JPS59201000A - Method of storing radioactive solid waste - Google Patents

Method of storing radioactive solid waste

Info

Publication number
JPS59201000A
JPS59201000A JP7540683A JP7540683A JPS59201000A JP S59201000 A JPS59201000 A JP S59201000A JP 7540683 A JP7540683 A JP 7540683A JP 7540683 A JP7540683 A JP 7540683A JP S59201000 A JPS59201000 A JP S59201000A
Authority
JP
Japan
Prior art keywords
container
radioactive
waste
mold
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7540683A
Other languages
Japanese (ja)
Inventor
広瀬 保男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7540683A priority Critical patent/JPS59201000A/en
Publication of JPS59201000A publication Critical patent/JPS59201000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発ψ」のオリ用分野〕 本発明は環境から厳重に隔離して・味香することを要す
る高放射性のfm体どC寒物を安全かつ緑値的に蜜月収
納する方法に関する。
[Detailed description of the invention] [Original field of application of emitting ψ] The present invention is a method for storing highly radioactive FM bodies and other cold materials that must be strictly isolated from the environment and flavored in a safe and green manner. Regarding how to.

〔発明の背景〕[Background of the invention]

高放躬性固体灰乗物、例えば使用61核燃料の容器への
収納およびその保管にあたっては次の諸点に配慮を要す
る。
When storing highly radioactive solid ash vehicles, such as used 61 nuclear fuel, in containers and storing them, consideration must be given to the following points.

イ、放射線をa蔽すること。B. Shield from radiation.

口、放射能物質を容器外に漏洩しないこと。Do not leak radioactive materials outside the container.

・・、崩壊熱を安全に除去できること。..., the ability to safely remove decay heat.

二、いかなる場合にも臨界事故(核的暴走事故)を起さ
々いこと。
2. Under no circumstances should a criticality accident (nuclear runaway accident) occur.

ホ、一定量の放射性固体廃棄物につきその体積およびそ
の収納容器の体積を小さくすること、つまシ減谷化が、
11済的に望ましいこと。
E. Reducing the volume of a certain amount of radioactive solid waste and the volume of its storage container, and reducing the volume of waste.
11. What is economically desirable.

放射勝の赳蝕については、廃棄物収納給容器を鉄、鉛な
ど比較的短、い元素からなる材料で構成された容器に別
逆収納し、または水中あるいはコンクリート製の保管側
りるいは地下に容器を保管するがこれらは本発明とは直
接関係しない。本うも明が直接関係するのは上記の口、
ハ、二である。
Regarding radiation-induced erosion, the waste storage and supply container should be stored separately in a container made of relatively short and strong elements such as iron or lead, or it should be stored underwater or in a concrete container or underground. However, these are not directly related to the present invention. Hon Umoaki is directly related to the above statement.
Ha, that's two.

この種の従来技術の代表的な一例は、使用隣燃料の再処
理に除して発生する高レベル廃棄物のガラス同化体とし
ての収納である。ガラス同化収納法の具体例としてフラ
ンスのAVM法(Techniquesfor the
 5olidification of High −
Level Wastes+IAEA 、 Vienn
a 、 1977 、 STI/DOC/10/176
 )i二ある。その似略工程を第1 f図に示す。同図
中、一点鎖線で囲んだ部分がガラス同化法tこよる収納
法に直接関係する部分である。
A typical example of this type of prior art is the storage of high-level waste generated during the reprocessing of used fuels in glass assimilates. A concrete example of the glass assimilation storage method is the French AVM method (Techniques for the
5olidification of High −
Level Wastes+IAEA, Vienna
a, 1977, STI/DOC/10/176
) i There are two. The approximate process is shown in Fig. 1f. In the figure, the part surrounded by the dashed line is the part directly related to the storage method based on the glass assimilation method.

第1図に示すように使用断燃料は剪断さγして仮覆管内
部の核燃料物質が硝酸に′に′r解しやすいようにして
硝酸溶解される。次いで浴が1叙力・ら有機溶媒でウラ
ンとプルトニウムが抽出さねる。残った高レベルj晃液
には住用済悠1・中に仔在した核分裂生成物の大部分が
硝I’F ijlmとして入っている。高レベル廃液は
磯縮されて一時的に貯蔵される。画線された廃液は一定
速度で焼成炉に供給され、ここで、1ず水分が蒸発し、
続いて硝酸塩は熱分解して固体状の醇化物となる。この
醇化物にはノルコニウム、モリブデン、セシウム、スト
ロンチウム、ルテニウム、セリウム、ネオツムそのイd
2の放射性元糸力≦含まれている。
As shown in FIG. 1, the spent fuel is sheared and dissolved in nitric acid so that the nuclear fuel material inside the temporary casing is easily dissolved into nitric acid. The uranium and plutonium are then extracted using an organic solvent in a bath. The remaining high-level liquid contains most of the fission products that were present in the liquid as nitrate. High-level waste liquid is condensed and temporarily stored. The streaked waste liquid is fed at a constant rate to the kiln, where the moisture first evaporates and
Subsequently, the nitrate is thermally decomposed to form a solid infusion. This liquefied material contains norconium, molybdenum, cesium, strontium, ruthenium, cerium, neotum and other elements.
2 radioactive thread force ≦ included.

次いでガラス同化法の特9スとして上記の醗化物をホウ
化ガラス粉末と混合し、インコネル製のガラス溶融炉の
中で誘導加熱により1150℃に加熱して溶融してホウ
化ガラスと各種の醇化物の間でガラス化反応を進行させ
、一様なガラス溶融体とした俵に、耐熱・耐食性の容器
中に浴融ガラスを鋳込み、冷却して固化させる。その後
、容器には蓋を溶接し、外衣面の除染を行ってからコン
クリート製の保管述に保管する。
Next, as a special step of the glass assimilation method, the above-mentioned liquefaction product is mixed with boride glass powder, heated to 1150°C by induction heating in an Inconel glass melting furnace, and melted to form boride glass and various melts. The glass melt is poured into a heat-resistant and corrosion-resistant container into a bale of uniform glass melt by allowing the vitrification reaction to proceed between the objects, and is then cooled and solidified. After that, a lid is welded to the container, the outer surface is decontaminated, and the container is stored in a concrete storage container.

このガラス同化法では放射能の漏出防止は、−次的には
耐熱・耐食性の密封容器によシ与えられるが、二次的に
は、水に溶は難いガラス固化体中に放射性元素をガラス
結晶の構成要素として取シこんでいることにより与えら
れる。
In this glass assimilation method, the leakage of radioactivity is firstly prevented by using a heat-resistant and corrosion-resistant sealed container, but secondarily, radioactive elements are added to the glass in a vitrified material that is difficult to dissolve in water. It is given by incorporating it as a constituent element of the crystal.

通常、軽水炉(飾腸水凰)燃料集合体は約200に9の
ウランを含むが、その外形から計算される容器♂「は約
90Aでおって、ウラン1トンあた9ては360A’に
占める。前記ガラス同化法では、通常1トンのウランか
らなる軽水炉燃料を再処理すると体積が150tのガラ
ス固化体か生J戎される。
Normally, a fuel assembly for a light water reactor (Shikacho Suiou) contains about 200 parts of uranium, but the container ♦ calculated from its external shape is about 90 A, and 9 parts per ton of uranium is 360 A'. In the glass assimilation method, when light water reactor fuel consisting of 1 ton of uranium is reprocessed, a vitrified material with a volume of 150 t is produced.

ガラス同化体は放射性物質の崩壊熱により中央161S
の温度か尚くなるので、保管中には冷去(Iのため空気
の流れを確保するなどしてガラス化反応化温度である5
00℃以上にならないようにしなければならない。ガラ
ス固化体中に虐壕れる核分裂性物質の量は少ないので臨
界が改の発生の危限性はない。
The glass assimilate material is exposed to the central 161S due to the decay heat of the radioactive material.
During storage, the temperature should be cooled (by ensuring air flow, etc.) to maintain the vitrification reaction temperature.
It must be ensured that the temperature does not exceed 00℃. Since the amount of fissile material trapped in the vitrified material is small, there is no risk of criticality failure occurring.

高放射性物質の収納法として前記力゛゛ラス固化法は現
在では最も安全て確実な方法の一つであると考えられて
いるが、問題はその工程の抜雑さ、高放射性のガラス浴
融体による器壁の戯負などによる技術旧な」:1を点お
よび経済性である。商放射注物質の取扱は全く遠隔的に
行う必妥かあるが、この点においても、ガラス同化法の
一工柱の核雑ちは装置保守の困難さも伴って多大の角、
Jo隣的負担となるものである。
The force solidification method described above is currently considered to be one of the safest and most reliable methods for storing highly radioactive materials, but problems include the sloppyness of the process and the highly radioactive glass bath melt. ``Old technology due to the play of equipment etc.'': 1 is point and economy. The handling of commercial radiation injection materials must be carried out completely remotely, but in this respect as well, the core miscellaneousness of the glass assimilation method, coupled with the difficulty of equipment maintenance, poses a great deal of problems.
This is a burden on the neighbors.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、尚密度化妊れ7こii”+放射性1市
1体廃棄物を容器中に舗寅に収5、:へし減容化1〜イ
θる、しかも速隔操作の答易な新規な方法を提供するこ
とにある。
The purpose of the present invention is to reduce the volume of densified 7 pieces of waste + radioactive 1 piece of waste into a container and reduce the volume by 1 to 1. The purpose is to provide a new and easy method.

〔発明の概要〕[Summary of the invention]

本発明の方法は、前述の従来技術に見られるような複雑
で遠隔操作が困難な化学的工程ヲ用いないものであって
、その特徴は耐熱性で加圧1の可塑性を壱し常温附近で
は副食性の金属材料からなる容器に放射性固体反乗物を
智に充填した後、共存する気体の少ない状態で該容器に
血を溶接して密封した後、容器を内容物とともに高温下
で苔型中で圧縮し、圧扁された容器の外形が金型で定ま
るほぼ一頑の形状となるようにして就容さぜることeこ
ある。この減容された密封容器は容易に二次オi器に収
納することができる。
The method of the present invention does not use a chemical process that is complicated and difficult to remotely control as seen in the above-mentioned prior art, and is characterized by heat resistance, which exceeds the plasticity of pressurization 1, and which can be used at around room temperature. After filling a container made of an edible metal material with a solid radioactive substance, welding blood to the container and sealing it with little coexisting gas, the container is placed together with the contents in a moss mold at a high temperature. The container is then compressed and placed in such a way that the outer shape of the pressed container has a substantially uniform shape determined by the mold. This reduced volume sealed container can be easily stored in a secondary oven.

〔発明の実施態:f:j> ) 第2図に本発明の方法の一天施態様の工程流れ図を示す
。本災施Jル様において対象とした商放耐性固体廃棄物
は経水炉(沸騰水型)の使用済燃料でわシ、焼落1簀9
°tた二酸化ウランのベレットがジルコニウム合金製の
被後管内に蜜月された燃料棒の集合体で:4’) rJ
y、−Jれている。
[Embodiment of the invention: f:j>] FIG. 2 shows a process flow diagram of an instant embodiment of the method of the present invention. The commercially resistant solid waste targeted for this disaster relief project was spent fuel from Keisui reactors (boiling water type), which was burned down in 1 tank and 9
An assembly of fuel rods in which a pellet of uranium dioxide is enclosed in a zirconium alloy tube: 4') rJ
y, -J is written.

゛まず燃料集合体の上下のステンレス鋼製部材を取除い
た後、通常の使用済燃料再処理で用いら几る燃料剪し1
装置eこよって惣村(、i(を交さ約4mに剪断した。
゛First, after removing the upper and lower stainless steel members of the fuel assembly, the fuel pruning that is not used in normal spent fuel reprocessing 1
Using the device e, Somura (, i) was sheared into a length of approximately 4 m.

収濶容器となる金h1製容器Qま厚゛さ5111mのオ
ーステナイト系ステンレス↓岡板を浴接して製作され、
外径は30 cm高さは35 cm −CG A”A 
Vまr、”b) 20 tである。
The container made of gold H1 that serves as the collection container is made by bath-welding austenitic stainless steel ↓ Oka plate with a thickness of 5111 m.
Outer diameter is 30 cm and height is 35 cm -CG A”A
Vmar,”b) 20t.

燃料僅の剪断片をこの′&器に充填した。この際に経い
振動を加えることによって取終的な空隙率(空隙W /
ljiの全容お■に対する比率)は0.4となった。免
填された燃料棒勇断片の力1量は100 kgであシ、
このうち二酸化ウランは81に、g、’& 4’i ’
m”材等の金属部材は19kgであった。
The sheared pieces with a small amount of fuel were charged into this vessel. At this time, by applying vibration over time, the final porosity (porosity W /
The ratio of lji to the total ratio of 1) was 0.4. The force of each discharged fuel rod fragment is 100 kg,
Of these, uranium dioxide is 81, g, '&4'i'
The weight of metal members such as "m" material was 19 kg.

次にこの充填後の容器に金属製のiフ盆嵌合した。Next, a metal tray was fitted into the filled container.

容器の蓋は容器の開口部に嵌谷するように力l工されて
いる。
The lid of the container is machined to fit into the opening of the container.

燃料棒剪断片を充填し蓋を嵌合した容器ば′111子線
溶接装置で容器と蓋を溶接した。電子線浴接装翫は真空
に保った容器中で電子組全発午させ電子線を溶接部に集
中させて溶接を1つうものであるため、溶接の実施に先
立って装置の内部は真空状態となされ、従って容器の内
部の気体も除去された。
After the container was filled with fuel rod sheared pieces and fitted with a lid, the container and the lid were welded using a 111 twin beam welding device. Since the electron beam bath welding rod performs welding by irradiating the entire electronic assembly in a vacuum-kept container and concentrating the electron beam on the welding area, the inside of the device must be in a vacuum state before welding. Therefore, the gas inside the container was also removed.

これにより、溶接を完了した容器中には共存する気体の
少ない状態で燃料棒剪断片が光項され密封されたことに
なる。
As a result, the fuel rod sheared pieces are exposed to light and sealed in a state where there is little gas coexisting in the welded container.

溶接部の1″建全性は、溶接完了後の密封容器を、一旦
、真空容器中に移し、真空容器内を排気した後ヘリウム
を満たし、その後、再び排気して真空容器内の残冒ガス
を質量分析することにより、燃料棒を密封した該容器か
らのヘリウムの漏洩がないことを確かめるという方法で
検査した。
The integrity of the welded part is determined by first transferring the sealed container after welding is completed into a vacuum container, evacuating the vacuum container, filling it with helium, and then evacuating it again to remove any residual gas in the vacuum container. The fuel rods were tested by mass spectrometry to confirm that there was no leakage of helium from the sealed container.

密封容器の外表面はあらかじめ研磨して平滑にし、核燃
料物質による汚染が耐着しにくい状態としであるが、上
記検査後の時点で表面に附沿している汚染は湿った布で
拭くことによって除去されたO 次いで蕾封容器の載面についてスミア法(拭きとり法)
によって汚染密度の測定を行い、汚染のないことk J
IJかめた。この操作によって、この時点以降は蓄材容
器の取扱いに関して装置の二次表面汚染の心配金しなく
ともよいことになる。
The outer surface of the sealed container is polished and smoothed in advance to prevent contamination from nuclear fuel materials from adhering to it; however, any contamination along the surface after the above inspection can be removed by wiping it with a damp cloth. The removed O is then smeared (wiping method) on the surface of the bud-sealed container.
Measure the contamination density by k J
IJ came. By this operation, there is no need to worry about secondary surface contamination of the equipment when handling the storage container from this point on.

次に上記密封容器を不活性ガスで酋だされた゛【戎気炉
中でオーステナイト系ステンレス鋼の溶体化処理温度で
ある1200℃に加熱し、内容物まで一様な温度に達せ
しめた後に圧縮が工を行った。
Next, the sealed container was heated to 1200°C, which is the solution treatment temperature for austenitic stainless steel, in an inert gas-filled furnace, and the contents were brought to a uniform temperature before being compressed. carried out the work.

以下に、この圧縮加工について採用した二つの実施例を
述べる。
Two examples adopted for this compression process will be described below.

一つの実施例では、1200℃に7il熱した密封容器
を内径31の、深さ40 cnr (D金型に移し、直
ちに金型の内径に嵌合する上下一対の杵によってIB・
的に圧縮した。全加圧力が2000 )ンに達するまで
加圧した。圧縮された一次収M体(この段階での上記密
封容器の相称)は下倶]の杵で金型〃・ら押し出した。
In one example, a sealed container heated to 7 il at 1200° C. is transferred to a 40 cnr (D) mold with an inner diameter of 31, and immediately IB
Compressed. Pressure was applied until the total pressure reached 2000 m. The compressed primary M-body (symbol of the above-mentioned sealed container at this stage) was extruded from the mold with a punch at the bottom.

この−次収納体は、全冷した後寸法を01]j定すると
外径が3 I CIn5 ?mさが21鋸であり7ヒ。
After this secondary storage body is completely cooled, the outer diameter is 3 I CIn5 ? m is 21 saw and 7 Hi.

容器重量を含めて総重f、tば124 kgであり、体
積は約16tでめ9、容器の体積倣少は20%でめった
O 密封容器の加熱温度である1200℃はオーステナイト
系ステンレス鋼の溶体化処理温度に4しく、これは、こ
の温度に加熱された後、圧線加工で急冷されることによ
り結晶粒間における炭化クロノ・の析出を防止し、il
i+1l性1低下はせないだめの温度として選ばれたも
のでるる。また、1000℃に加熱されたオーステナイ
ト系ステンレス鋼の降伏点は加圧によって変形させるに
十分に低く、一方、押ひは加圧による変形時に極端な滅
肉机象を生じさせるに十分に太きいものであった。容器
(ハ)に充填された燃料棒剪断片′ff:構成するゾル
コニウム合金は1200℃に加熱8 rすることによっ
てIQ伏点が低下し、加圧によって容易に変形して二酸
化ウランの焼結ベレットの破砕粒の空隙f:埋めるよう
に作用した。二酸化ウランはり点が2740′C程反と
高いが、1000℃を越える温度に加熱されると塑性変
形を生じゃすくなシ、加圧によってジルコニウム合金の
変形と共働して密封容器の体お“1減少に薔与した。
The total weight, including the container weight, is 124 kg, the volume is approximately 16 tons, and the volume reduction of the container is 20%, which is very low. The solution treatment temperature is 40%, which prevents the precipitation of carbide between crystal grains by heating to this temperature and then rapidly cooling it by pressure wire processing.
The i+1l property was chosen as the temperature at which it was impossible to reduce the temperature by 1. In addition, the yield point of austenitic stainless steel heated to 1000°C is low enough to be deformed by pressurization, whereas the yield point of austenitic stainless steel heated to 1000°C is sufficiently thick to cause extreme thinning phenomenon when deformed by pressurization. It was something. Fuel rod sheared pieces 'ff filled in container (c): The IQ drop point of the composing zolconium alloy is lowered by heating it to 1200°C for 8 hours, and it is easily deformed by pressurization, forming a sintered pellet of uranium dioxide. It acted to fill the void f in the crushed grains. Although the beam point of uranium dioxide is as high as 2740'C, it does not cause plastic deformation when heated to a temperature exceeding 1000°C, and when pressurized, it cooperates with the deformation of the zirconium alloy to deform the body of the sealed container. Contributed to 1 decrease.

加熱温度はオーステナイト系ステンレス鋼、の溶体化処
理温度である1200℃よシ高くする必要があるが、結
晶粒界で浴融相を発生する1600℃よシ低く保ってお
く必をがある。美原には装置の設計と運転、保守上の朱
件から加熱jlu、 i隻(j:b〜1300℃とする
のがよい。
The heating temperature needs to be higher than 1200°C, which is the solution treatment temperature for austenitic stainless steel, but it needs to be kept lower than 1600°C, which generates a bath melt phase at grain boundaries. For Mihara, it is recommended that the temperature be set to 1,300°C for the design, operation, and maintenance of the equipment.

圧縮加工の第二の実施例全以下に説明する。A second embodiment of compression processing is fully described below.

1200℃に加熱しだj−i!封容器を内・−31αn
、深さ40cmの金型に移し、直ちに金型の内径にしく
合する上下一対の杵によって衝撃的に圧縮した。衝°I
的な圧縮は、約2000気圧に加圧した閂累ガスを瞬間
的に圧縄磯のピストンにつながるガス室に導入すること
によって行なっ7Co容器に放射性固体を密封する隙に
共存気体を少なくしであるので、圧縮加工時に容器内の
気体が圧着、1されることによって容器内圧が詞1)容
器の正孔・5減谷、が妨けられることはない。
It started heating to 1200℃! Inside the sealed container -31αn
The mixture was transferred to a mold with a depth of 40 cm, and immediately compressed by impact using a pair of upper and lower punches that fit the inner diameter of the mold. Opposite I
The compression was carried out by instantaneously introducing the barge gas pressurized to about 2,000 atmospheres into the gas chamber connected to the piston of the pressure rope to reduce the amount of coexisting gas in the gap where the radioactive solid was sealed in the 7Co container. Therefore, when the gas inside the container is compressed and compressed during compression processing, the internal pressure of the container is not hindered.

圧縮された一次収納体は下側の杵(lCよって金型から
トドし出した。−次収納体は、空冷した後寸法を測定す
ると外径は31C+z+v商さは20.771となった
。容器重量を含めた総重量はi 24 +<yでりシ、
体積は約15tであり、容器の1′4:禎減少は25楚
であった。このように、前述のfrP的圧福の場合と比
較して、価寡的圧縮の場合には単位面積あた9の圧力は
小さかったにも拘らず密封容器の体積減少は5チ向上し
た。これは、極1撃的な圧縮加工が二酸化ウランの塑性
変形を促進したことによると考えられる。ノルカロイ合
金被媛管材の可塑菱形もより−4るしいことが認められ
た。
The compressed primary storage body was ejected from the mold using the lower punch (LC). The dimensions of the secondary storage body were measured after being air-cooled, and the outer diameter was 31C + z + v and the quotient was 20.771. Container The total weight including weight is i 24 + < y,
The volume was about 15 tons, and the reduction in weight per 1'4 of the container was 25 so. In this way, compared to the case of the above-mentioned frP compaction, the volume reduction of the sealed container was improved by 5 cm in the case of price compaction, although the pressure per unit area was 9 cm lower. This is thought to be due to the extremely one-shot compression process promoting plastic deformation of uranium dioxide. It was also observed that the plastic rhombus shape of the Norcaloy alloy tube material was -4.

−次収納体の形状は金型の形状で足壕るものであるが実
施例においてはその形状は後述する第3図に示すように
容器の側壁が折れ曲った形状のは円柱状となった。
-The shape of the storage body is similar to the shape of the mold, but in the example, the shape was cylindrical with the side wall of the container bent, as shown in Figure 3, which will be described later. .

圧縮加工による密封容器の変形が生じても容器の密封性
は健全に保たれなければならない。このためには圧縮加
工による体積減少率が50%を越えなめように放射性固
体廃棄物の初期光層空隙率を調整してづく必要がある。
Even if the sealed container is deformed due to compression processing, the sealing performance of the container must be maintained soundly. For this purpose, it is necessary to adjust the initial porosity of the optical layer of the radioactive solid waste so that the volume reduction rate due to compression processing does not exceed 50%.

このようにして侮られた一次収納体はそのままでも保管
の用に適合することもあるが、安全な保貴形態としては
、これをさらに二次容器に収納することが望丑しい。竹
に、複数個の一次収納体を二次容器に収納すれば保管に
除しての取扱操作が容易になる。
Although the primary container thus neglected may be suitable for storage as is, it is desirable to store it in a secondary container for safe storage. If a plurality of primary containers are stored in a secondary container using bamboo, storage and handling operations become easier.

二次容器への収納の一笑施、昏林を次に説明する。Next, we will explain the process of storage in a secondary container.

第3図において、1は混ミ科(4・剪断片、2はそれを
充填した圧縮芒れた前記密封容器(Iaち一次容器)、
3はその蓋、4は二次容器、5は二次容器の盆、6は溶
接部、7は二次容器内に旧人したヘリウム、8はヘリウ
ム充填孔、9は把手である。二次容器はオーステナイト
系ステンレス’il’l ’Fljの浴接れq造で、内
径330n s外’e+ 35 Cm % jWさ18
0 tnrである。
In Fig. 3, 1 is the hermetic awn (4, sheared piece), 2 is the sealed container filled with the compressed awn (Ia primary container),
3 is the lid, 4 is the secondary container, 5 is the tray of the secondary container, 6 is the welded part, 7 is the helium that has been stored in the secondary container, 8 is the helium filling hole, and 9 is the handle. The secondary container is made of austenitic stainless steel with an inner diameter of 330 ns and an outer diameter of 35 cm.
0 tnr.

この二次容器には上述の一次収納体が8段状み重ねて収
納される。蓋5は、二次容器4の開口部に嵌合するよう
に製作されている。冊5には溶接後に二次容器内部(r
(ヘリウムを充填して?6封するだめの充填孔8と二次
収納体を取扱うための把手9がついている。
In this secondary container, the above-mentioned primary storage bodies are stored in eight stacked stages. The lid 5 is manufactured to fit into the opening of the secondary container 4. Book 5 describes the inside of the secondary container (r) after welding.
(It has a filling hole 8 for filling and sealing with helium and a handle 9 for handling the secondary storage body.

二次容器4と蓋5の嵌合部については、アルゴンを保9
Jガスとして、あらかじめ刀11工しである:yi:先
部に対し容器4と共材の浴刀口(〉;、を用いTIG 
浴接を全遠隔的操作で行った。二次容器の恭5に設けた
充填孔8から内部をV「気した後ヘリウムを充填し、ざ
らに充填孔8の入シロにアルゴンを吹きつけなからTI
G溶接によって溶封した。二次容器のような大型の4i
i’j造材の一部に全遠隔操作で溶接するにはTIG 
溶接の操作性が優れている。
For the fitting part between the secondary container 4 and the lid 5, maintain argon gas.
As J gas, the sword 11 is made in advance: yi: TIG using the bath knife mouth (〉;, which is made of the same material as the container 4) for the tip.
Bathing was performed entirely remotely. Fill the inside of the secondary container with helium through the filling hole 8 provided in the hole 5, and then roughly blow argon into the filling hole 8.
It was sealed by G welding. Large 4i like secondary container
TIG to weld part of i'j lumber with full remote control
Excellent welding operability.

二次容器中VCtrJ、、結果的に二酸化ウランとして
650kg、被稜官材として150 kgが同時に収納
された。
As a result, 650 kg of uranium dioxide and 150 kg of ridge material were simultaneously stored in the secondary container.

二次容器については内部に封入し/ヒヘリウムが密封溶
接部から漏洩していないことを鎖量分析万式による7M
4洩妖畳でイ准かめ、さらに、二次容器の表面の汚栄奮
度をスミア法(拭き取p法)で測2yし、汚染のないこ
とを確かめて収納体を児成した。
As for the secondary container, it is sealed inside and it is confirmed that no hyhelium is leaking from the sealed welded part by chain weight analysis.
The contamination level on the surface of the secondary container was measured using the smear method (wiping method) for 2 years to confirm that there was no contamination, and the container was completed.

二次容器の中に充填、密封されたヘリウムはその高い熱
体4t4の故に一次収納体表面から外部への崩嬢熱の伝
熱を助長し、その表面温度の上昇を防止する効果がわる
。ヘリウムの充填は壕/ζ冷接部のヘリウL #ij洩
検畳の実施を容易にし、浴接部の健全性の確認を容易に
する効果がある。
Due to its high heat content 4t4, the helium filled and sealed in the secondary container promotes the transfer of decay heat from the surface of the primary container to the outside, reducing the effect of preventing the surface temperature from rising. Filling with helium has the effect of making it easier to perform a leak test on the trench/ζ cold welding part and making it easier to check the health of the bath welding part.

静的圧邸加工をされた一次収納体に比して衝撃的圧、酪
加工をされたそれは体偵減少率が太きいから、それだけ
、二次容器の寸法の着切なtD定により、同じ二次容器
に多数収納し伺る。
Compared to a primary storage body processed by static pressure processing, one processed by shock pressure and compression processing has a higher rate of decrease in body mass, so by carefully determining the dimensions of the secondary container, the same Next, I will store a large number of them in a container.

使用済燃料の剪断片を一次(外器に元種し、密封した時
点で(は−次容器の高を(・−J、35 /17++で
あって、このままで二次容器に収λ4゛ジすると二次谷
嵜ンには5個の一次収納体しか収納できないが、圧縮認
容によって8個の一次収納体を収41メ5することがで
き、収稍容景は60%増加している。
When the sheared pieces of spent fuel are put into the primary (outer container) and sealed, the height of the secondary container (-J, 35/17++) is stored in the secondary container as it is. Then, although only 5 primary storage objects can be stored in the secondary valley, by allowing compression, 8 primary storage objects can be stored in 41 meters, increasing the storage capacity by 60%.

前述の実施態様では放射性固体ル’fl fitq物と
して使用済軽水炉燃料をヌJ凛とする吻合(・′こつい
て読切したが、不発明は常温にゴ?いて固体(ハl体、
粉体を含む)である−蝦の放射1生物責についてもが用
できる。レリえば、第2図に示した泥れ図は便M済ガベ
料のかわpにセラミック賀の放射1ニド粉体にも通用で
きる。
In the above-mentioned embodiment, spent light water reactor fuel is used as a radioactive solid substance.
(including powder) - can also be used for shrimp radiation 1 biological liability. In other words, the sludge diagram shown in Figure 2 can also be applied to powdered garbage and ceramic powder.

収納されるべき放射性同体は加熱によって着るしく気体
を発生しない物質でめる眠り、単体または化合物であっ
ても1だ(徒それらの混合物であっても本発明を適用す
ることができる。7I11ゼ、によって気体を発生する
物pKついては冨刺容器の圧將I加工に限界が生じ、場
合によっては回連:となる。
The radioactive substance to be stored is a substance that does not emit gas when heated, and may be a single substance or a compound (the present invention can be applied even to a mixture thereof. When it comes to substances that generate gas due to pK, there is a limit to the pressure I processing of the Fujisashi container, and depending on the case, it may become repeated.

これらの一般的な適用の場合でも減容、高智度化、密封
性、隔離性、操作性などに関するメカ来は同様である。
Even in the case of these general applications, the mechanical features regarding volume reduction, high intelligence, sealing performance, isolation performance, operability, etc. are the same.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、放射性1体廃采物の収納操作は
すべて従来技術的に確立された比較的単純な操作手段の
組み合わせによって可能でめシ、寸だ、放射性固体の減
容操作において(・よ放射性物質の飛散、拡散、二次廃
棄物の発生などを防止できる。
According to the method of the present invention, the storage operation of a single radioactive solid waste can be performed by a combination of relatively simple operating means established in the prior art. (・Prevents the scattering and dispersion of radioactive materials and the generation of secondary waste.

本発明の実施のために必要な各種のぷ旧慄作装置は通常
の運転において放射性物質で汚染することが少ないので
装jIIの保守が容易であシ、工程の信頼性、稼動率が
高くなり、たつ、操作にあた9作業者の放射線被ばくを
低く押えることができる。
The various pumping equipment necessary for carrying out the present invention are less likely to be contaminated with radioactive materials during normal operation, so maintenance of the equipment is easy, and process reliability and operation rate are high. , it is possible to keep the radiation exposure of nine workers during operation to a low level.

本発明の方法によれば、放射性固体廃棄物が密封容器高
密度に充η(された減容され/ζ−次収納体が得られる
。例えは前述の実施態様の如く、外径35 cTn% 
Ti7jさ180cm、内容積150tの二次容器中に
8個もの一次収納体全収納し、ウランに換算して約57
0に!9もの使用崎燃相を収納することができる。従来
の方法によるようなガラス固化法によれば約1000 
kyのウランに相当する使用済燃料の再処理高レベル廃
棄物は150tのガラス同化体とすることができるので
、この点を比!i×すると、本発明は、上記実施態様で
児る限シ使用済燃料の収稍容核は570 kgで150
7でりって減答比が少いように見える。しかし、促米方
法では再処理によってはガラス同化体のほかに体積とし
ては約10倍以上の中低レベル固体j元莱物を発生する
のに対して、本発明にょる収稍カ広では液体を用いない
ので中低レベル)シδ乗物の発生−ilには少雇ですむ
利点がある。
According to the method of the present invention, a volume-reduced/ζ-order storage body in which radioactive solid waste is densely filled in a sealed container is obtained. For example, as in the embodiment described above, the outer diameter is 35 cTn%.
Ti7j All eight primary storage bodies are stored in a secondary container with a length of 180 cm and an internal volume of 150 tons, which is equivalent to approximately 57 uranium.
To 0! It can store as many as 9 fuels. According to conventional vitrification methods, approximately 1000
Reprocessing high-level waste from spent fuel equivalent to 1,000 y of uranium can be made into 150 tons of glass assimilate, so compare this point! i
It seems that the reduction ratio is low for 7. However, in contrast to the rice promotion method, which produces glass assimilates and medium- to low-level solid materials with a volume of about 10 times or more depending on the reprocessing, the wide-aggregation method of the present invention produces liquid assimilates. Since it does not use a medium-to-low level) vehicle generation-il, it has the advantage of requiring fewer employees.

唸た本発明によれば、−次収納体の内部で放射性固体が
高密度化することにより、低密度の粉体充填体よシも熱
伝導率が高く、崩個熱が発生しても放射性固体の温度が
筒くならない効果かある。
According to the present invention, by increasing the density of the radioactive solid inside the secondary storage body, the thermal conductivity is high even in the case of low-density powder packing, and even if disintegration heat is generated, the radioactive solid is not radioactive. This has the effect of preventing the temperature of the solid from becoming too cold.

また−次収納体の内部で放射圧固体か同密度化すること
によシ、万一容器に水が侵入した場合にも水と放射性固
体の反応が妨げられ、核燃料物質があっても水との均一
な分散・混合が妨げられ臨界事故の発生全防止する効果
がある。
In addition, by making the radiation pressure solids the same density inside the container, even if water should enter the container, the reaction between water and radioactive solids will be prevented, and even if there is nuclear fuel material, water will not react with the radioactive solids. This prevents the uniform dispersion and mixing of the substances, which has the effect of completely preventing criticality accidents from occurring.

更に、−次収押J ji”c二次容器に収納することに
よって二重のV台±1キギ呂咎が構成されることにンr
9、信頼性が高まると同時に収納体の操作が容易となる
In addition, by storing it in the secondary container, a double V unit ± 1 kilometer can be constructed.
9. Reliability is increased and at the same time, the storage unit becomes easier to operate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、がラス固化法を用いる従来の放射性固体廃棄
物の収納方法をν1j示した工程0;シれ図、ε1−2
図(は本発明の方法の実施態様をボす工程流jL図、ム
33図は本発明の実施によシ得られた収ir)+体の一
伸」を示す断面図である。 1・・・使用済燃料棒剪断片、 2・・・減宕された一次容器、 3・・・−次容器の蓋、   4・・・二次容器、5・
・・二次容器の盆、   6・・・浴接部、7・・ヘリ
ウム、     8・・・ヘリウム充す1孔、9・・・
把手。 第1図 ’J”:’S 2図 第3図
Figure 1 shows the conventional method of storing radioactive solid waste using the glass solidification method, step 0;
Figure 33 is a process flow diagram showing an embodiment of the method of the present invention, and Figure 33 is a cross-sectional view showing the yield + body obtained by carrying out the present invention. DESCRIPTION OF SYMBOLS 1... Spent fuel rod sheared pieces, 2... Reduced primary container, 3... Lid of secondary container, 4... Secondary container, 5...
...Secondary container tray, 6...Bath contact, 7...Helium, 8...1 hole filled with helium, 9...
handle. Figure 1 'J': 'S Figure 2 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)耐熱性で加熱下に可塑性を有し常温附近では耐食
性の金属材料からなる容器に放射性面体廃棄物を小なる
空隙率を以て光填した弦、共存気体の少ない状態で容器
に蓋を溶接して密封し、その後、該金属材料の性質に対
応する溶体化処理温度に加熱した状態で該容器を金型中
に入れ、杵によって圧縮し、金型の内径で定まる一定の
外径′ff:有するように該容器の体枳ヲ減少せしめる
ことを特徴とする放射性固体bεε動物収納方法。
(1) A container made of heat-resistant metal material that is plastic under heating and corrosion-resistant at room temperature, is filled with radioactive facepiece waste with a small porosity, and a lid is welded to the container in a state with little coexisting gas. Then, the container is heated to a solution treatment temperature corresponding to the properties of the metal material, placed in a mold, and compressed with a punch to a constant outer diameter 'ff determined by the inner diameter of the mold. : A method for storing a radioactive solid bεε animal, characterized in that the volume of the container is reduced so as to have the following properties:
(2)前項記載の収納方法において、放射性固体廃棄物
全密封した該容器の金型内における圧陥をイ面ジ必自勺
にイ1うことを今fτ改とする特打十ムi−メの昂已回
第1項記載の放別仙固体1元梨物の収納方法。
(2) In the storage method described in the preceding paragraph, special measures are now being taken to ensure that the radioactive solid waste is not compressed in the mold of the completely sealed container. How to store Hobetsu Sen solid 1-yuan pear food described in Section 1 of the Men's Koumi episode.
(3)放射性IL−・i体j;C乗物を共存気体の少な
い状態で蓄材した容器の籍封件の確認全行、りlζ後に
その外次面の放射性汚染を除去し、しかる後に1iiJ
記の加熱および圧縮分行うこと全%鍬とする特許請求の
範囲第1項または第2項記載の放射性面体廃棄物の収納
方法。
(3) Confirmation of the seal of the container in which the radioactive IL-・i body j; C vehicle was stored in a state with a small amount of coexisting gas.
3. A method for storing radioactive face piece waste according to claim 1 or 2, wherein the heating and compressing portions described above are carried out by hoeing.
(4)前記圧縮によって減容ぜれた放射性固体廃棄物全
密封の容器の単数または核畝個を別の容器内に密封する
こと′f:特徴とする一Sf g「m?l求の範囲第1
項、第2項または第3項記柩の放月1社晒」体溌呆物の
収納方法。
(4) Sealing the radioactive solid waste whose volume has been reduced by the compression in a completely sealed container or nuclear ridges in another container. 1st
Section 2, Section 2 or Section 3, "Coffin's Hougetsu 1sha" storage method for physical belongings.
(5)  前記圧縮によって減容され/こ放射性固体廃
棄物全密封み容器と上記別の容器のlif]に仔在する
壁間に熱伝縛率の藁い物質を封入することを特徴とする
特許請求の範囲第4項記並、の放射性面体廃棄物の収納
方法。
(5) A straw material having a thermal conductivity is sealed between the walls of the completely sealed radioactive solid waste container whose volume has been reduced by compression and which are present in the separate container. A method for storing radioactive facepiece waste as set forth in claim 4.
JP7540683A 1983-04-28 1983-04-28 Method of storing radioactive solid waste Pending JPS59201000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7540683A JPS59201000A (en) 1983-04-28 1983-04-28 Method of storing radioactive solid waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7540683A JPS59201000A (en) 1983-04-28 1983-04-28 Method of storing radioactive solid waste

Publications (1)

Publication Number Publication Date
JPS59201000A true JPS59201000A (en) 1984-11-14

Family

ID=13575261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7540683A Pending JPS59201000A (en) 1983-04-28 1983-04-28 Method of storing radioactive solid waste

Country Status (1)

Country Link
JP (1) JPS59201000A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57103098A (en) * 1980-12-19 1982-06-26 Japan Steel Works Ltd Manufacture of sealed container
JPS57118200A (en) * 1980-07-15 1982-07-22 Atomic Energy Of Australia Deposition for making to containing waste
JPS57176000A (en) * 1981-04-23 1982-10-29 Kobe Steel Ltd Method of volume-decreasing and stabilizing radioactive metal waste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118200A (en) * 1980-07-15 1982-07-22 Atomic Energy Of Australia Deposition for making to containing waste
JPS57103098A (en) * 1980-12-19 1982-06-26 Japan Steel Works Ltd Manufacture of sealed container
JPS57176000A (en) * 1981-04-23 1982-10-29 Kobe Steel Ltd Method of volume-decreasing and stabilizing radioactive metal waste

Similar Documents

Publication Publication Date Title
GB1590108A (en) Method of treating radioactive waste
US3324540A (en) Method for making porous target pellets for a nuclear reactor
US4280921A (en) Immobilization of waste material
JPS59201000A (en) Method of storing radioactive solid waste
US5098645A (en) Container for reprocessing and permanent storage of spent nuclear fuel assemblies
US7804077B2 (en) Passive actinide self-burner
US4129518A (en) Method for conditioning metallic waste shells made of zirconium or zirconium alloys
AU597385B2 (en) Encapsulation of waste materials
JPH0580998B2 (en)
Mishra et al. Fabrication of Nuclear Fuel Elements
RU2065221C1 (en) Method for radioactive waste solidification
JPS6239960B2 (en)
JPS6331758B2 (en)
McElroy et al. Alternative solidified forms for nuclear wastes
Tegman et al. Treatment of zircaloy cladding hulls by isostatic pressing
Söderman Encapsulation of spent nuclear fuel-safety analysis
JPH03277998A (en) Method and equipment for solidifying treatment, storage and disposal of high level radioactive waste
JPS61124894A (en) Store of spent fuel and manufacture of said store
Levitz et al. Management of waste cladding hulls. Part I. Pyrophoricity and compaction
Clark et al. Encapsulation of noble fission product gases in solid media prior to transportation and storage
Davis et al. Promethium-147 Radioisotope Application Program AMSA Heat Source Final Report
Kang et al. Encapsulation of Radioactive Stainless-Steel Oxide Sludge in Aluminum Using Hot Isostatic Pressing Process and Treatment Suitability Assessment
Gordon Nuclear Fuel Research Fuel Cycle Development Program: Quarterly Progress Report October 1 to December 31, 1961
Anfimov Management of radioactive waste in nuclear power: Handling of irradiated graphite from water-cooled graphite reactors
Jouan et al. Economic and technical advantages of high temperature processes in high level radioactive waste management