JPS59199722A - Improvement of plasticizer absorbability of plastisol type polyvinyl chloride and resin obtained thereby - Google Patents

Improvement of plasticizer absorbability of plastisol type polyvinyl chloride and resin obtained thereby

Info

Publication number
JPS59199722A
JPS59199722A JP3274984A JP3274984A JPS59199722A JP S59199722 A JPS59199722 A JP S59199722A JP 3274984 A JP3274984 A JP 3274984A JP 3274984 A JP3274984 A JP 3274984A JP S59199722 A JPS59199722 A JP S59199722A
Authority
JP
Japan
Prior art keywords
resin
plastisol
plasticizer
polyvinyl chloride
resins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3274984A
Other languages
Japanese (ja)
Inventor
ウイリアム・ジヨセフ・カウフマン
パメラ・ホ−プ・マ−チン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Armstrong World Industries Inc
Original Assignee
Armstrong World Industries Inc
Armstrong Cork Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armstrong World Industries Inc, Armstrong Cork Co filed Critical Armstrong World Industries Inc
Publication of JPS59199722A publication Critical patent/JPS59199722A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/18Plasticising macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はプラスチゾル型樹脂、特に優れた可塑剤吸収能
を有するプラスチゾル型樹脂に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to plastisol type resins, particularly plastisol type resins having excellent plasticizer absorption capacity.

一般に、2種類のポリ塩化ビニル樹脂が工業的用途とし
て入手できる。す々わち、かなり大きな粒径、例えば約
25〜220μ(ミクロン)の粒径を有する多目的の樹
脂と;極めて小さい粒径、例えば約01〜うμの粒径を
有するプラスチゾル型樹脂である。多目的の樹脂は多孔
質の傾向にあり、従って可塑剤を容易に吸収することが
できる、その結果、該樹脂は可塑剤で処理した樹脂粒か
らなる自由流動性粉末であるドライ・ブレンド生成に使
用される。
Generally, two types of polyvinyl chloride resins are available for industrial use. These include multi-purpose resins with fairly large particle sizes, for example from about 25 to 220 microns; and plastisol-type resins with very small particle sizes, for example from about 0.1 to 0.0 microns. Multi-purpose resins tend to be porous and can therefore easily absorb plasticizers; as a result, the resins are used in dry blend production, which is a free-flowing powder consisting of resin granules treated with plasticizers. be done.

一方、プラスチゾル型樹脂(分散グレードの樹脂とも呼
ばれる)は極めて小さい気孔を有し、その結果、実質的
に可塑剤の吸収能がない。比較的高い可塑剤吸収能を示
す小粒径樹脂の要求があるけれども、本出願人は、これ
までにそのような物質(材料)の存在を知らない。
On the other hand, plastisol-type resins (also called dispersion-grade resins) have extremely small pores and, as a result, have virtually no ability to absorb plasticizers. Although there is a need for small particle size resins that exhibit relatively high plasticizer absorption capacity, Applicant is not heretofore aware of the existence of such materials.

従って、本発明の目的は優れた可塑剤吸収能を有するプ
ラスチゾル型樹脂を提供することにある。
Therefore, an object of the present invention is to provide a plastisol type resin having excellent plasticizer absorption ability.

本発明のもう1つの目的は、高可塑剤吸収能を有する低
コスト、微細粒径樹脂を提供するために現在入手できる
プラスチゾル型樹脂の簡潔な処理方法を提供することに
ある。
Another object of the present invention is to provide a simple process for processing currently available plastisol type resins to provide low cost, fine particle size resins with high plasticizer absorption capacity.

さらに1本発明の他の目的は、例えば結合剤系、流動床
用、粉末塗料系、および弾性床張り材の製造に使用する
ビニル・ステンシル用などに有用な小粒径、高可塑剤吸
収用樹脂を提供することにある。   ゛ 本発明のこれらおよび他の目的は以下の望ましい実施態
様の詳細な説明から明らかになるであろう。
It is a further object of the present invention to provide small particle size, high plasticizer absorption materials useful for example in binder systems, fluid bed applications, powder coating systems, and vinyl stencils used in the manufacture of resilient floor coverings. Our goal is to provide resin. These and other objects of the invention will become apparent from the following detailed description of the preferred embodiments.

本発明は、樹脂の可塑剤吸収能を改善するため小粒径で
可塑剤の吸収能が比較的小をいプラスチ(3) ゾル型ポリ塩化ビニル樹脂を処理する方法に関する。そ
の方法は、約66℃(15oF)以下の温度で樹脂の可
塑剤吸収能を高めるのに十分な時間樹脂粒を水で処理す
る。
The present invention relates to a method for treating sol-type polyvinyl chloride resins with small particle size and relatively low plasticizer absorption capacity in order to improve the plasticizer absorption capacity of the resin. The method treats the resin granules with water at a temperature of about 66° C. (15° F.) or less for a time sufficient to enhance the plasticizer absorption capacity of the resin.

望ましい第1の実施態様における本発明は、プラスチゾ
ル型ポリ塩化ビニル樹脂の可塑剤吸収能を改善する方法
に関し、該方法は適当なプラスチゾル型ポリ塩化ビニル
樹脂を選択する工程と、該樹脂を流体媒質中において約
65.5℃(150F)以下の温度で加熱する工程から
なる。
In a first preferred embodiment, the invention relates to a method for improving the plasticizer absorption capacity of plastisol-type polyvinyl chloride resins, the method comprising the steps of selecting a suitable plastisol-type polyvinyl chloride resin and introducing the resin into a fluid medium. heating at a temperature below about 65.5° C. (150 F.).

第2の実施態様における本発明は、未処理の樹脂に比べ
て優れた可塑剤吸収能を有する被処理プラスチゾル型ポ
リ塩化ビニル樹脂に関し、該被処理樹脂は適当なプラス
チゾル型ポリ塩化ビニル樹脂を流体媒質中において約6
5.5℃以下の温度で加熱することによって得られる。
In a second embodiment, the present invention relates to a treated plastisol type polyvinyl chloride resin having a superior plasticizer absorption capacity compared to an untreated resin, wherein the treated resin is a fluid containing a suitable plastisol type polyvinyl chloride resin. Approximately 6 in the medium
Obtained by heating at a temperature of 5.5°C or lower.

第うの実施態様における本発明は、吸収した可塑剤から
なる被転化プラスチゾル型樹脂に関し、1゜該樹脂は適
当なプラスチゾル型ポリ塩化ビニル樹脂を流体媒質中に
おいて約655℃以下の温度で(ll) 加熱し、前記被転化樹脂を適当な可塑剤にさらすことに
よって得られる。
In a third embodiment, the present invention relates to a converted plastisol-type resin comprising an imbibed plasticizer, wherein 1° the resin is prepared by converting a suitable plastisol-type polyvinyl chloride resin in a fluid medium at a temperature below about 655°C. ) by heating and exposing the resin to be converted to a suitable plasticizer.

本発明が適用できる樹脂はポリ塩化ビニルのホモポリマ
ーおよび共重合体プラスチゾル型樹脂からなる。一般に
利用されるプラスチゾル型樹脂の大部分は乳化重合法に
よって製造されるが、他の方法、例えば微粒懸濁法もこ
れらの樹脂の製造に使用されている。本発明の目的には
樹脂の製造法は重要ではないと思われる。さらに、可塑
剤は一旦転化されると使用される可塑剤のほとんど全て
が樹脂に吸収されるので、最終的に吸収される可塑剤の
性質は余り重要ではない。
The resin to which the present invention is applicable consists of polyvinyl chloride homopolymer and copolymer plastisol type resins. Although the majority of commonly utilized plastisol-type resins are produced by emulsion polymerization methods, other methods, such as micro-suspension methods, are also used in the production of these resins. The method of making the resin is not believed to be important for purposes of the present invention. Furthermore, the nature of the ultimately absorbed plasticizer is not very important since almost all of the plasticizer used is absorbed by the resin once it has been converted.

代表的なプラスチゾル型樹脂は、一般に直径5μ以下の
粒径を有する。そしてこの型の樹脂は本発明の実施に望
捷しい。しかしながら5本発明はさらに大きな粒径の樹
脂1例えば12μまたは25μの粒径の樹脂でも実施す
ることができる。本願明細書における用語「プラスチゾ
ル型」とは主として可塑剤の粒径ではなくむしろ樹脂が
可塑剤を吸収できないことを意味する。プラスチゾル型
樹(5) 脂は、ある場合にはかなり大きな粒径を有するけれども
、例えば多目的の樹脂と比較した場合に可塑剤の吸収能
が低い。従って2本発明は開示したように処理したとき
高可塑剤吸収を示すのに適した樹脂に関する。便宜上、
従来のプラスチゾル型。
Typical plastisol type resins generally have a particle size of 5 microns or less in diameter. And this type of resin is desirable for the practice of this invention. However, the invention can also be carried out with larger particle size resins, for example 12μ or 25μ. The term "plastisol type" as used herein refers primarily to the particle size of the plasticizer, but rather to the inability of the resin to absorb the plasticizer. Plastisol-type resins (5) Although in some cases have fairly large particle sizes, they have a low capacity for absorbing plasticizers when compared to, for example, multi-purpose resins. Accordingly, the present invention relates to resins suitable for exhibiting high plasticizer absorption when processed as disclosed. For convenience,
Traditional plastisol type.

分散グ1ノードの樹脂のみが成功裏に転化されたので、
それらを「プラスチゾル型樹脂」と呼ぶ。粒径の大きな
多目的樹脂は、それらを160〜220μから35〜5
0μ程度の粒径に粉砕しても5本発明に従って処理した
とき影響を受けないことがわかった。
Since only the resin in the distributed group 1 node was successfully converted,
They are called "plastisol-type resins." Multi-purpose resins with large particle sizes range from 160-220μ to 35-5μ
It has been found that even if the particles are pulverized to a particle size of about 0 μm, they are not affected when treated according to the present invention.

ホモポリマーおよび共重合体のプラスチゾル樹脂は共に
本発明に従ってうまく処理されたけれども、両者の樹脂
の間には若干の差違がみられた。
Although both homopolymer and copolymer plastisol resins were successfully processed according to the present invention, some differences were observed between the two resins.

共重合体樹脂はホモポリマー樹脂よりも容易に、す々わ
ちより低温で転化するように思われる。一方、ホモポリ
マー樹脂は分子量および(捷たは)ガラス転移温度にお
ける差に関係すると思われる転化傾向を示しだ。例えば
、高分子量で高ガラス転移1幅度をもったホモポリマー
樹脂は、比較的低(6) い分子量と低ガラス転移温度を有する共重合体よりも転
化に一般に高い水温を必要とする。本発明に従って処理
したホモポリマー樹脂は約7o、oo。
Copolymer resins appear to convert more easily than homopolymer resins, thus at lower temperatures. Homopolymer resins, on the other hand, exhibit conversion trends that may be related to differences in molecular weight and glass transition temperature. For example, homopolymer resins with high molecular weights and high glass transition temperatures generally require higher water temperatures for conversion than copolymers with relatively low molecular weights and low glass transition temperatures. Homopolymer resins treated according to the present invention have approximately 7o, oo.

〜120. OOOの平均分子量を有した。そして転化
温度は分子量の増加と共に高くなった。一方、本発明に
従って処理した共重合体樹脂のほとんど全てが前記範囲
の高い方の分子量を有しだけれども、それらは全て比較
的低い転化温度を示した。
~120. It had an average molecular weight of OOO. And the conversion temperature increased with increasing molecular weight. On the other hand, although almost all of the copolymer resins treated according to the invention had molecular weights in the higher end of the range, they all exhibited relatively low conversion temperatures.

これらの差の理由は不明である。The reason for these differences is unknown.

本発明を実施するために、適当なプラスチゾル型樹脂全
流体媒質中で樹脂の吸収能を高めるのに十分な時間加熱
する。その流体媒質は水からなることが望ましいが、所
定の温度で樹脂用溶媒である空気または液体も可能であ
る。実際は、その液体は水および(t7’jは)有機液
体からなる。
To practice the present invention, a suitable plastisol-type resin is heated in an all-fluid medium for a period of time sufficient to enhance the absorption capacity of the resin. Preferably, the fluid medium consists of water, but air or liquids that are solvents for the resin at the given temperature are also possible. In reality, the liquid consists of water and (t7'j) an organic liquid.

流体媒質は水以外のものも可能であるけれども、そのよ
うな媒質の使用には一定の欠点がある。空気は、高温で
転化を支えることができるが、高度の塊状化生成品をも
たらす。塊状代品は取扱いが困難であり、その結果空気
は液体媒質よりも魅力かない。しかしながら、全ての液
体媒質が満足ではない。例えば、有機液体は健康や環境
の問題を提起し、捷だ塊状品をもたらす。
Although fluid media other than water are possible, there are certain drawbacks to the use of such media. Air can support conversion at high temperatures, but results in highly agglomerated products. Bulk substitutes are difficult to handle and, as a result, air is less attractive than liquid media. However, not all liquid media are satisfactory. For example, organic liquids pose health and environmental concerns and result in loose clumps.

ポリ塩化ビニル樹脂粒子はある種の有機液体によって溶
媒和および(または)可塑化できるが技術的によく知ら
れている。そのような液体を本発明の実施に使用した場
合、高度に塊状化した製品を得ることができる。最も厳
しい場合に、塊状化は樹脂の微粒特性を失う。多くの場
合に、ばらばらに塊状化した粒子を分離して許容品を生
成するには粉砕が有効である。しかしながら、塊状化の
問題を最少にするためには、液体媒質が処理条件下で樹
脂粒を実質的に溶媒和または可塑化できないことが望ま
しい。
It is well known in the art that polyvinyl chloride resin particles can be solvated and/or plasticized by certain organic liquids. When such liquids are used in the practice of this invention, highly agglomerated products can be obtained. In the most severe cases, agglomeration causes the resin to lose its particulate character. In many cases, comminution is effective in separating loosely agglomerated particles to produce an acceptable product. However, to minimize agglomeration problems, it is desirable that the liquid medium be unable to substantially solvate or plasticize the resin particles under the processing conditions.

前述の理由から、流体媒質として水を使用することが最
も望捷しい、そしてここでの説明および意見の大部分は
特に水に関するものである。水を使用する場合、樹脂試
料は一定体積の水に入れて加熱される。材料の相対的な
割合は変化率に著しく影響を与えないことが示されたが
、樹脂1部に対して約10部の水の割合が一般に満足な
結果を与えた。
For the aforementioned reasons, the use of water as the fluid medium is most desirable, and most of the discussion and comments herein relate specifically to water. When using water, the resin sample is placed in a volume of water and heated. It has been shown that the relative proportions of the materials do not significantly affect the rate of change, although a ratio of about 10 parts water to 1 part resin generally gave satisfactory results.

はとんど全ての場合に転換に必要々時間は水の温度に逆
比例することがわかる。必要な最低温度は約65℃であ
ると思われる。そして変化率は温度が水の沸点(100
℃)まで上昇するに伴い加速する。多くの場合に、約8
2℃の温度で30分が適当な結果を与えたが、前述のよ
うに、これは樹脂の性質、分子量および(または)ガラ
ス転移温度によって左右される。
It turns out that in almost all cases the time required for conversion is inversely proportional to the temperature of the water. The minimum temperature required appears to be about 65°C. And the rate of change is the temperature when the boiling point of water (100
It accelerates as the temperature rises to ℃). In most cases, about 8
30 minutes at a temperature of 2°C gave suitable results, but as mentioned above, this depends on the nature of the resin, molecular weight and/or glass transition temperature.

しばしば、変化が生じる点は肉眼で見ることができる。Often the point at which the change occurs is visible to the naked eye.

例えば、樹脂試料をフラスコ内で82℃の温度において
磁気かくはんしながら水で加熱した場合、その転化点は
樹脂のかくはん性における変化によって検出された、す
なわち樹脂はかくはんが最初は容易で水中で容易に渦巻
いたが、転化後はかくはん作用にもかかわらずフラスコ
の底にある傾向にあった。ある場合には1粒子は転化抜
水の表面へ浮遊した。
For example, when a resin sample was heated with water in a flask at a temperature of 82 °C with magnetic stirring, the conversion point was detected by a change in the stirrability of the resin, i.e., the resin was initially easy to stir and was easily dissolved in water. However, after conversion, it tended to remain at the bottom of the flask despite the stirring action. In some cases, one particle floated to the surface of the conversion effluent.

被転化樹脂粒中への可塑剤の吸収は、被転化樹(9) 脂が液体媒質と接触している間、またはそれが液体媒質
から分離された後で行なわれる。しかしながら、樹脂が
液体媒質と接触している間に可塑剤が添加きれる場合に
は、可塑剤を添加する前に樹脂を転化することが望まし
く、殆んどの場合にそれが必要である。前述のように、
これは、未転化樹脂、媒質および可塑剤が混合時に取扱
いが困難な材料塊を形成するためである。
The absorption of the plasticizer into the converted resin particles takes place either while the converted resin (9) resin is in contact with the liquid medium or after it has been separated from the liquid medium. However, if the plasticizer can be added while the resin is in contact with the liquid medium, it is desirable, and in most cases necessary, to convert the resin before adding the plasticizer. As aforementioned,
This is because the unconverted resin, medium and plasticizer form a lump of material that is difficult to handle when mixed.

多くの物理的測定を処理試料および未処理試料について
行なった。こ扛らの測定は、絶佳密度、メジアン孔径、
および累積の孔体積吸収は処理試料も未処理試料もはソ
同一であることを示した。
A number of physical measurements were performed on treated and untreated samples. These measurements include absolute density, median pore size,
It was shown that the cumulative pore volume absorption and the treated and untreated samples were the same.

一方、処理試料の平均粒径は未処理試料の約2倍であり
、比表面積は少し減少するようであった。
On the other hand, the average particle size of the treated sample was about twice that of the untreated sample, and the specific surface area seemed to decrease slightly.

レオロジーおよび物理的測定における変化は、吸収特性
の変化は樹脂粒子の表面特性の変化のためであって、物
理的性質の変化のためではないことを示唆する。この変
化は永久的なものであると思われる。それが一時的な性
質であることを示唆する証拠は見出されていない。実質
的に全てのブ(10) ラスチゾル型樹脂は、それらがASTM  D−136
6に従った可塑剤の吸収における増加を示すように、本
発明によって転化されるが、2.うの樹脂は転化しない
。従って、本発明を実施するには、適当なプラスチゾル
型樹脂を選択するだめに注意が必要である。
Changes in rheology and physical measurements suggest that the change in absorption properties is due to a change in the surface properties of the resin particles and not to a change in physical properties. This change appears to be permanent. No evidence has been found to suggest that it is temporary in nature. Substantially all B(10) lastisol type resins are of the ASTM D-136
6, but shows an increase in the absorption of plasticizer according to 2. The resin is not converted. Therefore, in carrying out the present invention, care must be taken in selecting an appropriate plastisol type resin.

本発明の寄与および利点は次の実施例(説明のだめのも
のであって、限定を意図するものではない)から明らか
になるであろう。
The contributions and advantages of the invention will become apparent from the following examples, which are illustrative and not intended to be limiting.

例   1 pvc(ポリ塩化ビニル)共重合体分散樹脂(Tenn
eco 0565樹脂)1255+の2つの試料を。
Example 1 PVC (polyvinyl chloride) copolymer dispersion resin (Tenn
eco 0565 resin) 1255+.

それぞれ49℃(12oF)と82℃(180F)に加
熱した脱イオン水の1000+ilにかくはんしながら
添加した。各試料は前記高度で30分間かくはんし、ブ
フナー漏斗でろ過し、クラフト紙の上に広げ、環境温度
で24時間乾燥した。
Added with stirring to 1000+ il of deionized water heated to 49°C (12oF) and 82°C (180F), respectively. Each sample was stirred at the altitude for 30 minutes, filtered through a Buchner funnel, spread on kraft paper, and dried at ambient temperature for 24 hours.

乾燥した試料はそれぞれミックスマスター(Mixma
ster )ブレンダーを使用してフタル酸ジオクチル
55重量部と、アドメツクス(Admex)710可塑
剤/安定剤5重量部と、マーク(融rk)275スズ安
定剤1重量部と混合した(樹脂の量は100重量部であ
った)。本例および後述の例における追加の添加物は樹
脂の後処理のだめに添加した、そして可塑剤の吸収には
少しまたは全く影響を与えない。119℃で加熱された
試料はプルリックフイルド粘度力弓700cpsの典型
的なプラスチゾルを生成したけれども、82℃で加熱さ
れた試料は可塑剤を吸収して、典型的なプラスチゾルの
代りに乾燥樹脂を生成した。
Each dried sample was placed in a Mixmaster (Mixma
ster) blender to mix 55 parts by weight of dioctyl phthalate, 5 parts by weight of Admex 710 plasticizer/stabilizer, and 1 part by weight of Mark 275 tin stabilizer (the amount of resin was 100 parts by weight). The additional additives in this and the following examples were added to the resin post-treatment bath and had little or no effect on plasticizer absorption. While the sample heated at 119°C produced a typical plastisol with a pull-through viscosity curve of 700 cps, the sample heated at 82°C absorbed the plasticizer and produced dry resin instead of typical plastisol. generated.

例   2 例1に示した方法’(5PVCホモポリマ一分散樹脂(
Tenneco 1755樹脂)でくり返した。樹脂を
例1で説明したように分離、乾燥した後、各試料は前述
の割合で同一の量のフタル酸ジオクチル、アビメックス
フ10可塑剤/安定剤およびマーク275なるスズ安定
剤で処理した。l19℃で加熱された試料は、プルツク
フィルド粘度35 o o      1゜cps會有
する典型的なプラスチゾルを生成した、一方82℃で加
熱した試料は乾燥固体物質を生成した。
Example 2 The method shown in Example 1' (5PVC homopolymer monodispersed resin (
Tenneco 1755 resin). After the resin was separated and dried as described in Example 1, each sample was treated with the same amounts of dioctyl phthalate, AbimexF 10 plasticizer/stabilizer, and Mark 275 tin stabilizer in the proportions described above. The sample heated at 19°C produced a typical plastisol with a Pulckfield viscosity of 35°C, while the sample heated at 82°C produced a dry solid material.

例   5 本例は、本発明に従って吸収性の形に転化後、樹脂試料
を可塑化する種々の方法を説明する。それぞれの場合に
、175IのTenneco  O565なる分散樹脂
f 1200 mlの水中で加熱し、続いてフタル酸ジ
オクチル26.2 gと、エポキシ化大豆油安定剤16
.99と、o、8yのSymptron 11133な
る安定剤からなる可塑剤混合物にさらした。試料3DQ
除く全ての試料は82℃で30分間加熱した。
Example 5 This example illustrates various methods of plasticizing resin samples after conversion to absorbable form according to the present invention. In each case, 175I of Tenneco O565 dispersion resin f was heated in 1200 ml of water, followed by 26.2 g of dioctyl phthalate and 16 g of epoxidized soybean oil stabilizer.
.. 99, o, 8y, and a stabilizer consisting of Symptron 11133. Sample 3DQ
All samples except one were heated for 30 minutes at 82°C.

試料′5Aは52℃に冷却してブフナー漏斗によって吸
引ろ過し、続いてクラフト紙上に広げて118時間乾燥
した。その試料をミックスマスターの混合機に移し、前
記可塑剤混合物を低速かくはんで5分かけて添加し1次
に得られた混合体をさらに5分間かくはんした。その結
果、乾燥粉末が得られた。
Sample '5A was cooled to 52°C and suction filtered through a Buchner funnel, then spread on Kraft paper and dried for 118 hours. The sample was transferred to a Mixmaster mixer, the plasticizer mixture was added over 5 minutes with low speed stirring, and the resulting mixture was stirred for an additional 5 minutes. As a result, a dry powder was obtained.

試料3Bも32℃に冷却したが、次に可塑剤混合物をか
くはんしながら水混合体へ5分かけて添(1う) 加した。さらにう分間かくはん後、例1に記載したよう
に樹脂をろ過、そして乾燥した。乾燥粉末が得られた。
Sample 3B was also cooled to 32°C, but the plasticizer mixture was then added to the water mixture with stirring over a 5 minute period. After stirring for an additional minute, the resin was filtered and dried as described in Example 1. A dry powder was obtained.

ろ液には未吸収の可塑剤は存在しなかった。その樹脂を
ジエチル・エーテルで抽出したところ、被吸収物質の2
0.5重量%を除去できることがわかった。
There was no unabsorbed plasticizer in the filtrate. When the resin was extracted with diethyl ether, it was found that 2 of the absorbed substances
It was found that 0.5% by weight could be removed.

試料3Cは、可塑剤混合物をそれが82℃にある間に水
に添加したこと以外は試料5Bと実質的に同一の方法で
処理した。同様の樹脂試料が得られた、それから19.
)1重量%の被吸収物質が抽出できた。
Sample 3C was processed in substantially the same manner as Sample 5B except that the plasticizer mixture was added to the water while it was at 82°C. A similar resin sample was obtained from which 19.
) 1% by weight of absorbed substances could be extracted.

試料5Dは、可塑剤の添加前に樹脂を転化することが得
策であって、多分必要であることを示す比較のため調製
した。この試料に対する可塑剤混合物は、室温で未処理
樹脂の水スラリーえ普通の方法で添加した。得られた混
合体はかくはんできず1本発明によって通常得られる微
粉末は生成しなかった。
Sample 5D was prepared for comparison purposes to demonstrate that it is advisable, and perhaps necessary, to convert the resin before adding plasticizer. The plasticizer mixture for this sample was added in a conventional manner to a water slurry of untreated resin at room temperature. The resulting mixture could not be agitated and did not produce the fine powder normally obtained by the present invention.

例   4 本例は、本発明に従って表記の温度で30分間(14) 加熱した種々のプラスチゾル型樹脂の優れた可塑剤吸収
能を示す。可塑剤吸収の測定は、ASTMD−1’+6
6を少し変更した可塑剤吸収試験によってフタル酸ジオ
クチル可塑剤を使用して行った。
Example 4 This example demonstrates the excellent plasticizer absorption capacity of various plastisol-type resins heated for 30 minutes (14) at the indicated temperatures in accordance with the present invention. Measurement of plasticizer absorption is performed using ASTM D-1'+6
A plasticizer absorption test was conducted using a slightly modified version of 6 using the dioctyl phthalate plasticizer.

これらの樹脂は、ルコビル(Lucovyl)樹脂(こ
れは微細な懸濁重合樹脂である)を除いて全て乳化重合
樹脂である。
These resins are all emulsion polymerized resins except Lucovyl resin, which is a fine suspension polymerized resin.

PB1702   PouLenc   H93,38
6,2DR−600Goodyear   H9g、g
   6う03CC−NV2 5tau、ffer  
 H9E!、8  71↓、9Geon  1g+1 
 Goodrich      H9うう     7
381755     Tenneco     H8
2,2IIろFT’C−6ろ37   0cciden
tal    H93う     9070565  
  Tenneco    C82269,1FPC−
63380cci、dental   C82,270
,2例   5 本例は種々の高度で加熱した試料に対する可塑剤吸収に
及ぼす温度の影響を示す。測定は八STMD−1366
を少し変更した可塑剤吸収試験によって行々つだ。全て
の試料に使用した樹脂はTenneco  O565の
共重合体分散樹脂であった。
PB1702 Pou Lenc H93,38
6,2DR-600Goodyear H9g, g
6u03CC-NV2 5tau, ffer
H9E! , 8 71↓, 9Geon 1g+1
Goodrich H9 U 7
381755 Tenneco H8
2,2IIroFT'C-6ro37 0cciden
tal H93U 9070565
Tenneco C82269,1FPC-
63380cci, dental C82,270
, 2 Example 5 This example shows the effect of temperature on plasticizer absorption for samples heated at various altitudes. Measurement is 8 STMD-1366
This was done through a plasticizer absorption test with a slightly modified version. The resin used for all samples was Tenneco O565 copolymer dispersion resin.

そして各試料の加熱は50分間保持された。The heating of each sample was then maintained for 50 minutes.

初対照試料 室温において水で洗浄 1188℃で加熱 60℃で加熱 71.1℃で加熱              768
822℃で加熱             691噴霧
乾燥はボーエン(Bowen )  の円錐型噴霧乾燥
機を使用して、供給速度5.11 Kダ/hr、入口の
空気?晶度177℃、そして出口の空気温度79℃で行
なった。かさ密度は初対照試料および82.2℃で加熱
した試料について測定し、それぞれ0.55 !j7’
crdと0221↓g/crdのかさ密度であった。
First control sample Washed with water at room temperature Heated at 1188°C Heated at 60°C Heated at 71.1°C 768
Heat at 822°C 691 Spray drying using a Bowen conical spray dryer, feed rate 5.11 KDa/hr, inlet air? The crystallinity was 177°C and the outlet air temperature was 79°C. The bulk density was measured for the initial control sample and the sample heated at 82.2°C, and was 0.55! j7'
The bulk density was 0221↓g/crd.

Tenneco 1775  ホモポリ−7−PVC樹
脂の試料について比較試験を行なって、次の結果を得た
Comparative tests were conducted on samples of Tenneco 1775 homopoly-7-PVC resin with the following results.

初対照試料 60℃で加熱 71.1℃で加熱 82.2℃で加熱           ’18.3例
   6 本例はTenneco 0565  共重合体樹脂の被
処理および未処理試料について行なった物理測定値につ
いて説明する。
Initial Control Sample Heated at 60°C Heated at 71.1°C Heated at 82.2°C '18.3 Example 6 This example describes physical measurements performed on treated and untreated samples of Tenneco 0565 copolymer resin. .

(17) 結  果 給体密度(g/CC)     1.う9    1う
9平均粒径(μm)       1.6      
 :1.’4比表面積(m”/g)      2.I
L       2.1累積小孔体積吸収(CC/g)
   0.005    0.003メジアン小孔直径
(μm)   0.0011O,001+ヘリウム置換
法によって測定した給体密度、および水銀嵌入法によっ
て測定したメジアン小孔の直径は変化しなかったが、比
表面積および累積小孔体積吸収(両者共BETガス吸収
法によって測定)は少し減少した。平均位径(重力沈降
法によって測定)は約2倍に増した。全体として、これ
らのデータは吸収の変化は樹脂粒の表面特性の変化のだ
めであることを示唆する。
(17) Results Feed material density (g/CC) 1. U9 1 U9 Average particle size (μm) 1.6
:1. '4 Specific surface area (m"/g) 2.I
L 2.1 Cumulative pore volume absorption (CC/g)
0.005 0.003 Median pore diameter (μm) 0.0011 The feed density measured by the O,001 + helium replacement method and the median pore diameter measured by the mercury intrusion method did not change, but the specific surface area and Cumulative pore volume absorption (both measured by BET gas absorption method) decreased slightly. The mean diameter (measured by gravity sedimentation method) increased approximately twice. Overall, these data suggest that the change in absorption is due to a change in the surface properties of the resin particles.

例   7 本例は、多目的の樹脂試料を本発明に従って処理したと
きに見られた無効果を説明する。使用した樹脂はVyg
en 310 であった、多目的樹脂は220μmの粒
径を有した。1つの試料はそのま(18) \使用し、第2の試料は粉砕機を使用して50μmの平
均粒径に粉砕した。これらの試料および本発明に従って
93.3 ℃において水で処理した試料の可塑剤吸収は
ASTMD−1366を少し変更した方法で測定した、
それらの結果は次の通りである: Vygen 310           +↓11.
5V’Ygen  310(50μm)       
     +1311処理したVygen  510 
          1114.2処理したVygen
 310(50μm)       14118これら
の結果は、この多目的樹脂試料の可塑剤吸収は本発明に
従った水処理によって影響を受けないことを示す。
Example 7 This example illustrates the ineffectiveness observed when a multi-purpose resin sample was treated according to the present invention. The resin used is Vyg
The multi-purpose resin, which was en 310, had a particle size of 220 μm. One sample was used as is (18) and the second sample was ground to an average particle size of 50 μm using a grinder. Plasticizer absorption of these samples and samples treated with water at 93.3° C. according to the present invention was determined using ASTM D-1366 with slight modifications.
The results are as follows: Vygen 310 +↓11.
5V'Ygen 310 (50μm)
+1311 processed Vygen 510
1114.2 treated Vygen
310 (50 μm) 14118 These results indicate that the plasticizer absorption of this multipurpose resin sample is not affected by water treatment according to the present invention.

例   8 本例は、異なる液体媒質および温度を用いて転化する場
合に得られる結果を示す。Tennec。
Example 8 This example shows the results obtained when converting using different liquid media and temperatures. Tennec.

0565の試料はエタノールまたはエタノール/水(1
:1)を使用して下記の表に示した温度にかけた。
Samples of 0565 were prepared using ethanol or ethanol/water (1
:1) to the temperatures shown in the table below.

エタノール/水(1:1)    lI 8g65、5
      63.1↓ エタノール     lIg、 8 65、5     62.9 これらの結果は、転化は水より他の媒質において行なわ
れることを示す。
Ethanol/water (1:1) lI 8g65,5
63.1↓ Ethanol lIg, 8 65, 5 62.9 These results indicate that the conversion takes place in a medium other than water.

本発明は以上の記載および説明のみに限定されなくて、
特許請求の範囲のもくろむ全ての変更を含む。
The present invention is not limited to the above description and explanation;
It includes all contemplated changes in the scope of the claims.

Claims (1)

【特許請求の範囲】 L  (a)  適当なプラスチゾル型ポリ塩化ビニル
樹脂を選択する工程と5 (b)  前記樹脂を流体媒質中において約66℃(1
50F)以下の温度で加熱する工程からなることを特徴
とするプラスチゾル型ポリ塩化ビニル樹脂の可塑剤吸収
能の改善法。 2、適当なプラスチゾル型ポリ塩化ビニル樹脂を流体媒
質中において約66℃(150F)以下の温度で加熱す
ることにより得られることを特徴とする未処理樹脂と比
較して優れた可塑剤吸収能を有する被処理のプラスチゾ
ル型ポリ塩化ビニル樹脂。 う 適当なプラスチゾル型ポリ塩化ビニル樹脂を流体媒
質中において約66℃(15oF)以下の温度で加熱し
、しかる後にその加熱により転化された樹脂を適当な可
塑剤にさらすことによって得られることを特徴とする吸
収した可塑剤からなる被転化プラスチゾル型樹脂。
[Claims] L (a) selecting a suitable plastisol-type polyvinyl chloride resin; and (b) heating said resin in a fluid medium at about 66°C (1
A method for improving the plasticizer absorption ability of a plastisol type polyvinyl chloride resin, which comprises a step of heating at a temperature of 50F) or lower. 2. Superior plasticizer absorption capacity compared to untreated resins obtained by heating suitable plastisol-type polyvinyl chloride resins in a fluid medium at temperatures below about 66°C (150F). Plastisol type polyvinyl chloride resin to be treated. C. Obtained by heating a suitable plastisol-type polyvinyl chloride resin in a fluid medium at a temperature of about 66°C (15oF) or less, and then exposing the resin converted by the heating to a suitable plasticizer. A converted plastisol-type resin consisting of an absorbed plasticizer.
JP3274984A 1983-04-27 1984-02-24 Improvement of plasticizer absorbability of plastisol type polyvinyl chloride and resin obtained thereby Pending JPS59199722A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48904083A 1983-04-27 1983-04-27
US489040 1983-04-27

Publications (1)

Publication Number Publication Date
JPS59199722A true JPS59199722A (en) 1984-11-12

Family

ID=23942161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274984A Pending JPS59199722A (en) 1983-04-27 1984-02-24 Improvement of plasticizer absorbability of plastisol type polyvinyl chloride and resin obtained thereby

Country Status (6)

Country Link
JP (1) JPS59199722A (en)
AU (1) AU565858B2 (en)
DE (1) DE3413680A1 (en)
FR (1) FR2545089B1 (en)
GB (1) GB2138827B (en)
SE (1) SE8402280L (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA465376A (en) * 1950-05-23 Imperial Chemical Industries Limited Polyvinyl compositions
NL68137C (en) * 1947-07-16
GB1323479A (en) * 1969-12-30 1973-07-18 Japanese Geon Co Ltd Process for treating vinyl chloride resins
GB1244583A (en) * 1970-01-29 1971-09-02 Borden Inc Process for improving absorption properties of polyvinyl halides
JPS5123552A (en) * 1974-07-31 1976-02-25 Kuraray Co KAIRYOSARETARYUDOTOKUSEIOJUSURU HORIENKABINIRUKEIJUSHIPEESUTOSEIBUTSU
DE2541013C3 (en) * 1975-09-13 1980-12-18 Chemische Werke Huels Ag, 4370 Marl Process for the aftertreatment of pasteable polymers of vinyl chloride
DE3034983C2 (en) * 1980-09-17 1982-06-16 Chemische Werke Hüls AG, 4370 Marl Process for the thermal aftertreatment of pasteable vinyl chloride polymers

Also Published As

Publication number Publication date
GB2138827B (en) 1987-06-24
GB8410617D0 (en) 1984-05-31
SE8402280D0 (en) 1984-04-26
AU565858B2 (en) 1987-10-01
AU2645284A (en) 1984-11-01
FR2545089A1 (en) 1984-11-02
SE8402280L (en) 1984-10-28
GB2138827A (en) 1984-10-31
DE3413680A1 (en) 1984-10-31
FR2545089B1 (en) 1986-10-24

Similar Documents

Publication Publication Date Title
US3838064A (en) Process for dust control
JPH03501494A (en) Method for agglomerating water-swellable polymers by calcination granulation
US4129513A (en) Electric field responsive fluids
TW362113B (en) Process for manufacturing thermosetting resin particles for powder coating use
US4753974A (en) Dispersible organoclay for unsaturated polyester resins
EP0386868A1 (en) Low-density calcium carbonate agglomerate
US3756979A (en) Method of plasticizing vinyl halide polymers
US2749248A (en) Organophilic titania powders containing a polymerizable ethylenic monomer bound to fractured surfaces thereof and their preparation
US3041238A (en) Method of preparing activated attapulgite
JP2614898B2 (en) Spray-dried emulsion polymer, process for preparing the same, PCT-processing aid comprising the same, and molding material containing the same
JPS59199722A (en) Improvement of plasticizer absorbability of plastisol type polyvinyl chloride and resin obtained thereby
US5349049A (en) Method of production of polyvinyl chloride resin for paste processing
US2978428A (en) Aqueous suspensions of colloidal graphite and their preparation
JPH011731A (en) Spray-dried emulsion polymer, process for producing the same, PCT-processing aid comprising the same, and molding material containing the same
CA1334502C (en) Method of forming stable dispersions of particulate matter
US3996158A (en) Pumicite filter aid
JPH0562126B2 (en)
US5231125A (en) Method of preparation of vinyl chloride resin plastisol
JPS5922905A (en) Manufacture of thermoplastic resin
JPS60120019A (en) Manufacture of polyvinyl chloride polymer particulate matter
US3210272A (en) Method of drying particulate solids
US2509261A (en) Method of filtration
JPH0155647B2 (en)
JP2006160874A (en) Method for producing resin particle
JPS60120726A (en) Recovery of vinyl chloride resin