JPS59201360A - Fluorescent lamp - Google Patents

Fluorescent lamp

Info

Publication number
JPS59201360A
JPS59201360A JP7377683A JP7377683A JPS59201360A JP S59201360 A JPS59201360 A JP S59201360A JP 7377683 A JP7377683 A JP 7377683A JP 7377683 A JP7377683 A JP 7377683A JP S59201360 A JPS59201360 A JP S59201360A
Authority
JP
Japan
Prior art keywords
mercury
alloy
airtight container
fluorescent lamp
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7377683A
Other languages
Japanese (ja)
Inventor
Teizo Hanada
花田 悌三
Atsushi Sato
厚 佐藤
Takashi Yorifuji
孝 依藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7377683A priority Critical patent/JPS59201360A/en
Publication of JPS59201360A publication Critical patent/JPS59201360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel

Landscapes

  • Discharge Lamp (AREA)

Abstract

PURPOSE:To supply the amount of mercury required for forming desired amalgam into an airtight container and provide the fluorescent lamp with stable characteristics by incorporating an alloy that forms the amalgam whosecomponents are indium and bismuth in the airtight container together with a mercury emission frame body. CONSTITUTION:An alloy that forms amalgam whose components are indium and bismuth is incorporated in a transparent airtight container together with a mercury emission frame body and an electrode to which an electron emission material adheres is provided on both ends of the airtight container. For example, as the said alloy, an alloy consisting of indium bismuth, and tin or an alloy consisting of indium, bismuth, and lead is used. In addition, for example, as the mercury emission frame body, a Ti3Hg alloy, such as commercial name GEMEDIS manufactured by SAES Co. is used. As a result, the required amount of mercury is stabilized in the airtight container and the required amount of mercury is emitted by the temperature in the airtight container when the fluorescent lamp is operated. The alloy and amalgam are formed and the mercury vapor pressure of the fluorescent lamp can be maintained in a suitable value.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は扁温雰囲気においても光束の低下の少ない蛍光
ランプの構成の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in the structure of a fluorescent lamp that exhibits less reduction in luminous flux even in a subtemperature atmosphere.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

蛍光ランプなどの低圧水銀蒸気放電灯は、その気密容器
内における水銀蒸気圧が6 X 10−3ないし7 X
 10−3mmH,Pで比較的低い放電電流のときに。
Low-pressure mercury vapor discharge lamps such as fluorescent lamps have a mercury vapor pressure of 6 x 10-3 to 7 x in their airtight container.
When the discharge current is relatively low at 10-3 mmH,P.

供給電気エネルギーが水銀の253.7nmの紫外域放
射線へ転換される効率が最も高くなることが知られてい
る。上記253.7nmの紫外域の放射線は蛍光体励起
効率が高いから、上記6 X 10−3ないし7 X 
10−3mmHgに水銀蒸気圧を維持することが好まし
く、このときの気密容器壁の温度は約40℃である。し
かしながら、蛍光ランプなどの低圧水銀蒸気放電灯は、
近時管径が細く気密容器壁の負荷が筒いものが増加して
おり、気密容器壁の温度が高<、100℃を越すものが
ある。このように気密容器壁温度が高温になると、気密
容器の水銀蒸気圧が6 X I F” mmHJ9程度
よりいちじるしく高くなり、放射された2 53.7 
nmを主とする紫外域の放射線が水銀によって自己吸収
され供給電気エネルギーの紫外域放射線への転換効率が
低下し。
It is known that the efficiency with which the supplied electrical energy is converted into mercury's 253.7 nm ultraviolet radiation is highest. Since the radiation in the ultraviolet region of 253.7 nm has a high phosphor excitation efficiency, the above 6 X 10-3 to 7 X
It is preferred to maintain the mercury vapor pressure at 10-3 mmHg, at which time the temperature of the wall of the airtight container is approximately 40°C. However, low-pressure mercury vapor discharge lamps such as fluorescent lamps
In recent years, there has been an increase in the use of cylindrical tubes with smaller pipe diameters that place more load on the walls of airtight containers, and the temperature of the walls of some airtight containers can exceed 100°C. When the wall temperature of the airtight container becomes high as described above, the mercury vapor pressure in the airtight container becomes significantly higher than about 6 X I F" mmHJ9, and the mercury vapor pressure radiated is 253.7
Radiation in the ultraviolet range, mainly nm, is self-absorbed by mercury, and the conversion efficiency of supplied electrical energy to radiation in the ultraviolet range decreases.

したがって光出力が低下する問題があった。Therefore, there was a problem that the optical output decreased.

この対策として、インジウムとビスマスとを主体とする
合金を水銀とともに気密容器内に封入した蛍光ランプが
提案された。この蛍光ランプは気密容器内で合金が水銀
とアマルガムを形成するから、アマルガムを気密容器内
に配設する方法のようにアマルガムが蛍光ランプの排気
工程中に加熱されて水銀が排出されアマルガムの組成が
変動して特性がばらつくという欠点は少ないが、気密容
器内の水銀量を一定にすることが難しく、シたがって気
密容器内で形成される7マルガムの組成がばらつき、安
定した高い光束を放射するという効果は得られなかった
As a countermeasure to this problem, a fluorescent lamp was proposed in which an alloy mainly consisting of indium and bismuth was sealed together with mercury in an airtight container. In this fluorescent lamp, the alloy forms amalgam with mercury in an airtight container, so in a method where amalgam is placed in an airtight container, the amalgam is heated during the exhaust process of the fluorescent lamp, mercury is discharged, and the composition of the amalgam is Although there is little disadvantage that the mercury content fluctuates and the characteristics vary, it is difficult to keep the amount of mercury constant in the airtight container, and therefore the composition of the 7 malgam formed in the airtight container varies, emitting a stable and high luminous flux. No effect was obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上記の背穿技術の問題点を解決するためになさ
れたもので、所望のアマルガムを形成するに必要な量の
水銀を気密容器内に供給して安定した特性を有する改良
された蛍光ランプを提供することを目的とする。
The present invention was made in order to solve the problems of the above-mentioned back drilling technology, and it is possible to produce an improved fluorescent material with stable characteristics by supplying the necessary amount of mercury to form a desired amalgam in an airtight container. The purpose is to provide lamps.

〔発明の概要〕[Summary of the invention]

本発明は透光性気密容器内に水銀放出構外と。 The present invention emits mercury in a light-transmitting airtight container.

インジウムとビスマスとを主体とするアマルガムを形成
する合金とを内蔵し、上記気密容器の両端部に電子放射
wJ質が被着された電極を具備する蛍光ランプである。
This fluorescent lamp contains an amalgam-forming alloy mainly composed of indium and bismuth, and has electrodes on both ends of the airtight container covered with electron emitting material.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細について述べる。 The details of the present invention will be described.

本発明者らはインジウムとビスマスとを主体とを主体と
するアマルガムを形成する合金としてインジウム、ビス
マスならびにすすからなる合金。
The present inventors have developed an alloy consisting of indium, bismuth, and soot as an alloy forming an amalgam mainly composed of indium and bismuth.

(以下「合金(I)」と称する。)およびインジウム。(hereinafter referred to as "alloy (I)") and indium.

ビスマスならびに鉛からなる合金(以下「合金(■)」
と称する。)について試験した。本発明者らは上記合金
(I)または合金(n)を気密容器内に内蔵させ。
An alloy consisting of bismuth and lead (hereinafter referred to as "alloy (■)")
It is called. ) was tested. The present inventors housed the alloy (I) or alloy (n) in an airtight container.

従来のように水銀を気密容器内に滴下させたもの。Mercury is dropped into an airtight container as in the past.

ならびに上記合金を使用せず水銀のみを気密容器内に滴
下させたものについて蛍光ランプの気密容器表面温度を
変化させて初光束の変化を試験した。
Furthermore, changes in the initial luminous flux were tested by changing the surface temperature of the airtight container of a fluorescent lamp in which only mercury was dropped into the airtight container without using the above alloy.

その結果を第1表に示しである。初光束は最高値を10
0とした比光束(%)で示しである。曲線(イ)は合金
(I)と水銀滴下のもの2曲線(ロ)は合金(■)と水
銀滴下のもの2曲線(ハ)は水銀のみを滴下したものの
特性である。第1図から明らかなとおり9曲線(イ)お
よび(ロ)は水銀のみの曲線(ハ)に比べて気密容器表
面温度が60℃以上になったときの光束が8ないし83
%程度向上している。
The results are shown in Table 1. The maximum initial luminous flux is 10
It is expressed in specific luminous flux (%), which is set to 0. Curve (a) shows the characteristics of alloy (I) and mercury dropped. Curve (b) shows the alloy (■) and mercury dropped. Curve (c) shows the characteristics of mercury only. As is clear from Figure 1, curves 9 (a) and (b) have a luminous flux of 8 to 83 when the surface temperature of the airtight container reaches 60°C or higher, compared to the curve for mercury only (c).
% improvement.

しかしながら、気密容器内に封入された水銀量が変動す
ると、第2図示のように光束がいちじるしく変動するこ
とが判った。すなわち、第2図は横軸に気密容器内に封
入された水銀の重量(In9)をとり、s@aに比光束
をとった特性曲線図であって。
However, it has been found that when the amount of mercury sealed in the airtight container changes, the luminous flux changes significantly as shown in the second diagram. That is, FIG. 2 is a characteristic curve diagram in which the horizontal axis represents the weight (In9) of mercury sealed in an airtight container, and s@a represents the specific luminous flux.

曲線に)は全台(1)と水仙ヲ摘下した蛍光ランプ、曲
線(イ)は合金(II)と水銀を滴下した蛍光ランプの
特性を示している。水銀の量が多くなり、101n9以
上になると合金(11を使用したものは光束が低下し。
Curve 1) shows the characteristics of the fluorescent lamp with all units (1) and daffodil removed, and curve (A) shows the characteristics of the fluorescent lamp with alloy (II) and mercury added. When the amount of mercury increases and becomes more than 101n9, the luminous flux of the alloy (11) decreases.

151n9程度以上になると合金(II)を使用したも
のも光束が低下し始め20ないし25mg程度に水銀量
が増加すると最高光束の30ないし70%程度に光束が
低下してしまう。これは、前記技術的背景の問題点で述
べたように気密容器内の水銀量のばらつきと、さらに合
金を気密容器内に導入する際に僅かながら空気などの不
純ガスが導入されるためと思われる。
When the amount of mercury exceeds about 151n9, the luminous flux starts to decrease even in those using alloy (II), and when the amount of mercury increases to about 20 to 25 mg, the luminous flux decreases to about 30 to 70% of the maximum luminous flux. This is thought to be due to the variation in the amount of mercury in the airtight container as mentioned above in the technical background problem, and the fact that a small amount of impure gas such as air is introduced when the alloy is introduced into the airtight container. It will be done.

本発明者らは上記合金(1)または合金(If)を使用
し。
The present inventors used the above alloy (1) or alloy (If).

さらに水銀供給源として水銀放出構体、たとえば5AE
S社の商品名GEMEDISのようなTi3H9合金を
電極構体に配設し、蛍光ランプ完成後高周波加熱して水
銀を遊離させる方法により蛍光ランプを製造し、試験し
た。
Additionally, a mercury emitting structure, such as 5AE, can be used as a mercury source.
A fluorescent lamp was manufactured and tested by a method in which a Ti3H9 alloy such as GEMEDIS (trade name, manufactured by Company S) was disposed in an electrode structure, and after completion of the fluorescent lamp, high frequency heating was performed to liberate mercury.

第3図は横軸に蛍光ランプの点灯時間(時間)をとり、
縦軸に初光束を100とした光束維持率(%)をとった
特性曲線図であって、それぞれの特性曲線は下表に示す
構成の蛍光ランプの特性である。
In Figure 3, the horizontal axis represents the lighting time (hours) of the fluorescent lamp.
It is a characteristic curve diagram in which the luminous flux maintenance rate (%) is plotted with the initial luminous flux as 100 on the vertical axis, and each characteristic curve is a characteristic of a fluorescent lamp having the configuration shown in the table below.

表 第3図から明らかなよう九曲線(男および(ヌ)に示す
特性の蛍光ランプは2,000時間において初光束の9
1ないし92%の光束を示し、3,000時間において
も88ないし88.5%程度の光束を示した。これに対
し従来の曲線(へ)、(ト)および(ト)に示す特性の
蛍光ランプは初光束に対し2,000時間で84ないし
87.5%、3,000時間では80ないし85.2%
のように光束の低下がいちじるしい。
As is clear from Table 3, a fluorescent lamp with the characteristics shown in the nine curves (M and (N)) has an initial luminous flux of 9 at 2,000 hours.
It showed a luminous flux of 1 to 92%, and even after 3,000 hours, it showed a luminous flux of about 88 to 88.5%. In contrast, conventional fluorescent lamps with the characteristics shown in curves (f), (g), and (g) have an initial luminous flux of 84 to 87.5% at 2,000 hours and 80 to 85.2% at 3,000 hours. %
As shown in the figure, the decrease in luminous flux is noticeable.

このことはGEMEDISのような水銀放出構体を使用
することによって気密容器内の水銀量が安定し、しかも
蛍光ランプ動作時の気密容器内の温度によって所喪せの
水銀が放出され合金とアマルガムを形成して蛍光ランプ
の水銀蒸気圧を好適値の6 X 10−3ないし7 X
 10−3mmHgに維持することができる。ためと思
われる。すなわち、上記第3図の曲線(男および■)の
特性の蛍光ランプが本発明の実施例である。上記本発明
蛍光ランプは初光束ならびに光束維持率が改良されただ
けでなく、放電開始電圧か上昇せず、また光出力の安定
時間が短いという結果が得られた。前記発明の技術的背
景で述べたように最近の蛍光ランプに使用されている管
径が細く気密容器の管壁温度が100℃またはそれ以上
になる管壁負荷の高い蛍光ランプでは上記インジウムお
よびビスマスを主体とする合金の存在する位置の近傍は
少なくとも60℃で150℃を上廻らない程度に温度が
上昇する。したがって、上記合金のアマルガムは上記6
0ないし150℃において水銀を放出することが好まし
く、この温度は合金の固液共存温度に相当する。60な
いし150℃に固液共存温度を有する合金としては。
This means that by using a mercury release structure such as GEMEDIS, the amount of mercury in the airtight container is stabilized, and that the temperature inside the airtight container when the fluorescent lamp is operating releases the missing mercury, forming alloys and amalgams. and adjust the mercury vapor pressure of the fluorescent lamp to a suitable value of 6 x 10-3 to 7 x
It can be maintained at 10-3 mmHg. It seems to be for a reason. That is, the fluorescent lamp having the characteristics of the curve (male and ■) in FIG. 3 above is an embodiment of the present invention. The above-mentioned fluorescent lamp of the present invention not only has improved initial luminous flux and luminous flux maintenance rate, but also results in that the discharge starting voltage does not increase and the stabilization time of the light output is short. As mentioned in the technical background of the invention, in the fluorescent lamps used in recent fluorescent lamps, which have a small tube diameter and a high load on the tube wall where the tube wall temperature of the airtight container is 100 degrees Celsius or more, the above-mentioned indium and bismuth are used. In the vicinity of the location where the alloy mainly composed of is present, the temperature rises to at least 60°C and not more than 150°C. Therefore, the amalgam of the above alloy is the above 6
Preferably, the mercury is released between 0 and 150°C, which corresponds to the solid-liquid coexistence temperature of the alloy. As an alloy having a solid-liquid coexistence temperature of 60 to 150°C.

たとえはインジウムとビスマスとすす、またはインジウ
ムとビスマスと鉛などの合金などがあり。
Examples include alloys of indium, bismuth, and soot, or indium, bismuth, and lead.

4ないし50重量%のインジウムと30ないし72重量
%のビスマスにすず15ないし57重量%、または上記
すずと1ないし12重量%の鉛、または上記インジウム
とビスマスとに5なし40重量%の鉛を加えた合金など
があり、いずれも本発明のアマルガムを形成する合金と
して使用することができる。本発明者らの実験によれば
上記水銀放出構体とインジウムとを気密容器内に内蔵し
た蛍光ランプは、蛍光ランプの管径が細くなり気密容器
の管壁負荷が大きい場合に、水銀放出構体から放出され
た水銀によって形成されたインジウムアマルガムは上記
アマルガムからの水銀放出量の規制が悪く、所要水銀量
以上の水銀が放出され、光出力低下を改良することがで
きなかった。
4 to 50% by weight of indium and 30 to 72% by weight of bismuth with 15 to 57% by weight of tin, or the above tin and 1 to 12% by weight of lead, or the above indium and bismuth with 5% to 40% by weight of lead. There are other alloys that can be used to form the amalgam of the present invention. According to experiments by the present inventors, in a fluorescent lamp in which the above-mentioned mercury release structure and indium are housed in an airtight container, when the tube diameter of the fluorescent lamp becomes smaller and the tube wall load of the airtight container is large, the mercury release structure and indium are removed from the mercury release structure. In the indium amalgam formed by the released mercury, the amount of mercury released from the amalgam is poorly controlled, and more mercury than the required amount of mercury is released, making it impossible to improve the decrease in optical output.

なお、気密容器内にインジウムとビスマスとを主体とす
るアマルガムを形成する合金を内蔵させる方法は、奄←
う比較的電極から動量した位置に上記合金を固定しても
よく、また、蛍光ランプの不活性気体導入の際に不活性
気体とともに合金の微粒を導入してもよい。
The method of incorporating an amalgam-forming alloy mainly composed of indium and bismuth in an airtight container is as follows:
Alternatively, the alloy may be fixed at a position relatively distant from the electrode, or fine particles of the alloy may be introduced together with the inert gas when introducing the inert gas into the fluorescent lamp.

〔発明の効果〕〔Effect of the invention〕

本発明は気密容器内に水銀放出構体とともにインジウム
とビスマスとを主体とするアマルガムを形成する合金を
内蔵することを特徴とする蛍光ランプであって、水銀放
出構体によって気密容器壁の温度が上昇しても気密容器
内の水銀量を所要量に規制することができ、したがって
気密容器内で形成されるインジウムとビスマスとを主体
トスる合金のアマルガムの組成を所望の値に規制するこ
とができるから、蛍光ランプの気密容器の温度が高くて
も水銀の253.7 nmの紫外域放射線へ供給電気エ
ネルギーを効率よく転換することができ。
The present invention is a fluorescent lamp characterized in that an amalgam-forming alloy mainly composed of indium and bismuth is housed in an airtight container together with a mercury release structure, and the mercury release structure increases the temperature of the wall of the airtight container. However, the amount of mercury in the airtight container can be controlled to the required amount, and therefore the composition of the amalgam, an alloy mainly composed of indium and bismuth, formed in the airtight container can be controlled to the desired value. Even if the temperature of the hermetic container of the fluorescent lamp is high, the supplied electrical energy can be efficiently converted to mercury's 253.7 nm ultraviolet radiation.

したがって安定した高い光束を放射することが可能で、
さらに放電開始電圧を低く維持することができ光出力安
定時間の短い改良された蛍光ランプを斯界に提供できる
という効果を有している。インジウムとビスマスとを主
体とする合金は実施例ではすすと鉛とを添加した合金で
説明したが実施例に限られるものではなく9合金の固液
共存温度が60ないし150℃の上記合金であれば実施
例と同様の効果を発揮する。また、水銀放出構体は実施
例に示したGh:MgDISに限・るものではない。
Therefore, it is possible to emit a stable and high luminous flux,
Furthermore, it has the effect of providing the industry with an improved fluorescent lamp that can maintain a low discharge starting voltage and has a short light output stabilization time. In the example, the alloy mainly composed of indium and bismuth was explained as an alloy to which soot and lead were added, but it is not limited to the example, and the above-mentioned alloy whose solid-liquid coexistence temperature of the 9 alloys is 60 to 150 ° C. In other words, the same effects as those of the embodiments can be achieved. Furthermore, the mercury release structure is not limited to the Gh:MgDIS shown in the examples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は横軸に蛍光ランプの気密容器壁温度(’C)を
とり、縦軸に初光束の最高値を100とした比光束(%
)をとったインジウムとビスマスと全主体とする合金を
内蔵し水銀を滴下した蛍光ランプの特性曲線図、第2図
は横軸に気密容器内の水銀量(In9)をとり縦軸に比
光束(%)をとった上記蛍光ランプの特性曲線図、第3
図は横軸に蛍光ランプの点灯時間(時間)をとり縦軸に
光束維持率(%)をとった特性曲線図である。 (7317)  代理人 弁理士 則 近 憲 佑(ほ
か1名)
In Figure 1, the horizontal axis shows the wall temperature ('C) of the airtight container of the fluorescent lamp, and the vertical axis shows the specific luminous flux (%) with the maximum value of the initial luminous flux as 100.
) is a characteristic curve diagram of a fluorescent lamp containing an alloy mainly composed of indium and bismuth and dripping with mercury.The horizontal axis represents the amount of mercury (In9) in the airtight container, and the vertical axis represents the specific luminous flux. (%) Characteristic curve diagram of the above fluorescent lamp, Part 3
The figure is a characteristic curve diagram in which the horizontal axis represents the lighting time (hours) of the fluorescent lamp and the vertical axis represents the luminous flux maintenance rate (%). (7317) Agent Patent Attorney Noriyuki Chika (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 透光性気密容器内の両端部に電子放射物質が被着された
電極を具備し、上記気密容器内に水銀放出構体と、イン
ジウムとビスマスとを主体とするアマルガムを形成する
合金とを内蔵することを特徴とする蛍光ランプ。
A translucent airtight container is provided with electrodes coated with an electron emitting material at both ends thereof, and a mercury emitting structure and an amalgam-forming alloy mainly composed of indium and bismuth are built in the airtight container. A fluorescent lamp characterized by:
JP7377683A 1983-04-28 1983-04-28 Fluorescent lamp Pending JPS59201360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7377683A JPS59201360A (en) 1983-04-28 1983-04-28 Fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7377683A JPS59201360A (en) 1983-04-28 1983-04-28 Fluorescent lamp

Publications (1)

Publication Number Publication Date
JPS59201360A true JPS59201360A (en) 1984-11-14

Family

ID=13527938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7377683A Pending JPS59201360A (en) 1983-04-28 1983-04-28 Fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS59201360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669639A1 (en) * 1994-02-24 1995-08-30 Saes Getters S.P.A. A combination of materials for mercury-dispensing devices, method of preparation and devices thus obtained

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834554A (en) * 1981-08-25 1983-03-01 Toshiba Corp Low pressure mercury vapor discharge lamp
JPS5834555A (en) * 1981-08-25 1983-03-01 Toshiba Corp Low pressure mercury vapor discharge lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834554A (en) * 1981-08-25 1983-03-01 Toshiba Corp Low pressure mercury vapor discharge lamp
JPS5834555A (en) * 1981-08-25 1983-03-01 Toshiba Corp Low pressure mercury vapor discharge lamp

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669639A1 (en) * 1994-02-24 1995-08-30 Saes Getters S.P.A. A combination of materials for mercury-dispensing devices, method of preparation and devices thus obtained
US5520560A (en) * 1994-02-24 1996-05-28 Saes Getters S.P.A. Combination of materials for mercury-dispensing devices, method of preparation and devices thus obtained

Similar Documents

Publication Publication Date Title
JP3078523B2 (en) Visible light generation method
JPH0349148A (en) High efficiency electrodeless highly luminous discharge lamp
JPH06275235A (en) Metal vapor discharge lamp
EP0204060B1 (en) A compact low-pressure mercury vapour discharge lamp
JPH02109249A (en) High voltage sodium discharge lamp
JPS59201360A (en) Fluorescent lamp
JP2000268773A (en) Metal halide lamp
JPH0527221B2 (en)
JPH02177245A (en) Metal halide discharge lamp, color rendering characteristic of which is improved
JP3178460B2 (en) High pressure mercury lamp and high pressure mercury lamp light emitting device
EP0004082B1 (en) Method for energizing high pressure metal vapour discharge lamps
US4755710A (en) High-pressure sodium discharge lamp having reduced lamp voltage increase
JP2006093007A (en) Mercury free metal halide lamp
JPS6168849A (en) Metal halide lamp
EP0377899A2 (en) Lighting discharge lamp
JP3127608B2 (en) Metal halide lamp and method of manufacturing the same
JPH07235282A (en) Mercury vapor discharge lamp and lighting system
JP3463475B2 (en) Electrodeless lamp
JPH1050251A (en) Fluorescent lamp, fluorescent lamp device, and lighting system
JPH1092378A (en) High pressure mercury discharge lamp
JP2002208376A (en) Metal halide lamp and illumination device
JPH07245082A (en) Metal vapor discharge lamp
JPH0831374A (en) Fluorescent lamp and its device
JPH01161655A (en) Metal halide lamp
JPH04301356A (en) High pressure sodium lamp