JPS59201363A - Fluorescent lamp - Google Patents
Fluorescent lampInfo
- Publication number
- JPS59201363A JPS59201363A JP7404483A JP7404483A JPS59201363A JP S59201363 A JPS59201363 A JP S59201363A JP 7404483 A JP7404483 A JP 7404483A JP 7404483 A JP7404483 A JP 7404483A JP S59201363 A JPS59201363 A JP S59201363A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescent lamp
- inner tube
- luminous flux
- metal oxide
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/04—Electrodes; Screens; Shields
- H01J61/10—Shields, screens, or guides for influencing the discharge
- H01J61/103—Shields, screens or guides arranged to extend the discharge path
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は開口した内管を有する螢光ランプの改。[Detailed description of the invention] [Field of application of the invention] The present invention is an improvement to a fluorescent lamp having an open inner tube.
良に関するものである。It is about good.
ステムに設けた2個の電極と、一端が上記電極1−のそ
れぞれ1つを囲んでステムに気密封着され、。two electrodes provided on the stem; one end surrounding each one of the electrodes 1- and hermetically sealed to the stem;
湾曲した他端が上記封着部の近くに開口し、内面。The other curved end opens near the sealing part and has an inner surface.
に螢光体膜を被着した1対のガラス内管と、これ。A pair of glass inner tubes coated with a phosphor film.
ら1対の内管を蔽い上記ステムに気密封着された。A pair of inner tubes were covered and hermetically sealed to the stem.
ガラス外管とを備え、該外管内に希ガスと水銀とを封入
した螢光ランプ(以下型球形螢光ランプと。A fluorescent lamp (hereinafter referred to as a spherical fluorescent lamp) is equipped with a glass outer tube and a rare gas and mercury are sealed in the outer tube.
いう)は従来初光束が理論値よシやや悪く、光束。Conventionally, the initial luminous flux was slightly worse than the theoretical value, and the luminous flux.
維持率が一般の螢光ランプに比して悪いという欠。The disadvantage is that the maintenance rate is lower than that of regular fluorescent lamps.
点があった。数1000時間の点灯によって光束維。There was a point. Luminous fibers formed by lighting for several thousand hours.
特車が低下した電球形螢光ランプを検討した結果、螢光
体膜の劣化状態は一般の螢光ランプと同様で゛問題ない
が、上記内管ガラスの内面が黒色に着色゛するために光
束維持率が大きく低下していること。As a result of examining a light bulb-type fluorescent lamp with a degraded special vehicle, it was found that the deterioration state of the phosphor film was similar to that of a general fluorescent lamp, so there was no problem, but the inner surface of the inner tube glass was colored black. The luminous flux maintenance rate has decreased significantly.
が判明した。この内管ガラスの着色は開口部近く”で著
しく、かつ軟質ガラスの範囲内でガラスの材IO質を変
えてもほとんど改善されなかった。内管ガ。There was found. This coloring of the inner tube glass was noticeable near the opening, and it was hardly improved even if the glass material IO quality was changed within the range of soft glass.
ラスの内面黒化の原因をイオンマイクロプローブ。An ion microprobe was used to investigate the cause of the blackening of the inner surface of lath.
アナライザで調べた結果、ガラスの黒化状態に対。As a result of examining it with an analyzer, it was found that the glass was blackened.
応してガラス中から水銀が検出された。水銀原子。Accordingly, mercury was detected in the glass. Mercury atom.
が直接ガラス内部に侵入することは不可能である1゜か
ら、螢光体膜を通過した水銀イオンがまずガラスの表面
に侵入してガラス内部に拡散しガラスを着色したものと
考える。上記電球形螢光ランプではガラス内部に侵入す
る水銀イオンが一般の螢光ランプに比して著しく多いが
、これはつぎの原因によるものと考えられる。すなわち
電球形螢光ランプでは点灯状態において1対の内管の開
口部は放電プラズマで結ばれており、このプラズマの一
部は外管内全体に拡散している。電子の拡散速度。Since it is impossible for mercury to directly enter the interior of the glass, it is thought that the mercury ions that have passed through the phosphor film first enter the surface of the glass, diffuse into the interior of the glass, and color the glass. In the above-mentioned light bulb type fluorescent lamp, significantly more mercury ions penetrate into the glass than in a general fluorescent lamp, and this is thought to be due to the following reasons. That is, in a self-ballasted fluorescent lamp, when the lamp is lit, the openings of a pair of inner tubes are connected by discharge plasma, and a portion of this plasma is diffused throughout the outer tube. Electron diffusion rate.
はプラスイオンの拡散速度より著しく太きいため一内管
の外側にはプラスイオンよりも多数の電子が。Since the diffusion speed of positive ions is significantly greater than that of positive ions, there are more electrons than positive ions on the outside of the inner tube.
飛来し、内管内のプラズマに対し内管の外側は負′の電
位になる。そのため内管内におけるプラズマ中のプラス
イオンである水銀イオンは内管の外周。The outside of the inner tube has a negative potential compared to the plasma inside the inner tube. Therefore, mercury ions, which are positive ions in the plasma inside the inner tube, are distributed around the outer circumference of the inner tube.
方向に向う力を受け、螢光体膜を通過して内管のli1
内面に到達する水銀イオンの数が、開口した内管を有し
ない一般の螢光ランプの場合より著しく多。li1 of the inner tube passes through the phosphor membrane.
The number of mercury ions reaching the inner surface is significantly higher than in a typical fluorescent lamp without an open inner tube.
くなる。さらに電球形螢光ランプでは外管内が僅。It becomes. Furthermore, in a light bulb type fluorescent lamp, the inside of the outer bulb is small.
か数Torr の希ガスで満されているだめ、プラノ。Plano is filled with a few torr of rare gas.
マによって発生する熱が内管から逃げにくく、内1−管
の温度は百数十℃にカリ、内管のガラス内部へ。It is difficult for the heat generated by the heat to escape from the inner tube, and the temperature of the inner tube reaches over 100 degrees Celsius, which then flows into the glass interior of the inner tube.
水銀イオンが拡散するのが促進される。The diffusion of mercury ions is promoted.
上記のように電球形螢光ランプにおいては内管、内面に
到達する水銀イオンの数が著しく多く、か。As mentioned above, in a compact fluorescent lamp, the number of mercury ions reaching the inner tube and inner surface is significantly large.
つ内管の温度が高く上記水銀イオンがガラス管内、1゜
・ 3 ・
部に侵入しやすいため、内管ガラスの内面が黒く゛着色
するものと考えられる。It is thought that because the temperature of the inner tube is high and the mercury ions mentioned above easily enter the 1.3.degree. area of the glass tube, the inner surface of the inner glass tube becomes black.
本発明の目的は初光束の低下を防ぎ、かつ長時“間点灯
後における光束維持率が良い電球形螢光う゛ンプを得る
ことにある。An object of the present invention is to obtain a light bulb-shaped fluorescent lamp that prevents a decrease in initial luminous flux and has a good luminous flux maintenance rate after being turned on for a long time.
上記の目的を達成するために本発明による螢光゛ランプ
は、電球形螢光ランプの内管のガラス管内”面と螢光体
膜との間に、1.0μm以上の膜厚を有Inする金属酸
化物あるいはりん酸塩の被膜を設け、。In order to achieve the above object, the fluorescent lamp according to the present invention has a film thickness of 1.0 μm or more between the inner surface of the glass tube of the inner tube of the self-ballasted fluorescent lamp and the phosphor film. A metal oxide or phosphate coating is provided.
水銀イオンが上記内管のガラス管内面に到達する。Mercury ions reach the inner surface of the glass tube of the inner tube.
のを妨げて内管の着色を防ぎ、初光束および長時。It prevents coloring of the inner tube by blocking the initial luminous flux and long-lasting light.
間における光束維持率の向上をはかったものであ。The aim is to improve the luminous flux maintenance rate between the two.
るol) 〔発明の実施例〕 つぎに本発明の実施例を図面とともに説明する。。ruol) [Embodiments of the invention] Next, embodiments of the present invention will be described with reference to the drawings. .
第1図は本発明による電球形螢光ランプの一実施。FIG. 1 shows one implementation of a self-ballasted fluorescent lamp according to the present invention.
例の一部を切欠いた断面図、第2図は上記実施例。FIG. 2 is a partially cutaway sectional view of the example described above.
の内管に設けた金属酸化物あるいはりん酸塩の被、11
4 ・
膜の厚さと相対初光束との関係を示す図、第3図は上記
被膜の厚さと相対劣化率との関係を示す図−第4図は上
記被膜の厚さと相対光束維持率との関゛係を示す図、第
5図は実施例の内管における」二記“被膜の厚さの分布
状態を示す図である。第1図に゛おける実施例の電球形
螢光ランプは、ステム1に設けた2個の電極2と、一端
が上記電極2の1つ。Metal oxide or phosphate coating provided on the inner tube of 11
4. Figure 3 shows the relationship between film thickness and relative initial luminous flux. Figure 4 shows the relationship between film thickness and relative deterioration rate. Figure 4 shows the relationship between film thickness and relative luminous flux maintenance rate. FIG. 5 is a diagram showing the distribution of the thickness of the coating in the inner tube of the example. The self-ballasted fluorescent lamp of the example shown in FIG. Two electrodes 2 provided on a stem 1, and one end of which is one of the electrodes 2 mentioned above.
を囲んでステム1に気密封着され、湾曲した他端が上記
封着部の近くに開口する1対のガラス内管・6と、これ
ら1対の内管6を蔽い上記ステム1に1・(気密封着し
たガラス外管4とを備え、外管4のステム側には通常ね
じ込み用電球口金または口金ピ。a pair of glass inner tubes 6 which are hermetically sealed to the stem 1 surrounding the inner tubes 6 and whose curved other ends open near the sealed portion; (Equipped with a hermetically sealed glass outer tube 4, and the stem side of the outer tube 4 is usually equipped with a screw-in bulb cap or cap pin.
ン(いずれも図示せず)を取付けて電気接続と上。(none shown) to make electrical connections.
記螢光ランプの保持を行うものである。上記内管。It is used to hold the fluorescent lamp. The inner tube above.
6の内面にはそのガラス管内面に沿って金属酸化、−物
あるいはりん酸塩の被膜5を設け、該被膜5の。On the inner surface of the glass tube 6 is provided a coating 5 of metal oxide, -substance or phosphate along the inner surface of the glass tube.
上に螢光体膜6を被着している。また外管4内に。A phosphor film 6 is deposited thereon. Also inside the outer tube 4.
は微量の希ガスと水銀とを封入している。上記電。is filled with trace amounts of rare gas and mercury. The above electricity.
球形螢光ランプの放電は一方の電極2から始まり。The discharge of the spherical fluorescent lamp starts from one electrode 2.
内管6を通って該内管ろの開口部より一時外管4内に拡
がり、再び他方の内管に入って電極へ導が。It passes through the inner tube 6, temporarily spreads into the outer tube 4 from the opening of the inner tube filter, and then enters the other inner tube again and is led to the electrode.
れ放電が形成される。本実施例では外管の直径 。A discharge is formed. In this example, the diameter of the outer tube.
9Qmm、高さ95mm、内管の外径14mm、長さ
。9Qmm, height 95mm, inner tube outer diameter 14mm, length
.
125mmの電球形螢光ランプを用い、金属酸化物゛と
してはAl2O3の被膜を被着しその膜厚を変化5させ
たそれぞれのランプを製作した。Using a 125 mm bulb-shaped fluorescent lamp, lamps were manufactured in which a film of Al2O3 was applied as the metal oxide and the film thickness was varied by 5.
Al2O3の膜厚と初光束との関係を相対初光束の。The relationship between Al2O3 film thickness and initial luminous flux is expressed as relative initial luminous flux.
値で示した図が第2図である。Al2O3の被膜を設け
ない状態では点灯初期から既に内管の着色にょ゛る初光
束の低下が生じ、AI!203被膜の厚さが5 H1μ
m程度以上になるとほぼ理論値に等しい初光束。Figure 2 shows the values. Without the Al2O3 coating, the initial luminous flux decreases from the initial stage of lighting due to coloring of the inner tube, causing AI! 203 coating thickness is 5H1μ
When it exceeds about m, the initial luminous flux is almost equal to the theoretical value.
が得られ、上記被膜の厚さの上限は40μm程度。is obtained, and the upper limit of the thickness of the film is about 40 μm.
である。被膜の厚さが40ttmをこえると上記被膜。It is. When the thickness of the coating exceeds 40ttm, the above coating is applied.
による光の吸収が増して逆に初光束は低下する。。The absorption of light increases and, conversely, the initial luminous flux decreases. .
第3図は100時間点灯後の劣化率を、被膜の厚さ1−
が1.0μmである場合を基準にして相対劣化率で。Figure 3 shows the deterioration rate after 100 hours of lighting, with the film thickness 1-
Relative deterioration rate based on the case where is 1.0 μm.
示した図である。A1206被膜の膜厚が約1.0μm
。FIG. The thickness of A1206 coating is approximately 1.0 μm
.
で一般の螢光ランプと同等の劣化率を示すから、さらに
膜厚を増すことにより一般の螢光ランプより優れた劣化
率が得られ、膜厚が約5.0μm以上になると劣化率の
ばらつきもなくなり安定する。Since it shows a deterioration rate equivalent to that of a general fluorescent lamp, by further increasing the film thickness, a deterioration rate superior to that of a general fluorescent lamp can be obtained, and when the film thickness becomes about 5.0 μm or more, the deterioration rate varies. It also disappears and becomes stable.
第4図は1000時間点灯後の光束維持率が膜厚の。Figure 4 shows the luminous flux maintenance factor as a function of film thickness after 1000 hours of lighting.
増加によって変化する状態を相対光束維持率で示。The state that changes with increase is shown by relative luminous flux maintenance rate.
した図であるが、図に示すようにAl2O3の膜厚が。However, the film thickness of Al2O3 is as shown in the figure.
約7.0μm以上では光束維持率が上限に達しばら゛つ
きがなくなる。When the diameter is about 7.0 μm or more, the luminous flux maintenance factor reaches its upper limit and there is no variation.
本発明による螢光ランプは、水銀イオンが粒径。In the fluorescent lamp according to the present invention, mercury ions have a particle size.
数μmの螢光体粒子間を通過するが緻密な構造の゛金属
酸化物あるいはりん酸塩の被膜の層を通過し゛にくいこ
と、および金属酸化物やりん酸塩が化学Ill的にも熱
的にも安定であるため、これら材料の被。Although it passes between fluorescent particles of several micrometers, it is difficult to pass through the densely structured metal oxide or phosphate film layer, and metal oxides and phosphates are chemically and thermally sensitive. The coating of these materials is also stable.
膜で内管内面を蔽ったものであるから、上記実施。The above is carried out because the inner surface of the inner tube is covered with a membrane.
例ではAl2O3について記したが金属酸化物あるいは
りん酸塩であれば他の材料でもよく、可視光の吸収が少
く、またガラスに被着しやすい点を考慮1−すれば、金
属酸化物としてはA7.Ti、Si、Mg、Zr、Bの
各酸化物が優れており、りん酸塩としてはCa2P2O
7が特に優れた効果を示した。なお上。In the example, Al2O3 was described, but other materials may be used as long as they are metal oxides or phosphates.If you take into consideration the fact that they absorb less visible light and are easy to adhere to glass, it is possible to use Al2O3 as a metal oxide. A7. Ti, Si, Mg, Zr, and B oxides are excellent, and as a phosphate, Ca2P2O
No. 7 showed particularly excellent effects. Above.
記の各種材料を用いた電球形螢光ランプにおける被膜の
厚さと初光束、劣化率、光束維持率の諸行・ 7 ・
性との関係は、いずれもAl2O3を用いた場合と同様
の結果を示した。The relationships between film thickness, initial luminous flux, deterioration rate, and luminous flux maintenance rate in light bulb-shaped fluorescent lamps using the various materials listed below are similar to those obtained when Al2O3 is used. Indicated.
上記のように内管内面に被着した金属酸化物あ。As shown above, there is metal oxide deposited on the inner surface of the inner tube.
るいはりん酸塩の被膜の膜厚が1.0μm未満の電。The thickness of the phosphate coating is less than 1.0 μm.
球形螢光ランプでは、100時間点灯後の光束劣化゛が
一般螢光ランプより大きく、また1000時間点。In spherical fluorescent lamps, the luminous flux deterioration after 100 hours of lighting is greater than that of general fluorescent lamps, and at the 1000 hour point.
打抜の光束の低下が大きい。上記被膜の厚さが 。The luminous flux of punching is greatly reduced. The thickness of the above coating is.
1.0μmでは光束劣化率が一般螢光ランプと同じ゛に
なり、1.0μmを越えると電球形螢光ランプの゛劣化
率は一般螢光ランプよりも優れ、さらに膜厚10が5.
0μm以上では劣化率のばらつきもなくなつ。At 1.0 μm, the luminous flux deterioration rate is the same as that of a general fluorescent lamp, and when it exceeds 1.0 μm, the deterioration rate of a bulb-shaped fluorescent lamp is superior to that of a general fluorescent lamp, and furthermore, when the film thickness is 10.
At 0 μm or more, there is no variation in the deterioration rate.
て安定しほぼ理論値どおりの初光束が得られ、 。The initial luminous flux is stable and almost in line with the theoretical value.
1000時間点灯後の光束維持率も著しく改善され。The luminous flux maintenance rate after 1000 hours of lighting was also significantly improved.
る。上記被膜の厚さが7.0μm以上になると初光、束
は理論的に得られる最大値に達し、劣化率はは1゜ぼ最
小に近く光束維持率は最大値に達する。なお。Ru. When the thickness of the coating becomes 7.0 μm or more, the initial light flux reaches its theoretical maximum value, and the deterioration rate approaches a minimum value of about 1°, and the luminous flux maintenance rate reaches its maximum value. In addition.
金属酸化物あるいはりん酸塩の被膜を内管の内面。Metal oxide or phosphate coating on the inner surface of the inner tube.
に均一の膜厚で被着することは、内管が湾曲して。The inner tube is curved so that it can be coated with a uniform film thickness.
いるため技術的に難しいが、膜厚の最も薄い部分。This is the thinnest part of the film, although it is technically difficult.
が約50μmをこえるとこれより膜厚が厚い部分で、1
゜被膜の脱落を生じることが認められた。If it exceeds about 50 μm, the film thickness will be 1
゜It was observed that the film came off.
」−記結果にもとづき前述の実施例と同様の寸法゛を有
する電球形螢光ランプを用い、金属酸化物と゛して粒径
0.02μm以下のAl2O3の被膜を用い、該。Based on the results described above, a light bulb-shaped fluorescent lamp having the same dimensions as in the previous example was used, and a coating of Al2O3 with a particle size of 0.02 .mu.m or less was used as the metal oxide.
被膜の膜厚が最も薄い部分で約10μmに々るよう”に
内管内面に設けて電球形螢光ランプを製作した°。A light bulb-shaped fluorescent lamp was manufactured by providing the film on the inner surface of the inner tube so that the film thickness was about 10 μm at the thinnest part.
本実施例では第5図に示すような膜厚の分布状態。In this example, the film thickness is distributed as shown in FIG.
の被膜を形成した。上記電球形螢光ランプを測定゛した
結果、初光束8001m、100時間点灯後の劣・化率
6.5チ、1000時間点灯後の光束維持率は92:(
1チが得られた。これに対しA、1203の被膜を設け
な。A film was formed. As a result of measuring the above-mentioned light bulb type fluorescent lamp, the initial luminous flux was 8001m, the deterioration rate after 100 hours of lighting was 6.5cm, and the luminous flux maintenance rate after 1000 hours of lighting was 92:(
1 piece was obtained. On the other hand, provide a coating of A, 1203.
い従来の電球形螢光ランプでは、初光束7801m 、
。In a conventional bulb-shaped fluorescent lamp, the initial luminous flux is 7801 m,
.
100時間点灯後の劣化率15係、1000時間点灯
。Deterioration rate after 100 hours of lighting: 15%, 1000 hours of lighting
.
後の光束維持率65%であり、本実施例による電球。The light bulb according to this example has a luminous flux maintenance rate of 65%.
形螢光ランプは初光束の理論値8001mを満足しl、
−100時間点灯後の劣化率ならびに1000時間点灯
。The shaped fluorescent lamp satisfies the theoretical value of initial luminous flux of 8001 m,
-Deterioration rate after 100 hours of lighting and 1000 hours of lighting.
後の光束維持率を著しく改善することができた。The subsequent luminous flux maintenance rate could be significantly improved.
上記のように本発明による螢光ランプは、電球形螢光ラ
ンプの内管内面と螢光体膜との間に1.0μm以上の膜
厚を有する金属酸化物あるいはりん。As mentioned above, the fluorescent lamp according to the present invention uses metal oxide or phosphorus having a film thickness of 1.0 μm or more between the inner tube inner surface of the self-ballasted fluorescent lamp and the phosphor film.
酸塩の被膜を設け、水銀イオンが上記内管内面に”到達
して内管な着色するのを防ぐものであるから2初光束の
低下を改善し、100時間点灯後の劣化率。A salt coating is provided to prevent mercury ions from reaching the inner surface of the inner tube and coloring the inner tube, which improves the decrease in the initial luminous flux and reduces the rate of deterioration after 100 hours of lighting.
が少くとも2般螢光ランプ以下で、かつ1000時5間
点灯後の打抜維持率が高い電球形螢光ランプを。A light bulb-shaped fluorescent lamp which is at least equal to or less than 2 general fluorescent lamps and which has a high punching retention rate after being lit for 1000 hours and 5 hours.
得ることができる。Obtainable.
第1図は本発明による電球形螢光ランプの一部。
施例の一部を切欠いた断面図、第2図は上記実施10例
の内管内面に設けた金属酸化物あるいはりん酸。
塩の被膜の厚さと相対初光束との関係を示す図、。
第6図は上記被膜の厚さと相対劣化率との関係を。
示す図、第4図は上記被膜の厚さと相対光束維持。
率との関係を示す図、第5図は実施例の内管にお、−2
ける上記被膜の厚さの分布状態を示す図である。。
1・・・ステム 2・・・電極6・・・内管
4・・・外管5・・・金属酸化物または
りん酸塩の被膜 。
代理人弁理士 中村純之助、7.)
・1ト
第1図FIG. 1 shows a portion of a self-ballasted fluorescent lamp according to the present invention. FIG. 2, a partially cutaway sectional view of the embodiment, shows the metal oxide or phosphoric acid provided on the inner surface of the inner tube of the tenth embodiment. A diagram showing the relationship between the thickness of the salt film and the relative initial luminous flux. Figure 6 shows the relationship between the thickness of the coating and the relative deterioration rate. The figure shown in FIG. 4 shows the thickness of the coating and relative luminous flux maintenance. Figure 5 is a diagram showing the relationship between the ratio and the -2
It is a figure showing the distribution state of the thickness of the above-mentioned film. . 1... Stem 2... Electrode 6... Inner tube 4... Outer tube 5... Metal oxide or phosphate coating. Representative patent attorney Junnosuke Nakamura, 7. ) ・1t Figure 1
Claims (4)
電極のそれぞれ1つを囲んでステムに気密封着さ。 れ、湾曲されだ他端が上記封着部の近くに開口し°、内
面に螢光体膜を被着した1対のガラス内管と、これら1
対の内管を蔽い上記ステムに気密封着さ“れた外管とを
備え、該外管内に希ガスと水銀とを゛封入した螢光ラン
プにおいて、上記内管内面と螢。 光体膜との間に1.0μm以上の厚さに金属酸化物また
はシん酸塩の被膜を設けたことを特徴とする。 螢光ランプ。(1) Two electrodes are provided on the stem, and one end is hermetically sealed to the stem surrounding each one of the above electrodes. a pair of glass inner tubes, the other end of which is curved and opens near the sealed portion, and whose inner surface is coated with a phosphor film;
A fluorescent lamp comprising an outer tube covering a pair of inner tubes and hermetically sealed to the stem, the outer tube having a rare gas and mercury sealed therein, wherein the inner tube inner surface and the fluorescent lamp are in contact with each other. A fluorescent lamp characterized in that a metal oxide or sinate coating is provided with a thickness of 1.0 μm or more between the lamp and the lamp.
.0μm以上であることを特徴とする特許請求の範囲第
1項に記載した螢光ランプ。(2) The thickness of the metal oxide phosphate coating is 5
.. A fluorescent lamp according to claim 1, characterized in that the diameter is 0 μm or more.
.0μm以上であることを特徴とする特許請求の範囲第
1項に記載した螢光ランプ。(3) The metal oxide or phosphate coating has a thickness of 7
.. A fluorescent lamp according to claim 1, characterized in that the diameter is 0 μm or more.
管の開口端から最も離れたところで50μm。 以下であることを特徴とする特許請求の範囲第1゜項乃
至第6項に記載した螢光ランプ。 “(5)上
記金属酸化物はkl、 Ti 、 Si 、 Mg、
Zr、’Bの各酸化物中から選ばれたいずれか1つの酸
化。 物であり、上記りん酸塩はCa 2 P 207 であ
ること゛を特徴とする特許請求の範囲第1項乃至第4項
に゛記載した螢光ランプ。(4) The thickness of the metal oxide or phosphate coating is 50 μm at the farthest point from the open end of the inner tube. A fluorescent lamp according to claims 1 to 6, characterized in that: (5) The above metal oxides are kl, Ti, Si, Mg,
Oxidation of any one selected from the oxides of Zr and 'B. 5. The fluorescent lamp according to claim 1, wherein the phosphate is Ca 2 P 207.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7404483A JPS59201363A (en) | 1983-04-28 | 1983-04-28 | Fluorescent lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7404483A JPS59201363A (en) | 1983-04-28 | 1983-04-28 | Fluorescent lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59201363A true JPS59201363A (en) | 1984-11-14 |
Family
ID=13535774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7404483A Pending JPS59201363A (en) | 1983-04-28 | 1983-04-28 | Fluorescent lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59201363A (en) |
-
1983
- 1983-04-28 JP JP7404483A patent/JPS59201363A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4924141A (en) | Aluminum oxide reflector layer for fluorescent lamps | |
US3067356A (en) | Fluorescent lamp | |
US3967153A (en) | Fluorescent lamp having electrically conductive coating and a protective coating therefor | |
GB1578246A (en) | Fluorescent lighting | |
JPH11312491A (en) | Fluorescent lamp and its manufacture | |
US5227693A (en) | Fluorescent lamp with uv suppressing film and its manufacturing method | |
US4500810A (en) | Fluorescent lamp having integral light-filtering means and starting aid | |
US4182975A (en) | Compact fluorescent lamp having a partitioned envelope, and method of manufacture | |
JPS59201363A (en) | Fluorescent lamp | |
US4803401A (en) | Compact fluorescent lamp | |
EP0466138B1 (en) | Cold cathode discharge lamp | |
JPH04137429A (en) | Cold cathode fluorescent lamp | |
JPS59180953A (en) | Bulb type fluorescent lamp | |
JPS6177251A (en) | Fluorescent lamp | |
JPS6122556A (en) | Fluorescent lamp | |
JP3861557B2 (en) | Fluorescent lamp | |
JPH04303548A (en) | Aperture type fluorescent lamp | |
JP3486908B2 (en) | Low pressure mercury vapor discharge lamp | |
JP2008123817A (en) | Fluorescent lamp, and manufacturing method of fluorescent lamp | |
JPS61176049A (en) | Fluorescent lamp | |
JPS60138835A (en) | Fluorescent lamp | |
JPH04262363A (en) | Rapid starting fluorescent lamp and its manufacture | |
JPS59180952A (en) | Bulb type fluorescent lamp | |
JPS60165035A (en) | Fluorescent lamp for copy and its manufacture | |
JPH04284346A (en) | Aperture type fluorescent lamp |