JPS59200750A - Surface coating method - Google Patents

Surface coating method

Info

Publication number
JPS59200750A
JPS59200750A JP7545283A JP7545283A JPS59200750A JP S59200750 A JPS59200750 A JP S59200750A JP 7545283 A JP7545283 A JP 7545283A JP 7545283 A JP7545283 A JP 7545283A JP S59200750 A JPS59200750 A JP S59200750A
Authority
JP
Japan
Prior art keywords
alloy
phase
treated
hardness
sprayed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7545283A
Other languages
Japanese (ja)
Inventor
Masaharu Tominaga
冨永 正治
Shoji Kiguchi
木口 昭二
Akio Yamanishi
昭夫 山西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP7545283A priority Critical patent/JPS59200750A/en
Publication of JPS59200750A publication Critical patent/JPS59200750A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/04Phosphor

Abstract

PURPOSE:To form a surface film having superior wear resistance and sliding characteristics by forming a sprayed layer of a WC-(Ni-P) alloy on the surface of a member to be treated, heating the member in a nonoxidizing atmosphere to melt only the Ni-P phase, and solidifying the molten phase. CONSTITUTION:A WC-(Ni-P) alloy for forming a sprayed layer on the surface of a member to be treated is preferably prepd. by coating about 95-70% WC powder of about 20-60mum grain size with about 5-30% Ni-P contg. about 8-13% P by electroless plating. A sprayed layer of the WC-(Ni-P) alloy is formed on the surface of a member to be treated. The member is heated to about 950- 1,050 deg.C in a non-oxidizing atmosphere to melt only the Ni-P phase, and the molten phase is solidified. Ni-P is decomposed at about 400 deg.C, and Ni3P is precipitated, so the hardness of the entire film is increased.

Description

【発明の詳細な説明】 この発明は表面被覆方法に関し、特に耐摩耗性を有する
と共に摺動特性の優れた表面被膜を得ることのできる表
面被覆方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface coating method, and more particularly to a surface coating method capable of obtaining a surface coating having wear resistance and excellent sliding properties.

例えば、シリンダライナの内周面は、ピストンリングが
高温下において高速で摺動するため、耐スカッフィング
性及び耐摩耗性が共に優れている必要がある。そのため
、従来よりシリンダライナの内周面に各種メッキ処理、
化成処理、あるいは窒化処理を施して、摺動面の硬度を
上昇させることが行われてきた。しかしながら、近年、
エンジン性能の向上に伴い、摺動条件も苛酷化しており
、このような高性能エンジンに対しては、上記の各処理
によって対処することは不可能である。
For example, the inner circumferential surface of the cylinder liner must have excellent scuffing resistance and wear resistance because the piston rings slide at high speed under high temperatures. Therefore, various plating treatments have been applied to the inner peripheral surface of the cylinder liner.
Chemical conversion treatment or nitriding treatment has been performed to increase the hardness of sliding surfaces. However, in recent years,
As engine performance improves, sliding conditions are also becoming more severe, and it is impossible to deal with such high-performance engines by the above-mentioned treatments.

そこで、上記のような苛酷な摺動条件に耐えるために、
シリンダライナの内周面に比較的高い硬度の得られる超
硬合金を溶射することが考えられる。この場合、超硬粉
末、例えばWC(タングステンカーバイド)それだけで
は、結合性に乏しいので、通常はバインダとしてco(
コバルト)が添加され、−CとCoとの合金粉として溶
射される。
Therefore, in order to withstand the harsh sliding conditions mentioned above,
It is conceivable to thermally spray a cemented carbide that can obtain relatively high hardness onto the inner circumferential surface of the cylinder liner. In this case, cemented carbide powder such as WC (tungsten carbide) alone has poor bonding properties, so co(
Cobalt) is added and thermally sprayed as an alloy powder of -C and Co.

ところで、摺動により被膜にクランクが発生ずる場合の
最小面圧Pcは、 PC:=PO/ (1+16.2 μ)3で表される。
By the way, the minimum surface pressure Pc when a crank occurs in the coating due to sliding is expressed as PC:=PO/(1+16.2 μ)3.

なお、上式において、Pcば摺動時にクランクの発生す
る最小面圧を、Poは静的荷重によってクランクの発生
する最小面圧を、またμは摩擦係数をそれぞれ示してい
る。
In the above equation, Pc represents the minimum surface pressure generated by the crank during sliding, Po represents the minimum surface pressure generated by the crank due to static load, and μ represents the coefficient of friction.

上記の式から、摩擦係数が小さくなると、Pcが指数関
数的に大きくなり、クラックが発生しに(くなることが
明らかである。したがって、シリンダライナの内周面へ
溶射する材料も、高い硬度を有するものであると共に、
さらにその摩擦係数が小さいものであることがJ= ’
31S4である。
From the above equation, it is clear that as the coefficient of friction decreases, Pc increases exponentially and cracks are less likely to occur. In addition to having
Furthermore, the coefficient of friction is small, J='
It is 31S4.

しかしながら、Gfi来より4躬粉末の結合性を高める
ために用いられているCOは、上記の要求をlHたずほ
と小さな摩擦係数ををするものではなく、したがって上
記WC−Co系合金をシリンダライナの内周面に溶射し
ても、耐スカッフィング性及び耐摩耗性を大幅に向上す
ることは不可能であった。
However, CO, which has been used since Gfi to improve the bonding properties of 4000 powder, does not necessarily have a low coefficient of friction that meets the above requirements. Even by thermal spraying on the inner circumferential surface of the liner, it has not been possible to significantly improve scuffing resistance and wear resistance.

この発明は上記に鑑めなされたもので、その目的は、シ
リンダライナ等のような高温下において摺動摩耗を受り
る部材に刻して、高い耐摩耗性を有すると共に、帆れた
摺動特性を有する表面被覆を施ずごとのできる表面被覆
方法を提供することにある。
This invention has been made in view of the above, and its purpose is to provide high abrasion resistance by inscribing parts such as cylinder liners that are subject to sliding wear under high temperatures, and to provide smooth sliding resistance. It is an object of the present invention to provide a surface coating method that allows surface coating with dynamic characteristics to be applied without any process.

上記目的に沿うこの発明の表面被覆方法は、被処理部材
の表面にWC−(Ni−P)合金の溶射層を形成し、次
いで非酸化性雰囲気下で加熱することによりNi  P
相のみを溶融、凝固させることを特徴とするものとなる
The surface coating method of the present invention, which achieves the above object, forms a sprayed layer of WC-(Ni-P) alloy on the surface of a member to be treated, and then heats it in a non-oxidizing atmosphere to coat NiP.
It is characterized by melting and solidifying only the phase.

上記の結果、バインダとしてのN1−Pが熔融し、溶射
によって生じた気孔を埋めることになり、緻密化した被
膜が得られ、このことと、N1−P自身が比較的高い硬
度を有すると共に)■腔係数の小さいことが相まって、
耐摩耗性を有し、しかも摺動特性の優れた表面被覆を形
成することが可能となる。また、N1−PとWC及び母
材として常用される鉄系材料とは相互に良く拡散するた
め、被膜の強度が良好で、しかもN、材との密着性も優
れたものとなる。さらに、N1−P力劾g ;j4+、
溶融された後、冷却される際に400°C(−1近の温
度において、N1−Pが分解し、Ni3Pが析出するが
、この相は硬度がjIムい(ビッカース硬度Hν=11
00にも達する)ため、被膜全体の硬度も上昇したもの
となる。
As a result of the above, N1-P as a binder melts and fills the pores created by thermal spraying, resulting in a dense coating, and in addition to this, N1-P itself has a relatively high hardness) ■Coupled with the small cavity coefficient,
It becomes possible to form a surface coating that has wear resistance and excellent sliding properties. In addition, since N1-P, WC, and iron-based materials commonly used as base materials diffuse well into each other, the strength of the coating is good, and the adhesion to N and materials is also excellent. Furthermore, N1−P force g ;j4+,
After being melted, when cooled, N1-P decomposes and Ni3P precipitates at a temperature near 400°C (-1), but this phase has a hardness of jI (Vickers hardness Hν = 11
00), the hardness of the entire coating also increased.

上記において、溶射に用いる託−(Ni−P)合金は、
粒度20〜60μのWC粉末に、N1−Pを無電解メッ
キしたものを用いるのが好ましいが、N1−P粉末と訂
粉末を混合したものを用いてもよい。これらの場合、N
1−Pとしては、P(リン)が8〜13%のものを用い
るのが好ましいが、それはPが8〜13%のときには、
比較的低い温度(共晶点付近)、すなわち880〜95
0°CにおいてN1−Pが〆8融するためである。した
がって、この発明において、N1−Pのめを溶融させる
のに必要な温度は、880℃以上であればよいか、N1
−Pの組成のバラツキ等を考慮1−ると950℃以上で
あるのが好ましい。一方、加熱に要する時間、費用及び
材料の熱変形等を考慮、すると1050℃以下であるの
が好ましく、結局、加熱温度ば950〜1050°Cの
範囲内とするのか最も好ましい。
In the above, the Ni-P alloy used for thermal spraying is
It is preferable to use a WC powder with a particle size of 20 to 60 microns electrolessly plated with N1-P, but a mixture of N1-P powder and a modified powder may also be used. In these cases, N
As 1-P, it is preferable to use one containing 8 to 13% P (phosphorus); however, when P is 8 to 13%,
Relatively low temperature (near the eutectic point), i.e. 880-95
This is because N1-P melts at 0°C. Therefore, in this invention, the temperature required to melt N1-P may be 880°C or higher;
Taking into account variations in the composition of -P, etc., the temperature is preferably 950°C or higher. On the other hand, considering the time required for heating, cost, thermal deformation of the material, etc., it is preferable that the heating temperature be 1050°C or less, and it is most preferable that the heating temperature be within the range of 950 to 1050°C.

また上記において、WCとN1−Pとの比率は、WC9
5〜70%でN1−P5〜30%の範囲内のものが好ま
しい。N1−Pが5%未満では、バインダとしての充分
な効果を発揮することができず、一方N1−Pが30%
を超えると被膜の硬度低下を招くためである。なお、製
造工程における各種の誤差を考慮すると、実用的に最も
好ましいのは、WC90%、Ni −■)10%程度の
ものである。
In addition, in the above, the ratio between WC and N1-P is WC9
It is preferably in the range of 5-70% and N1-P5-30%. If N1-P is less than 5%, sufficient effect as a binder cannot be exhibited; on the other hand, if N1-P is 30%
This is because, if it exceeds this, the hardness of the coating will decrease. In addition, considering various errors in the manufacturing process, the most practically preferable one is about 90% WC and 10% Ni -■).

次にこの発明の具体的な実施例につき、図面を参照しつ
つ詳細に説明する。
Next, specific embodiments of the present invention will be described in detail with reference to the drawings.

ます、粒度30〜60μのWC粉末に、P量が約10%
のN1−Pを無電解メッキして、智C(Ni −P )
複合粉末(WC90%、N1−PIO%)を製造した。
The amount of P is about 10% in the WC powder with a particle size of 30 to 60μ.
By electroless plating N1-P of
A composite powder (WC90%, N1-PIO%) was produced.

この複合粉末をシリンダライナ(内径105mm 、 
祠質FC25)の内面にプラズマ溶射して、厚さ0.2
5μの被膜を形成した。なお、プラズマ溶射ば第1図に
示すように、エクステンションガン1を用いて、l容射
角65度で行い、未溶融粉末の何着をできるだけ少なく
するために、エアジェツト2を併用した。
This composite powder was used as a cylinder liner (inner diameter 105 mm,
Plasma sprayed on the inner surface of abrasive FC25) to a thickness of 0.2
A film of 5μ was formed. As shown in FIG. 1, the plasma spraying was carried out using an extension gun 1 at a radiation angle of 65 degrees, and an air jet 2 was also used to minimize the amount of unmelted powder deposited.

次いで、上記シリンダライナを真空中(10Torr)
において、約980℃に加熱し、約30分間保持した後
で、炉冷した。
Next, the cylinder liner was placed in a vacuum (10 Torr).
After heating to about 980° C. and holding it for about 30 minutes, it was cooled in a furnace.

上記において得られたシリンダライナから、試片を切り
出し、その被膜の硬度及び密着強度についてのテストを
行った。その結果を第2図に示すが、本発明方法によれ
ば、従来のWC−18Goをプラズマ溶射ものに比較し
て、被膜の硬度、密着強度共に上昇していることが明ら
かである。
A sample was cut out from the cylinder liner obtained above, and the hardness and adhesion strength of the coating were tested. The results are shown in FIG. 2, and it is clear that according to the method of the present invention, both the hardness and adhesion strength of the coating are increased compared to the conventional WC-18Go coated by plasma spraying.

また、上記試片を用いて、往復摺動試験機による摩耗試
験を行ったが、摩耗量は従来のWC18c。
Furthermore, a wear test was conducted using a reciprocating sliding tester using the above sample, and the amount of wear was the same as that of the conventional WC18c.

をプラズマ溶射したものの1/3程度であった。It was about 1/3 of that of plasma sprayed.

この発明の表面被覆方法は」二足のように構成されたも
のであり、したがってこの発明方法によれば、シリンダ
ライナ等のような高温下において摺動摩耗を受ける部材
に対して、高い耐摩耗性を有すると共に、優れた摺動特
性を有する表面被覆を施すことが可能となる。
The surface coating method of the present invention has a two-legged structure. Therefore, according to the method of the present invention, high wear resistance can be achieved for members such as cylinder liners that are subject to sliding wear under high temperatures. It becomes possible to apply a surface coating that has excellent sliding properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施に用いるプラズマ溶射法の一
例の説明図、第2図は本発明方法と従来方法とによって
形成された被膜の硬度と密着強度とを比較して示すグラ
フである。 特許出願人    株式会社小松製作所範 1 図 葬 2−図 (Wこ一111L*)
FIG. 1 is an explanatory diagram of an example of the plasma spraying method used to implement the method of the present invention, and FIG. 2 is a graph comparing the hardness and adhesion strength of coatings formed by the method of the present invention and the conventional method. . Patent applicant Komatsu Ltd. Han 1 Illustration 2-Diagram (W Koichi 111L*)

Claims (1)

【特許請求の範囲】[Claims] 1、被処理部材の表面にWC−(Ni−P)合金の溶射
層を形成し、次いで非酸化性雰囲気下で加熱することに
よりtJi−P相のみを溶融、凝固させることを特徴と
する表面被覆方法。
1. A surface characterized by forming a sprayed layer of WC-(Ni-P) alloy on the surface of the member to be treated, and then heating in a non-oxidizing atmosphere to melt and solidify only the tJi-P phase. Coating method.
JP7545283A 1983-04-28 1983-04-28 Surface coating method Pending JPS59200750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7545283A JPS59200750A (en) 1983-04-28 1983-04-28 Surface coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7545283A JPS59200750A (en) 1983-04-28 1983-04-28 Surface coating method

Publications (1)

Publication Number Publication Date
JPS59200750A true JPS59200750A (en) 1984-11-14

Family

ID=13576679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7545283A Pending JPS59200750A (en) 1983-04-28 1983-04-28 Surface coating method

Country Status (1)

Country Link
JP (1) JPS59200750A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321748U (en) * 1986-07-25 1988-02-13
US5198268A (en) * 1991-11-14 1993-03-30 Xaloy, Incorporated Method for preparing a feed screw for processing plastics
WO2002020403A1 (en) * 2000-09-06 2002-03-14 H.C. Starck Gmbh Ultracoarse, monorystalline tungsten carbide and method for producing the same, and hard metal produced therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321748U (en) * 1986-07-25 1988-02-13
US5198268A (en) * 1991-11-14 1993-03-30 Xaloy, Incorporated Method for preparing a feed screw for processing plastics
WO2002020403A1 (en) * 2000-09-06 2002-03-14 H.C. Starck Gmbh Ultracoarse, monorystalline tungsten carbide and method for producing the same, and hard metal produced therefrom
US6749663B2 (en) 2000-09-06 2004-06-15 H.C. Starck Gmbh Ultra-coarse, monocrystalline tungsten carbide and a process for the preparation thereof, and hardmetal produced therefrom

Similar Documents

Publication Publication Date Title
US6044820A (en) Method of providing a cylinder bore liner in an internal combustion engine
US4226914A (en) Novel spraying composition, method of applying the same and article produced thereby
CN1160088A (en) Process for applying metallic adhesion layer for ceramic thermal barrier coatings to metallic components
US3721534A (en) Method of forming protective coatings on ferrous metal and the resulting article
DE60016466D1 (en) METHOD FOR PRODUCING LOW-DENSITY POLYMER OR METAL-MATRIX SUBSTRATES CERAMIC AND / OR METAL-CERAMIC COATINGS AND LOW-DENSITY COMPONENTS OF HIGH STRENGTH THUS MADE
US20070099015A1 (en) Composite sliding surfaces for sliding members
JP2009537694A (en) Wear prevention device and method for manufacturing wear prevention device
US3428472A (en) Method for forming metal coatings
JP4825001B2 (en) Thermal spray deposition method for super engineering plastics laminated film
JPS6350402A (en) Coating method for wear-resistant material
JPS641551B2 (en)
JPS63169371A (en) Formation of thermal spraying ceramic layer
JPS59200750A (en) Surface coating method
JP2002518600A (en) Method for producing coating for metal member
Perumal et al. A comparative study on the wear behavior of Al 2 O 3 and SiC coated Ti-6Al-4V alloy developed using plasma spraying technique
US6803078B2 (en) Process for producing a surface layer
JPH08134622A (en) Treatment for surface of light metal material and light metal material having surface layer consisting of conjugated material with wear resistant thermal spraying material
JPH0413854A (en) Wear and corrosion resistant roll in molten zinc bath
US3288623A (en) Method of flame spraying graphite to produce a low friction surface
FR2716898A1 (en) Piece, such as a foundry mold, and its production process.
KR101922805B1 (en) Method of plasma spray coated layer for improving the bond strength between the coating layer and substrate
JP3218956B2 (en) Surface treatment method for aluminum material and treated film
JPH0258347B2 (en)
JPS5939505B2 (en) Tuyere surface treatment method
KR100820987B1 (en) Thermal spraying of a machine part