens. @Fi third cylindrical lens, (23+ is the first photoelectric conversion element array, 1241 is the second photoelectric conversion element array 1.
(c) is the third photoelectric conversion element array, G) is the drive circuit, data processing circuit is shown, (support) j is the power supply, (5)) is the cable, A is the photoelectric conversion element, (3D is the image) In addition, the same reference numerals are attached to the middle parts or equivalent parts in Figure 1. Figure U Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 加速度運動を行う物体上に支持機構で振動子を取シつけ
、この振動子の運動を検出する検出機構を備えた加速度
検出装置において、上記儂動子を光不透過性の球体で構
成し、光透過性の板で内部に空間を有するように形成さ
れた中空容器と、上記球体を上記中空容器の空間内部で
全方向に自由支持する支持機構と、上記中空容器の直交
するロール軸、ピッチ軸及びヨー軸の軸上に、光を投射
する光源と、この光源からは投射される光を受光し、ピ
ンホールを有する半透明板で構成されたスクリーンと、
このスクリーンに対して対向する上記中空容器の側面に
取ルつけられる半透明板で構成された受光板と、この受
光板に対向しておかれた円柱レンズと、この円柱レンズ
の焦点付近に置かれた光電変換索子アレイとを備え、上
記球体の直交する上記3他方向の偏位量を上記球体の影
像の移動量として検出し、もって上記加速度運動の3次
元ベクトルを検出する事に%徴とする加速度検出装置。
In an acceleration detection device, a vibrator is mounted on an object that performs accelerated motion using a support mechanism, and is equipped with a detection mechanism that detects the movement of the vibrator, wherein the vibrator is composed of a light-impermeable sphere, a hollow container formed with a light-transmitting plate and having a space therein; a support mechanism that freely supports the sphere in all directions within the space of the hollow container; and a roll axis and a pitch perpendicular to each other of the hollow container. a light source that projects light on the axes of the axis and the yaw axis; a screen that receives the light projected from the light source and is configured with a semitransparent plate having a pinhole;
A light receiving plate consisting of a translucent plate attached to the side of the hollow container facing the screen, a cylindrical lens facing the light receiving plate, and a cylindrical lens placed near the focal point of the cylindrical lens. A photoelectric conversion probe array is provided, and the amount of deviation of the sphere in the three orthogonal directions is detected as the amount of movement of the image of the sphere, thereby detecting the three-dimensional vector of the acceleration motion. An acceleration detection device that detects
JP58077738A 1983-05-02 1983-05-02 Acceleration detecting apparatus Pending JPS59202067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58077738A JPS59202067A (en) 1983-05-02 1983-05-02 Acceleration detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58077738A JPS59202067A (en) 1983-05-02 1983-05-02 Acceleration detecting apparatus

Publications (1)

Publication Number Publication Date
JPS59202067A true JPS59202067A (en) 1984-11-15

Family

ID=13642245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58077738A Pending JPS59202067A (en) 1983-05-02 1983-05-02 Acceleration detecting apparatus

Country Status (1)

Country Link
JP (1) JPS59202067A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266485A (en) * 1986-03-03 1987-11-19 メツセルシユミツト−ベルコウ−ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectron engineering acceleration measuring device
GB2342163A (en) * 1997-07-17 2000-04-05 Joseph Cauchi Omni-directional movement sensor
CN104914274A (en) * 2015-06-08 2015-09-16 福州汇智集佳电子技术有限公司 Acceleration sensor with double precision

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266485A (en) * 1986-03-03 1987-11-19 メツセルシユミツト−ベルコウ−ブロ−ム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Photoelectron engineering acceleration measuring device
GB2342163A (en) * 1997-07-17 2000-04-05 Joseph Cauchi Omni-directional movement sensor
GB2342163B (en) * 1997-07-17 2002-02-20 Joseph Cauchi Omni-directional movement sensor
CN104914274A (en) * 2015-06-08 2015-09-16 福州汇智集佳电子技术有限公司 Acceleration sensor with double precision
CN104914274B (en) * 2015-06-08 2020-09-01 福州睿创纺织科技有限公司 Acceleration sensor with double precision

Similar Documents

Publication Publication Date Title
US8717450B2 (en) Moving imager camera for track and range capture
CN110462686B (en) Apparatus and method for obtaining depth information from a scene
US6094215A (en) Method of determining relative camera orientation position to create 3-D visual images
CN100510931C (en) Image capture device
CN102692214B (en) Narrow space binocular vision measuring and positioning device and method
US9160907B2 (en) Tracking apparatus
CN101393012A (en) Novel binocular stereo vision measuring device
Jo et al. Spedo: 6 dof ego-motion sensor using speckle defocus imaging
Chen et al. Color and depth data fusion using an RGB‐D sensor for inexpensive and contactless dynamic displacement‐field measurement
CN107179069B (en) Satellite sun windsurfing flexible movement parameter measuring apparatus and method based on binocular stereo vision
JP2007517264A (en) Multidimensional imaging apparatus, system and method
Jiang et al. High-speed dual-view band-limited illumination profilometry using temporally interlaced acquisition
CN101341512A (en) Method for obtaining enhanced photography and device therefor
Núnez et al. Data Fusion Calibration for a 3D Laser Range Finder and a Camera using Inertial Data.
Svoboda et al. Panoramic cameras for 3D computation
JPH10210246A (en) Scanning type image pickup device and scanning type laser light receiving device
JPS59202067A (en) Acceleration detecting apparatus
Nyqvist et al. A high-performance tracking system based on camera and IMU
Lin et al. Videogrammetric monitoring of as‐built membrane roof structures
JPH09145318A (en) Three-dimensional measuring equipment
CN110132272A (en) A kind of measurement method and system for space junk kinematic parameter
US10161741B2 (en) System for detecting a contrasted target
CN112955844A (en) Target tracking method, device, system and storage medium
Lee et al. A spherical encoder for real-time measurements of three-DOF wrist orientations
Gille et al. Stereoscopic high speed camera based operational modal analysis using a one-camera setup