JPS59199540A - Cubic glass cell for liquid analyzer and its manufacture - Google Patents

Cubic glass cell for liquid analyzer and its manufacture

Info

Publication number
JPS59199540A
JPS59199540A JP7358483A JP7358483A JPS59199540A JP S59199540 A JPS59199540 A JP S59199540A JP 7358483 A JP7358483 A JP 7358483A JP 7358483 A JP7358483 A JP 7358483A JP S59199540 A JPS59199540 A JP S59199540A
Authority
JP
Japan
Prior art keywords
side wall
light
cell
plates
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7358483A
Other languages
Japanese (ja)
Other versions
JPS6246503B2 (en
Inventor
Hajime Fukazawa
一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN SERU KK
Original Assignee
JAPAN SERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN SERU KK filed Critical JAPAN SERU KK
Priority to JP7358483A priority Critical patent/JPS59199540A/en
Publication of JPS59199540A publication Critical patent/JPS59199540A/en
Publication of JPS6246503B2 publication Critical patent/JPS6246503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To provide the titled cell having excellent plane accuracy and light transmittance, free from the occurrence of capillary phenomenon, and obtained by placing a pair of side wall plates opposite to each other, welding a pair of light transmission plates to both ends of the wall plates, and attaching a bottom plate at the lower ends of the plates, wherein each side wall plate is furnished with protrusions having curved or tapered inner face at both ends. CONSTITUTION:The glass cell 10 is composed of the side wall plates 11, the optically polished light-transmission plates 12, and the bottom plate 13 attached to the lower end of the plates. The side wall plate 11 is furnished integrally with the protrusions 14 at the inner face of both ends, and the protrusion 14 has tapered (15) or curved (16) inner face. The pairs of opposing side wall plates 11 and the light-transmission plates 12 are placed parallel to each other, and the side wall plates 11 and the light-transmission plates 12 are integrated with each other by welding. The side wall plate 11 is welded to the inner face of the light-transmission plate 12, and the end face 17 of the light-transmission plate 12 is made to be nearly in the same plane as the outer face 11 of the side wall plate 11. Since the cell is constructed by welding the light- transmission plate, the plane accuracy of the light-transmission plate can be made high, and the light-transmission of the cell can be improved. Furthermore, since the inner face of the corners of the cell has tapered or curved form, the rise of the specimen can be prevented and the cell can be cleaned completely.

Description

【発明の詳細な説明】 この発明は化学分、析装置に使用される角形ガラスセル
に係り、特に水質及び臨床化学における体液等の液体分
析に使用する液体分析装置用の角形ガラスセルに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rectangular glass cell used in a chemical analysis device, and particularly relates to a rectangular glass cell for a liquid analyzer used in liquid analysis such as body fluids in water quality and clinical chemistry. be.

従来、最も多く使用さている液体分析装置には光学セン
サが用いられ、この先学センサによる分光測光センサに
は大別して透過光測光(吸光度)、反射光測光、散乱光
測光などのセンサがある。透過光測光センサは試料の反
応過程若しくは反応結果を光の透過により、その吸収量
を知るものであり、反射光測光センサは光を試料に照射
させ、その反射光を分析器で分析する方法であり、また
、散乱光測光センサは試料が反応によって比濁する量を
光散乱で検出する方法である。これらの分析方法におい
て、試料に光を照射させるのに一般に角形のガラスセル
が使用される。
Conventionally, optical sensors have been used in most commonly used liquid analyzers, and these spectrophotometric sensors can be broadly classified into transmitted light photometry (absorbance), reflected light photometry, and scattered light photometry. Transmitted light photometric sensors measure the reaction process or reaction results of a sample by transmitting light and determine the amount of absorption, while reflected light photometric sensors use a method that irradiates the sample with light and analyzes the reflected light with an analyzer. A scattered light photometric sensor is a method that uses light scattering to detect the amount of turbidity in a sample caused by a reaction. In these analytical methods, a rectangular glass cell is generally used to irradiate the sample with light.

即ち、上記の方法の原理を第1図により説明すると、角
形のガラスセル1内に検体である試料2を入れ、他方に
配設した光源3からの光4がセル内の試料を透過するよ
うに構成し、その透過した光4を検出器5で検出してこ
れを分析する方法であり、試料を光が透過する際の光量
や反射光等を検出するものである。
That is, to explain the principle of the above method using FIG. 1, a sample 2, which is a specimen, is placed in a rectangular glass cell 1, and light 4 from a light source 3 disposed on the other side is transmitted through the sample inside the cell. This is a method in which the transmitted light 4 is detected by a detector 5 and analyzed, and the amount of light, reflected light, etc. when the light passes through the sample is detected.

このように、光学センサによる化学分析装置には角形ガ
ラスセルが用いられている。この角形ガラスセル1は、
第2図に示すように、矢印方向から光が照射されると、
透光板1aと透光板1bとは光の屈折を防止するために
完全に平行でなければならず、しかも、透光板1aと透
光板1bとの距離りは一定でなければならない。また、
透光板1a、1bにはキズ、曇り等があってはならす、
内面は平滑でなければならない。さらに、セル1の幅W
は小型化を図るために透光量を検出することができる最
小限の寸法であることが望ましい。
In this way, a square glass cell is used in a chemical analysis device using an optical sensor. This square glass cell 1 is
As shown in Figure 2, when light is irradiated from the direction of the arrow,
The transparent plate 1a and the transparent plate 1b must be completely parallel to each other to prevent refraction of light, and the distance between the transparent plate 1a and the transparent plate 1b must be constant. Also,
There should be no scratches, cloudiness, etc. on the transparent plates 1a and 1b.
The inner surface must be smooth. Furthermore, the width W of cell 1
In order to achieve miniaturization, it is desirable that the size be the minimum size that allows the amount of transmitted light to be detected.

角形ガラスセル1は上記条件を充足するために、板ガラ
スを貼合せてなる溶着方式により方形状に成形されてお
り、従って、四隅の内面角度rは90度に構成されてい
る。このようなガラスセルは試料である液体を充填する
と四隅部内面は毛細管現象により液体が上昇するために
、試料が安定しない。また、試料を吸引排出させ洗浄す
る場合にも、四隅部は完全な洗浄ができず、残留してし
まうという問題があった。
In order to satisfy the above conditions, the rectangular glass cell 1 is formed into a rectangular shape by a welding method in which plate glasses are bonded together, and therefore, the inner surface angles r of the four corners are configured to be 90 degrees. When such a glass cell is filled with a liquid, which is a sample, the liquid rises on the inner surfaces of the four corners due to capillary action, making the sample unstable. Furthermore, even when the sample is vacuumed and discharged for cleaning, there is a problem in that the four corners cannot be completely cleaned and some residue remains.

この問題を解決するために四隅内面に突起を設けたもの
や、第4図に示すような四隅部の内面をアール面とした
セルが提案されている。しかしながら、前者の場合は毛
細管現象は防止できるものの、試料の充填、排出及び洗
浄等がスムーズに行われない等の問題がある。さらに、
後者の四隅内面をアール面とした一体のセルは、例えば
円形ガラスパイプの内部に四隅外面をアール面とした角
形の治具を挿入し、外部から加熱してガラスに柔軟性を
保持させるとともに、内部を吸引してガラスパイプを治
具の外面形状に密着、変形させ、次いで、冷却して治具
を引き抜き成形する。
In order to solve this problem, a cell in which projections are provided on the inner surfaces of the four corners, and a cell in which the inner surfaces of the four corners are rounded as shown in FIG. 4 have been proposed. However, in the former case, although capillarity can be prevented, there are problems such as sample filling, discharging, cleaning, etc. not being carried out smoothly. moreover,
The latter one-piece cell with rounded inner surfaces at the four corners can be obtained by, for example, inserting a rectangular jig with rounded outer surfaces at the four corners inside a circular glass pipe, heating it from the outside to maintain the flexibility of the glass, and The inside is suctioned to bring the glass pipe into close contact with the external shape of the jig and deform it, and then it is cooled and the jig is drawn and formed.

この製造方法による整形方式の場合には四隅内面をアー
ル面とすることができるから毛細管現象は防止できるが
、内面を光学研摩をすることができないので、平面的精
度が劣り、また、極めて高温で加熱さるためにガラス特
有の失透現象が起ることがあり、この失透現象が起ると
アルカリ溶液等で洗浄した場合表面が白濁して光の透過
率が悪くなり、長期間の使用に耐えることができないと
いう問題がある。
In the case of shaping using this manufacturing method, the inner surfaces of the four corners can be rounded, which prevents capillary phenomena, but the inner surfaces cannot be optically polished, resulting in poor planar precision, and also at extremely high temperatures. Due to heating, a devitrification phenomenon peculiar to glass may occur, and when this devitrification phenomenon occurs, the surface becomes cloudy and light transmittance deteriorates when cleaning with an alkaline solution, etc., resulting in poor long-term use. The problem is that I can't stand it.

以上説明したように、従来の角形ガラスセルにはそれぞ
れ一長一短があり、その解決が望まれていた。
As explained above, each of the conventional rectangular glass cells has advantages and disadvantages, and a solution to these problems has been desired.

この発明はかかる現況に鑑みなされたもので、従来の問
題点を解決するとともに、平面的精度が良く、光透過性
に優れている貼合せタイプの特性を有するとともに、毛
細管現象の起らない角形ガラスセルとその製造方法を提
供せんとするものである。
This invention was made in view of the current situation, and it solves the conventional problems, has the characteristics of a laminated type with good planar precision and excellent light transmittance, and has a rectangular shape that does not cause capillary phenomenon. The present invention aims to provide a glass cell and a method for manufacturing the same.

この発明は上記目的を達成するために、両端部に内面を
アール面またはテーパー面とした突起部を突設した側壁
板を、突起部を内側に向けて平行に対向させ、この側壁
板の両端に別途形成した二枚の透光板を溶着し、下端に
底部を設けてなる断面方形状の角形ガラスセルとしたも
のである。
In order to achieve the above object, the present invention includes a side wall plate having protrusions with rounded or tapered inner surfaces protruding from both ends thereof, which are opposed in parallel with the protrusions facing inward, and both ends of the side wall plate are Two separately formed transparent plates are welded together to form a rectangular glass cell with a rectangular cross section and a bottom at the lower end.

そして、その製造方法はまず、四隅外面をテーパー面ま
たはアール面として柱状治具の外面形状に沿って変形加
工して、四隅内面をアール面またはテーパー面とした中
間セルを成形し、次いで、この中間セルの四隅のアール
面またはテーパー面部を残して対向する側壁板を切り落
して側面を開口させ、さらに、別途形成した透光板を前
記藺口部に溶着することにより製造する構成としたもの
である。
The manufacturing method is as follows: First, the outer surfaces of the four corners are made into tapered or rounded surfaces, and the columnar jig is deformed along the outer surface shape to form an intermediate cell with the inner surfaces of the four corners made into rounded or tapered surfaces. The structure is manufactured by cutting off the opposing side wall plates leaving rounded or tapered surfaces at the four corners of the intermediate cell to open the sides, and then welding a separately formed transparent plate to the openings. be.

以下、この発明を図示する実施態様に基づき詳細に説明
する。
Hereinafter, the present invention will be described in detail based on illustrated embodiments.

第5図及び第6図はこの発明にかかる角形ガラスセルの
平面図を示す。ガラスセル10は側壁板11及び光学研
摩した透光板12からなり、下端に底部13が設けられ
ている。さらに1、側壁板11の両端内面には突起部1
4が一体に形成されてなり、突起部14の内面はテーパ
ー面15またはアール面16とされている。対向する2
枚の側壁板11及び透光板12はそれぞれ互いに平行に
構成されており、側壁板11と透光板12とは溶着によ
り一体化されている。側壁板11は透光板12の内面に
溶着され、透光板12の端面17は側壁板11の外面1
8とほぼ同一面とされている。
FIGS. 5 and 6 show plan views of a rectangular glass cell according to the present invention. The glass cell 10 consists of a side wall plate 11 and an optically polished transparent plate 12, and has a bottom portion 13 at its lower end. Furthermore, 1, there are protrusions 1 on the inner surfaces of both ends of the side wall plate 11.
4 are integrally formed, and the inner surface of the projection 14 is a tapered surface 15 or a rounded surface 16. 2 facing each other
The side wall plates 11 and the transparent plates 12 are arranged parallel to each other, and the side wall plates 11 and the transparent plates 12 are integrated by welding. The side wall plate 11 is welded to the inner surface of the transparent plate 12, and the end surface 17 of the transparent plate 12 is attached to the outer surface 1 of the side wall plate 11.
It is said that it is almost the same surface as 8.

この発明にかかるセル10は上記のように側壁板11の
両端内面にテーパー面15またはアール面16を有する
突起を形成し、この側壁板110両端に光学研摩した透
光板12を溶着することによって、四隅内面をテーパー
面またはアール面としたものである。
The cell 10 according to the present invention is constructed by forming projections having tapered surfaces 15 or rounded surfaces 16 on the inner surfaces of both ends of the side wall plate 11 as described above, and welding optically polished transparent plates 12 to both ends of the side wall plate 110. , the inner surfaces of the four corners are tapered or rounded.

尚、側壁板11両端の突起部は一体成形でもよく、また
突起部を溶着することによって成形してもよい。
Note that the protrusions at both ends of the side wall plate 11 may be integrally molded, or may be formed by welding the protrusions.

次に、上記構成にかかる角形ガラスセルの製造方法を第
7図〜第11図により説明する。
Next, a method for manufacturing a rectangular glass cell having the above structure will be explained with reference to FIGS. 7 to 11.

まず、四隅外面をテーパー面とした治具を用いて、ガラ
スパイプを治具の外面形状に沿って変形加工し、四隅内
面をテーパー面22とした角形パイプ20を成形する(
第7図参照)。このとき、テーパー面22の角度Rは約
45度とする。次いで、第9図に示すように、下端を絞
り加工または底板を貼合せて連結し、底部21を成形す
る。
First, using a jig with tapered outer surfaces at the four corners, a glass pipe is deformed along the outer shape of the jig to form a rectangular pipe 20 with tapered inner surfaces 22 at the four corners.
(See Figure 7). At this time, the angle R of the tapered surface 22 is approximately 45 degrees. Next, as shown in FIG. 9, the lower ends are connected by drawing or by bonding a bottom plate to form the bottom part 21.

このようにして成形した中間セル23を第7図に示すよ
うに、テーパー面22を残して対向する側壁24を切り
落し、端面25を外面26に対し直角にするとともに、
光学研摩仕上げする。次いで、別途成形し、両面を光学
研摩した透光板12を端面25に貼合せて完成させるも
のである。透光板12の貼合せは溶着により一体とする
As shown in FIG. 7, the intermediate cell 23 formed in this way is cut off by cutting off the opposing side walls 24 leaving the tapered surface 22 and making the end surface 25 perpendicular to the outer surface 26.
Finish with optical polishing. Next, a separately molded transparent plate 12, both sides of which have been optically polished, is attached to the end face 25 to complete the process. The transparent plates 12 are bonded together by welding.

さらに、前記中間セル23の製造方法について説明する
と、その1つはガラスパイプ内部を真空とすることによ
って、ガラスパイプを治具外面に密着変形させる方法で
ある。ガラスパイプ30の一端を蓋板31で密封し、四
隅外面をテーパー面とした鉄製治具33を開口部32か
ら挿入し、治具33の上端面34に載置するとともに、
開口部32を治具33の溝35に嵌合して密閉する。治
具33には上端面34に貫通する吸引孔36が穿設され
ている。
Furthermore, to explain the method for manufacturing the intermediate cell 23, one method is to create a vacuum inside the glass pipe and deform the glass pipe in close contact with the outer surface of the jig. One end of the glass pipe 30 is sealed with a cover plate 31, and an iron jig 33 with four outer corners tapered is inserted through the opening 32 and placed on the upper end surface 34 of the jig 33.
The opening 32 is fitted into the groove 35 of the jig 33 and sealed. The jig 33 has a suction hole 36 penetrating through the upper end surface 34.

このようにして治具33に装着したガラスパイプ30を
加熱炉37内に入れて加熱し、ガラスパイプ30が一定
の柔軟性を帯びたところで、吸引孔36から内部の空気
を吸引すれば、真空状態となりガラスパイプは治具33
の外面に密着変形する(第14図参照)。次いで、加熱
炉37内から引き出し、冷却するとガラスより鉄の方が
早く縮小するので治具33の外面には僅かに隙間が生ず
る。
The glass pipe 30 mounted on the jig 33 in this way is placed in the heating furnace 37 and heated, and when the glass pipe 30 has a certain degree of flexibility, if the air inside is sucked through the suction hole 36, a vacuum is created. In this state, the glass pipe is placed in jig 33.
(See Figure 14). Next, when the jig 33 is pulled out from the heating furnace 37 and cooled, a slight gap is created on the outer surface of the jig 33 because iron shrinks faster than glass.

この隙間ができたときに治具33を引き抜けば、蓋板3
1を底部2Iとした中間セル23を成形することができ
る。治具23は冷却したとき、ガラスより早く縮小する
ものであれば鉄に限らない。
If you pull out the jig 33 when this gap is created, the lid plate 3
It is possible to form an intermediate cell 23 with 1 as the bottom portion 2I. The jig 23 is not limited to iron, as long as it shrinks faster than glass when cooled.

このようにして成形した中間セル23は上記のように、
テーパー面22を残して対向する側壁24を切り落して
側面を開口させ、この開口部に透光板12を貼合せれば
よい(第7図、第10図及び第12図参照)。
The intermediate cell 23 formed in this way is as described above.
The opposing side walls 24 may be cut off leaving the tapered surface 22 to open the side surface, and the transparent plate 12 may be bonded to this opening (see FIGS. 7, 10, and 12).

中間セル23の製造方法のその2つは第16図〜第18
図に示すように、四隅外面にテーパー面を形成した治具
40を加熱炉41内に配設する。次に、治具40をガラ
スパイプ30内に挿入し、ガラスパイプ30の下端部を
絞り加工によって閉じるとともに、フック42を形成す
る。さらに、加熱炉41によりガラスパイプ30を加熱
し、フックに錘を掛けてゆっくりと降ろしてくれば、加
熱炉内のパイプは引き延ばされて薄肉となりながら縮径
し、治具40の外面に密着して降下するので、治具の外
面形状に沿って変形加工することができる。
Two methods of manufacturing the intermediate cell 23 are shown in FIGS. 16 to 18.
As shown in the figure, a jig 40 having tapered outer surfaces at its four corners is placed in a heating furnace 41 . Next, the jig 40 is inserted into the glass pipe 30, the lower end of the glass pipe 30 is closed by drawing, and the hook 42 is formed. Furthermore, by heating the glass pipe 30 in the heating furnace 41 and slowly lowering it by hanging a weight on the hook, the pipe in the heating furnace is stretched and becomes thinner while contracting in diameter, and the outer surface of the jig 40 is heated. Since it descends in close contact with the jig, it can be deformed along the external shape of the jig.

これを連続して行うと四隅内面をテーパー面とした角形
パイプ20を成形することができる。
If this is done continuously, a rectangular pipe 20 with tapered inner surfaces at the four corners can be formed.

これを適宜の長さに切断し、一端を絞り加工により閉じ
、または底板を貼合せれば中間セル23を成形すること
ができる。このようにして成形した中間セル23のテー
パー面22を残して対向する側壁24を切り落して側面
を開口させ、この開口部に透光板12を貼合せればよい
(第7図、第10図及び第12図参照) 尚、上記実施態様ではセルの四隅内面をテーパー面とす
る場合について説明したが、四隅内面をアール面とする
場合には治具の四隅外面をテーパー面に代えてアール面
とすればよい。
The intermediate cell 23 can be formed by cutting this into an appropriate length, closing one end by drawing, or bonding a bottom plate. The tapered surface 22 of the intermediate cell 23 formed in this way is left behind, and the opposing side wall 24 is cut off to open the side surface, and the transparent plate 12 is pasted to this opening (FIGS. 7 and 10). (See Figure 12) In the above embodiment, the case where the inner surfaces of the four corners of the cell are tapered surfaces has been described, but when the inner surfaces of the four corners are rounded surfaces, the outer surfaces of the four corners of the jig are replaced with tapered surfaces and rounded surfaces. And it is sufficient.

また、この発明は上記実施態様に限定されるものではな
く、テーパー面またはアール面の大きさは適宜変更する
ことができ、その他この発明の要旨を変更しない限り他
の変形、変更が可能である。
Furthermore, this invention is not limited to the above embodiments, and the size of the tapered surface or rounded surface can be changed as appropriate, and other modifications and changes are possible as long as the gist of this invention is not changed. .

この発明は上記のように構成したので、次のような具体
的効果を奏することができる。
Since this invention is configured as described above, it can produce the following specific effects.

(ti  透光板は別途成形し、これを溶着する構成と
したから、透光板の両面は光学研摩が可能であり、しか
も高温加熱による失透現象を防止できるから、理想的な
光透過性を得ることができる。
(ti) Since the transparent plate is formed separately and welded together, both sides of the transparent plate can be optically polished, and the devitrification phenomenon caused by high-temperature heating can be prevented, resulting in ideal light transmittance. can be obtained.

(2)  セル四隅内面はテーパー面又はアール面とし
たので、毛細管現象により試料が四隅から上昇すること
がなく、また、完全に洗浄できる。
(2) Since the inner surfaces of the four corners of the cell are tapered or rounded, the sample does not rise from the four corners due to capillary action, and can be completely cleaned.

(3)透光板を貼合せる溶着方式であるから、透光板の
平面的精度を保持でき、さらに、平行度等の寸法精度を
正確に成形することができる。
(3) Since the welding method is used to bond the light-transmitting plates, the planar accuracy of the light-transmitting plates can be maintained, and furthermore, the dimensional accuracy such as parallelism can be accurately formed.

(4)セル四隅内面のテーパー面またはアール面は治具
外面形状に沿って変形加工し、この中間セルのテーパー
面またはアール面を残して、対向する側壁を切り落すこ
とによってセル四隅内面のテーパー面またはアール面を
成形することとしたから、テーパー面またはアール面は
容易に成形でき、また、寸法にばらつきがなく高品質の
角形ガラスセルを提供できる。
(4) The tapered or rounded surfaces at the four corners of the cell are deformed along the external shape of the jig, and the tapered or rounded surfaces of the intermediate cell are left and the opposing side walls are cut off. Since a flat or rounded surface is molded, a tapered or rounded surface can be easily molded, and high-quality rectangular glass cells with uniform dimensions can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は角形ガラスセルを使用した光学センサの原理説
明図、第2図は溶着方式により成形した角形ガラスセル
の平面図、第3図は毛細管現象を示す断面図、第4図は
治具を使用した整形方式により成形した角形ガラスセル
の平面図、第5図及び第6図はこの発明にかかる角形ガ
ラスセルの平面図、第7図は中間セルの平面図、第8図
及び第9図はその断面図、第10図は対向する側壁を切
り落した状態の平面図、第11図は同じく斜視図、第1
2図は分解平面図、第13〜第15図は中間セルの製造
方法を示すもので、第13図は平面図、第14図は断面
図、第15図は治具にガラスパイプが密着変形した状態
の横断面図、第16図〜第18図は中間セルの他の製造
方法を示す平面図及び縦断面図である。 lO・・・セル   11・・・側壁板   12・・
・透光板13・・・底部   14・・・突出部   
15・・・テーパー面   16・・・アール面   
20・・・角形パイプ21・・・底部   22・・・
テーパー面   23・・・中間セル   24・・・
側壁   30・・・ガラスパイプ31・・・蓋板  
 32・・・開口部   33・・・柱状治具34・・
・上端面   35・・・溝   36・・・吸引孔3
7・・・加熱炉   40・・・柱状治具   41・
・・加熱炉   42・・・フック 特許出願人株式会社ジャパンセル 代理人弁理士 関 根 光 生 256 第10図 2426 第11図 \ 1 第12図 第13図 \ デ 第15図 第16図     第17図 第18図
Fig. 1 is a diagram explaining the principle of an optical sensor using a rectangular glass cell, Fig. 2 is a plan view of a rectangular glass cell formed by a welding method, Fig. 3 is a cross-sectional view showing the capillary phenomenon, and Fig. 4 is a jig. 5 and 6 are plan views of a rectangular glass cell according to the present invention, and FIG. 7 is a plan view of an intermediate cell, and FIGS. 8 and 9 are The figure is a sectional view, FIG. 10 is a plan view with the opposing side walls cut away, FIG. 11 is a perspective view, and the first
Fig. 2 is an exploded plan view, Figs. 13 to 15 show the method for manufacturing the intermediate cell, Fig. 13 is a plan view, Fig. 14 is a cross-sectional view, and Fig. 15 shows the deformation of the glass pipe in close contact with the jig. 16 to 18 are a plan view and a longitudinal sectional view showing another method of manufacturing the intermediate cell. lO...Cell 11...Side wall plate 12...
・Translucent plate 13...Bottom part 14...Protrusion part
15...Tapered surface 16...Rounded surface
20... Square pipe 21... Bottom 22...
Tapered surface 23...Intermediate cell 24...
Side wall 30... Glass pipe 31... Lid plate
32... Opening 33... Column jig 34...
・Top end surface 35...Groove 36...Suction hole 3
7...Heating furnace 40...Column jig 41.
... Heating furnace 42 ... Hook Patent Applicant Japan Cell Co., Ltd. Representative Patent Attorney Mitsuru Sekine 256 Fig. 10 2426 Fig. 11\ 1 Fig. 12 Fig. 13\ De Fig. 15 Fig. 16 Fig. 17 Figure 18

Claims (1)

【特許請求の範囲】 +11  側壁板の両端部に突起部を突設し、この突起
部の内面はテーパー面またはアール面として側面に連続
しており、この側壁板を突起部を内側に向けて平行に対
向させ、さらに、この側壁板の両端に透光板を溶着して
方形状に形成し、下端に底部を設けてなることを特徴と
する液体分析装置用角形ガラスセル。 (2)  四隅外面をテーパー面またはアール面とした
柱状の治具の外面形状に沿わせて変形加工して角形パイ
プを成形し、次いで、一方の開口部を閉じて中間セルと
なし、次に、この中間セルの四隅内面のテーパー面また
はアール面を残して対向する側壁板を切り落して側面を
開口させ、この開口部に別記成形した透光板を溶着する
ことにより製造することを特徴とする液体分析装置用角
形ガラスセルの製造方法。
[Claims] +11 A protrusion is provided at both ends of the side wall plate, and the inner surface of the protrusion is continuous with the side surface as a tapered or rounded surface, and the side wall plate is placed with the protrusion facing inward. A rectangular glass cell for a liquid analyzer, characterized in that the side wall plates are opposed in parallel and further have a transparent plate welded to both ends to form a rectangular shape, and a bottom is provided at the lower end. (2) A square pipe is formed by deforming the columnar jig with the outer surfaces of the four corners tapered or rounded to fit the outer surface shape, then one opening is closed to form an intermediate cell, and then , is characterized in that it is manufactured by cutting off the opposing side wall plates leaving tapered or rounded surfaces on the inner surfaces of the four corners of the intermediate cell to open the sides, and welding a separately formed transparent plate to the openings. A method for manufacturing a rectangular glass cell for a liquid analyzer.
JP7358483A 1983-04-26 1983-04-26 Cubic glass cell for liquid analyzer and its manufacture Granted JPS59199540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7358483A JPS59199540A (en) 1983-04-26 1983-04-26 Cubic glass cell for liquid analyzer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7358483A JPS59199540A (en) 1983-04-26 1983-04-26 Cubic glass cell for liquid analyzer and its manufacture

Publications (2)

Publication Number Publication Date
JPS59199540A true JPS59199540A (en) 1984-11-12
JPS6246503B2 JPS6246503B2 (en) 1987-10-02

Family

ID=13522497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7358483A Granted JPS59199540A (en) 1983-04-26 1983-04-26 Cubic glass cell for liquid analyzer and its manufacture

Country Status (1)

Country Link
JP (1) JPS59199540A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240551U (en) * 1985-08-28 1987-03-11
JPS6415660A (en) * 1987-07-10 1989-01-19 Hitachi Ltd Analyser equipped with reaction container, reaction container and preparation thereof
JPH02102141A (en) * 1988-10-12 1990-04-13 Yamagata Shinetsu Sekiei:Kk Rectangular tank made of quartz glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6240551U (en) * 1985-08-28 1987-03-11
JPH0447653Y2 (en) * 1985-08-28 1992-11-10
JPS6415660A (en) * 1987-07-10 1989-01-19 Hitachi Ltd Analyser equipped with reaction container, reaction container and preparation thereof
JPH02102141A (en) * 1988-10-12 1990-04-13 Yamagata Shinetsu Sekiei:Kk Rectangular tank made of quartz glass

Also Published As

Publication number Publication date
JPS6246503B2 (en) 1987-10-02

Similar Documents

Publication Publication Date Title
US7604775B2 (en) Fluid collecting and monitoring device
US3751173A (en) Flowthrough cuvette
US5538691A (en) Reaction vessel for optical measurement
EP0821784A1 (en) Capillary microcuvette
EA020413B1 (en) Cuvette for analyzing liquid
US4291981A (en) Reference scatter for use in the correction of scattering photometers
US4332471A (en) Cuvette with tub-shaped bottom for the optical examination of liquids
JPH0789097B2 (en) Wave guide as an optical probe for spectroscopic analysis
US5569607A (en) Slide for the microscopic evaluation of liquid specimens
US3705000A (en) Liquid sample holder for a photometer
JPH0697307B2 (en) Mounting plate for microscopy
JPS59199540A (en) Cubic glass cell for liquid analyzer and its manufacture
JP3309140B2 (en) Measurement chamber with fluorescent sensor element
US5035494A (en) Molded plastic article assembly means
ES2270990T3 (en) IN VITRO DIAGNOSTIC TEST CHAMBER OPTICAL AND FLUIDLY IMPROVED.
USRE33826E (en) Microscope inspection slide
JPS6060539A (en) Production of square glass cell for liquid analyzing device
JPS60166843A (en) Glass cell for liquid analyzer and preparation thereof
JP6091306B2 (en) Surface plasmon resonance sensor chip fixing holder
JP2579675Y2 (en) Cell for spectrophotometer
JPH089632Y2 (en) Measuring container for infrared moisture analyzer
JPH0230778Y2 (en)
CN219417207U (en) Cuvette plug-in for measuring net absorbance of solution
CN213544307U (en) Liquid specific gravity testing device
WO2021159457A1 (en) Container for liquid analysis