JPS59198876A - Power sources operated in parallel - Google Patents

Power sources operated in parallel

Info

Publication number
JPS59198876A
JPS59198876A JP58070639A JP7063983A JPS59198876A JP S59198876 A JPS59198876 A JP S59198876A JP 58070639 A JP58070639 A JP 58070639A JP 7063983 A JP7063983 A JP 7063983A JP S59198876 A JPS59198876 A JP S59198876A
Authority
JP
Japan
Prior art keywords
phase
inverter
load
parallel
wired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58070639A
Other languages
Japanese (ja)
Inventor
Fumio Yasutomi
文夫 安富
Kazufumi Ushijima
牛嶋 和文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58070639A priority Critical patent/JPS59198876A/en
Publication of JPS59198876A publication Critical patent/JPS59198876A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To simplify the configuration of a power sources by interposing a transformer having single phase 3-wired coils and single phase 2-wired coils when an inverter which employs a solar battery as a power source and a single phase 3-wired commercial power source are operated in parallel with each other. CONSTITUTION:A single phase 3-wired commercial power source is connected to the primary side of a transformer 13 having a single phase 3-wired primary coils 13a and single phase 2-wired secondary coils 13b, an inverter 14 which employs a solar battery as a power source are connected to the secondary side, a solar battery system is connected to the primary side of a transformer 15 having single phase 2-wired primary coil 15a and single phase 3-wired secondary coils 15b, loads 16, 17 are connected to the secondary side to operate the solar battery and the commercial power source in parallel. Accordingly, even if the load is single phase 3-wired type, the output voltage of the inverter 14 is controlled to allow the phase of the current to coincide with the phase of the load current, thereby preventing the occurrence of a cross current and the decrease in the efficiency of the solar battery.

Description

【発明の詳細な説明】 この発明は、太陽電池を電源とするインバータ系統およ
び商用電源系統を並列接続し、前記両系統を運転して負
荷に給電する並列運転による電源装置に関し、構成を簡
単にするとともに、横流の発生および太陽電池の効率の
低下を容易に防止できるようにすることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power supply device using parallel operation in which an inverter system using a solar cell as a power source and a commercial power system are connected in parallel, and both systems are operated to supply power to a load, and the configuration can be simplified. At the same time, it is an object of the present invention to easily prevent the occurrence of cross currents and a decrease in the efficiency of solar cells.

一般に非常用電源としてではなく省エネルギーを図るた
めに自家発電設備を設け、前記自家発電設備による電力
により自家消費電力の大部分を1かなうことが行なわれ
ており、従来、前記自家発電設備として太陽電池による
発電設備を利用することが行なわれている。
In general, in-house power generation equipment is installed not as an emergency power source but to save energy, and most of the in-house power consumption is met by the electricity from the in-house power generation equipment. Conventionally, solar cells have been used as the in-house power generation equipment. The use of power generation equipment is being carried out.

このとき、前記の太陽電池発電設備では、昼夜あるいは
季節の日射量の変動により、1)ij記太陽電池の発生
電力が大きく変動するだめ、負荷に安定して電力を供給
するだめの安定器が必要になるとともに、照明等の交流
負荷に電力を供給するために、前記太陽電池の直流電力
を交流電力に変換するインバータが必要になる。
At this time, in the above-mentioned solar cell power generation equipment, 1) the power generated by the solar cells varies greatly due to fluctuations in the amount of solar radiation during the day and night or in the seasons, so a ballast is installed to stably supply power to the load. In addition, in order to supply power to AC loads such as lighting, an inverter is required to convert the DC power of the solar cell into AC power.

そして、太陽電池とインバータとを接続して構成される
インバータ系統のみにより負荷に電力を供給する場合、
前記したように、前記太陽電池の発生電力の変動を吸収
する鉛蓄電池等のノ〈゛ノファ用の蓄電池を太陽電池に
並設しなけれはならないが、前記蓄電池が複数個必要と
なり、設置場所が大きくなるとともに、保守に手間がか
かるなどの問題が生じる。
When power is supplied to the load only by an inverter system that connects solar cells and inverters,
As mentioned above, it is necessary to install a storage battery such as a lead-acid battery in parallel with the solar cell to absorb fluctuations in the power generated by the solar cell, but this requires multiple storage batteries and the installation location is limited. As the size increases, problems arise, such as the need for maintenance.

まだ、前記インバータ系統のみにより負荷に電力を供給
する場合、負荷の総需要電力か前記インバータ系統によ
る供給電力を上回るようになると、電力不足が生じ、と
くに冬期では太陽電池の発生電力が夏期などに比べて大
幅に低下するため、前記電力不足の状態が長期間続くこ
とになり、不足する電力を何らかの手段によりバックア
ップすることが必要となる。
If power is still supplied to the load only by the inverter system, if the total power demand of the load exceeds the power supplied by the inverter system, a power shortage will occur, especially in the winter, and the power generated by the solar cells will be lower than in the summer. Since the amount of power is significantly reduced compared to the current amount, the power shortage state will continue for a long time, and it will be necessary to back up the insufficient power by some means.

そこで、前記インバータ系統に商用電源系統を並列に接
続して運転する所謂並列運転による電源装置により、負
荷に給電することが行なわれており、前記負荷に対す乞
前記両系統の適当な電力分担の割合を設定することによ
り、前記バッファ用の蓄電池を使用することもなく、前
記太陽電池の発生電力を最大限取り出して前記太陽電池
を高効率運転させることができるとともに、不足電力を
前記商用電源系統により補って前記負荷を正常に動作さ
せることかで・きる。
Therefore, power is supplied to the load using a so-called parallel-operated power supply device that connects and operates a commercial power system in parallel to the inverter system. By setting the ratio, it is possible to extract the maximum amount of power generated by the solar cell and operate the solar cell with high efficiency without using the buffer storage battery, and at the same time, the insufficient power can be transferred to the commercial power supply system. The load can be operated normally by compensating for this.

このとき、前記電源装置では、両系統が直接接電源系統
に電力が流れる所謂横流が発生しないように留意しなけ
ればならない。
At this time, in the power supply device, care must be taken not to generate a so-called cross current in which power flows from both systems to the directly connected power supply system.

いま、第1図は前記並列運転による′電源装置の基本回
路を示し、インバータ系統のインバータ出力電圧をEl
、内部インピーダンスをZlで表わし、商用電源系統の
線間電圧をEc 、電源インピータンスをZcで表わし
ており、前記両系統が並列にインピーダンスZzの負荷
に接続されている。ここで、前記負荷の両端電圧をEl
とし、インバータ系統から負荷へのインバータ電流をl
l、商用電源系統から負荷への商用電流をIc 、負荷
電流を11!(=1i−1−Ic)とする。
Now, Figure 1 shows the basic circuit of the power supply device using the parallel operation, and the inverter output voltage of the inverter system is
, the internal impedance is represented by Zl, the line voltage of the commercial power supply system is represented by Ec, and the power supply impedance is represented by Zc, and both systems are connected in parallel to a load of impedance Zz. Here, the voltage across the load is El
and the inverter current from the inverter system to the load is l
l, the commercial current from the commercial power supply system to the load is Ic, and the load current is 11! (=1i-1-Ic).

そして、図示されていないか、前記インバータ系統には
高調波抑制用フィルターか設けられているため、インピ
ーダンスziは比較的太きくなシ、前記商用電源系統の
インピーダンスZcか小さいことから、前記各インピー
ダンスZi、Zc、Zgの間には、Zc (Zi 、 
Zc (Zl 〕関係カ成す立チ、i圧EiとEcとの
間には、El ’:: Ecの関係か成り立つだめ、イ
ンバータ電流Iiは近似的に、 Ii = (Ei −−Ec)/Zi と表わされ、前記電圧Ei 、Ec 、Elおよび電流
■IIc、Ifをベクトル図で表わすと、前記負荷が誘
導性であれば、第2図に示すようになる。
Since the inverter system is provided with a harmonic suppression filter (not shown), the impedance zi is not relatively large, and the impedance Zc of the commercial power system is small, so each of the impedances Between Zi, Zc, and Zg, there is Zc (Zi,
If the Zc (Zl) relationship holds true, the relationship El'::Ec must hold between the i pressures Ei and Ec, and the inverter current Ii is approximately as follows: Ii = (Ei −-Ec)/Zi When the voltages Ei, Ec, El and the currents IIc and If are expressed as a vector diagram, if the load is inductive, it becomes as shown in FIG.

したがって、前記両系統の適切な電力分担を行ない横流
を防止するためには、インバータ出方電圧Elの絶対値
9位相と線間電圧Ecの絶対値9位相とをそれぞh一致
させるだけでは不十分でありインバータ電流■1と負荷
電流J4との位相を一致させるとともにIi (IJと
なるように、前記インバータ系統の出力電圧Eiの太き
今および位相を制御する必要がある。
Therefore, in order to perform appropriate power sharing between the two systems and prevent cross current, it is not enough to simply match the absolute value 9 phases of the inverter output voltage El and the absolute value 9 phases of the line voltage Ec. It is necessary to control the amplitude and phase of the output voltage Ei of the inverter system so that the phase of the inverter current 1 and the load current J4 coincides with Ii (IJ).

そこで、従来、第3図に示すような並列運転による電源
装置が実施されている。
Therefore, a power supply device that operates in parallel as shown in FIG. 3 has conventionally been implemented.

同図において、(1)は太陽電池、(2)は入力端子が
太陽電池(1)の出力端子に接続され太陽電池(1)お
よび後述の制御部とともにインバー4夕系統(3)を構
成するインバータ、(4)はインバータ系統(3)に並
列に接続された商用電源系統、(5)は両系統+31 
、 +41に並列に設けられた負荷、(6)はインバー
タ系統(3)の出力ライン(7)に設けられインバータ
電流を取り出す第1変流器、(8)は負荷ライン(9)
に設けられ負荷電流を取り出す第2変流器、QO、(1
11は入力端子かそれぞれ両度流器(6) 、 (81
に接続され1)4j記インバータ電流および負荷電流を
検出して検出偏荷を出力する2個の電流検出器、0渇は
入力端子が両検出器(]0 。
In the figure, (1) is a solar cell, and (2) is an inverter system (3) whose input terminal is connected to the output terminal of the solar cell (1) and the solar cell (1) and a control unit (described later). Inverter, (4) is a commercial power supply system connected in parallel to inverter system (3), (5) is both systems + 31
, +41 is the load provided in parallel, (6) is the first current transformer provided on the output line (7) of the inverter system (3) and takes out the inverter current, (8) is the load line (9)
A second current transformer, QO, (1
11 are input terminals or both flow devices (6) and (81
1) Two current detectors that detect the inverter current and load current and output the detected bias.

(11)の出力端子に接続されだPLL回路等からなる
制御部であり、前記雨検出信号によりインバータ(2)
((制御信号を出力してインバータ(2)の出力を制御
するようになっており、前記したように、制御部(1り
によりインバータ(2)の出力電圧の大きさおよび位相
が制御され、前記インバータ電流の位相と負荷電流の位
相とが一致するとともに、インバータ電流が負荷電流よ
りも小さく制御され、横流の発生が防止される。
(11) is a control unit consisting of a PLL circuit, etc. connected to the output terminal of the inverter (2).
((It is designed to output a control signal to control the output of the inverter (2), and as described above, the magnitude and phase of the output voltage of the inverter (2) are controlled by the control section (1), The phase of the inverter current matches the phase of the load current, the inverter current is controlled to be smaller than the load current, and cross current is prevented from occurring.

ところで、前記したことは、所謂単相2線式の商用電源
系統とインバータ系統とを並設する場合であり、単相3
線式の商用電源系統とインパーク系統とを並設して単相
3線用負荷を運転・するには、前記の第3図に示すよう
な電源装置をその一!ま適用することができす、従来、
第4図ないし第6図に示すような電源装置が実施されて
いる。
By the way, the above is a case where a so-called single-phase two-wire commercial power supply system and an inverter system are installed in parallel, and a single-phase three-wire commercial power system and an inverter system are installed in parallel.
To operate a single-phase 3-wire load by installing a wire-type commercial power supply system and an impark system in parallel, the power supply device shown in Figure 3 above is one of the best ways to operate a single-phase 3-wire load. It can be applied conventionally,
A power supply device as shown in FIGS. 4 to 6 has been implemented.

各図において、(U) 、 (0) 、 (V)は単相
3線式の商用電源系統の線路、(Zu) 、(Zv)は
前記商用電源系統の内部インピーダンス、<ze)、(
zt;>’は単相3線用の負荷、(IV) 、 (IV
)’は太陽電池を電源とするインバータ系統、(Zi)
、(Zi)’ u イ:/ バー タ系統(IV) 。
In each figure, (U), (0), and (V) are the lines of a single-phase three-wire commercial power system, (Zu) and (Zv) are the internal impedances of the commercial power system, and <ze), (
zt;>' is the load for single-phase 3-wire, (IV), (IV
)' is an inverter system powered by solar cells, (Zi)
, (Zi)'u i:/Vata lineage (IV).

(IV)’の内部インピーダンスである。(IV)' internal impedance.

そして、第4図の場合、線路(U) 、 (0)間およ
び線路(0)、(V) 間に負荷(Zl)、(ZJ)’
カラミツレ接続され、両負荷(zl)、<zi>’の直
列回路および前記商用電源系統に並列にインバータ系統
(IV)が接続されて構成され、第5図の場合、前記の
第4図の回路の一方の負荷(zl)にのみ並列にインバ
ータ系統(■ηが接続されて構成されてお9、第6図の
場合、前記の第4図の回路の両負荷(zlり、(zl)
′にそれぞれ並列に2個のインバータ(IV) 、 (
IV)’が接続されて構成されている。
In the case of Fig. 4, loads (Zl) and (ZJ)' are applied between the lines (U) and (0) and between the lines (0) and (V).
In the case of FIG. 5, the circuit of FIG. In the case of Fig. 6, the inverter system (■η) is connected in parallel to only one load (zl) of the circuit shown in Fig. 4.
′ in parallel with two inverters (IV), (
IV)' are connected.

しかし、第4図の場合、両負荷(zl)、(zz)’を
流れる電流Iu、ivの位相が異なるだめ、両頁荷電流
■u。
However, in the case of FIG. 4, the phases of the currents Iu and iv flowing through the loads (zl) and (zz)' are different, so that the load current ■u.

Ivの位相とインバータ電流Iiの位相とを一致さ□せ
ることができす、横流が発生し、第5図の場合、一方の
負荷cze)を流れる電流の位相とインノく一タ電流の
位相とを一致させることかできるため、横流の発生を防
止することはできるが、インノく一タ系統(IV)の電
力が一方の負荷(Zl)の需要電力を上回ったときには
、余剰電力を商用電源系統側に回生ずることができない
ために、インバ−タ系統(IV)の電源である太陽電池
の発生電力を低減しなければならず、前記太陽電池の効
率の低下を招くという欠点がある。
It is possible to match the phase of Iv and the phase of the inverter current Ii.A cross current occurs, and in the case of Fig. 5, the phase of the current flowing through one load (cze) and the phase of the inverter current Although it is possible to prevent the occurrence of cross current by matching the power supply voltages, when the power of the power grid (IV) exceeds the power demand of one load (Zl), the surplus power is transferred to the commercial power grid. Since the power cannot be regenerated to the side, the power generated by the solar cells that are the power source of the inverter system (IV) must be reduced, which has the disadvantage of causing a decrease in the efficiency of the solar cells.

さらに、第6図の場合、横流の発生やインノ<−夕系統
(rv) ; (iv)’の電源である太陽電池の効率
の低−下を招くことは防止できる反面、インノ〈〜り系
統を2個必要とするため、高価かつ構成か複雑になると
いう欠点がある。
Furthermore, in the case of Fig. 6, while it is possible to prevent the occurrence of cross currents and a decrease in the efficiency of the solar cells that are the power source of Since two are required, the disadvantage is that it is expensive and has a complicated structure.

この発明は、前記の諸点に留意してなされたものであり
、太陽電池を電源とするインノ〈−夕系統および単相3
線式の商用電源系統を並列運転して負荷に給電する並列
運転による電源装置において、単相3線用の1次コイル
および単相2線用の2次コイルを備えたトランスを設け
、前記1次コイルに前記商用電源系統を接続するととも
に、前記2次コイルに前記インバータ系統および前記負
荷からなる並列回路を接続したことを特徴とする並列運
転傾よる電源装置を提供するものである。
This invention has been made with the above-mentioned points in mind, and is intended to be applied to the solar power system and the single-phase three-way system, which uses solar cells as a power source.
In a power supply device for parallel operation in which a wire-type commercial power supply system is operated in parallel to supply power to a load, a transformer having a primary coil for single-phase 3-wire and a secondary coil for single-phase 2-wire is provided, The present invention provides a power supply device capable of parallel operation, characterized in that the commercial power supply system is connected to the secondary coil, and a parallel circuit consisting of the inverter system and the load is connected to the secondary coil.

したがって、この発明の並列運転による電源装置による
と、単相3線式の商用電源系統と単相2線式のインバー
タ系統とを並列に接続するトランスを設けたことにより
、構成を簡単にすることができるとともに、前記商用電
源系統および負荷が単相3線式であっても、前記インバ
ータ系統の出力電圧を制御してインバータ電流の位相と
負荷電流の位相とを容易に一致させることができ、構成
を簡単にすることができるとともに、横流の発生および
前記インバータ系統の電源である太陽電池の効率の低下
を容易に防止することができる。
Therefore, according to the parallel operation power supply device of the present invention, the configuration can be simplified by providing a transformer that connects the single-phase three-wire commercial power system and the single-phase two-wire inverter system in parallel. In addition, even if the commercial power supply system and the load are single-phase three-wire type, the output voltage of the inverter system can be controlled to easily match the phase of the inverter current and the phase of the load current, The configuration can be simplified, and the generation of cross currents and a decrease in the efficiency of the solar cells that are the power source of the inverter system can be easily prevented.

つきに、この発明を、その実施例を示した第7図以下の
図面とともに詳細に説明する。
At this point, this invention will be explained in detail with reference to the drawings from FIG. 7 showing an embodiment thereof.

ます、1実施例を示した第7図について説明する。First, FIG. 7 showing one embodiment will be explained.

同図において、(1]は単相3線用の1次コイル(13
a)および単相2線用の2次コイル(+3b)士を備え
だ巻数比1:nの第1トランスであり、1次コイル(]
 3a)の両端および中間タップがそれぞれ単相3線式
の商用電源系統(図示せず)の線路(U)7(V) 、
 (0)に接続されている。(Zu)、(Zv)は前記
商用電源系統の内部インピーダンス、(]4)は2次コ
イル(+3b)に並列に接続された太陽電池(図示せず
)を電源とするインバータ系統、(Zi)はインバータ
系統0滲の内部インピーダンス、00は単相2線用のス
(1,1の2次コイル(13b)の両端に接続された巻
数比nilの第2トランス、(lie 、 Qカは単相
3線用の負荷であり、それぞれ第2トランス0均の2次
コイル(+5b)の一端と中間タップとの間および前記
中間タップと2次コイル(15b)の他端との間に設け
られ、第2トランスα句を介してインバータ系統(14
)および前記商用電源系統に並列に接続されている。
In the same figure, (1) is a single-phase three-wire primary coil (13
a) and a secondary coil (+3b) for single-phase two-wire use.It is a first transformer with a turns ratio of 1:n, and a primary coil (+3b).
3a) Both ends and center taps are each a line (U) 7 (V) of a single-phase three-wire commercial power system (not shown),
(0). (Zu) and (Zv) are the internal impedances of the commercial power supply system, (]4) is an inverter system whose power source is a solar cell (not shown) connected in parallel to the secondary coil (+3b), and (Zi) is the internal impedance of the inverter system 0, 00 is the second transformer with a turns ratio of nil connected to both ends of the secondary coil (13b) of single-phase two-wire It is a load for phase 3 wires, and is provided between one end of the secondary coil (+5b) of the second transformer and the intermediate tap, and between the intermediate tap and the other end of the secondary coil (15b). , the inverter system (14
) and are connected in parallel to the commercial power supply system.

このとき、前記両系統→の電力分担の割合は、第1トラ
ンス0]の2次コイル(13b)側における両系統書の
電力に基ついて決定することができ、電力分担の割合を
容易に決定することができ、インバータ系統04)から
のインバータ電流の位相と負荷(zIり、(zIり′を
それぞれ流れる電流の位相とを容易に一致させること力
iできるとともに、インバータ電流を容易に負荷電流よ
りも小さく制御することができる。
At this time, the power sharing ratio between the two systems can be determined based on the power of both systems on the secondary coil (13b) side of the first transformer 0], and the power sharing ratio can be easily determined. It is possible to easily match the phase of the inverter current from the inverter system 04) and the phase of the current flowing through the load (zI and (zI), respectively), and it is also possible to easily adjust the inverter current to the load current. can be controlled to be smaller than

したがって、前記実施例によると、単相3線式の商用電
源系統と負荷α! 、 Q71および単相2線式のイン
バータ系統0褐とを並列に接続するトランスOa。
Therefore, according to the embodiment, the single-phase three-wire commercial power supply system and the load α! , a transformer Oa that connects Q71 and a single-phase two-wire inverter system 0 brown in parallel.

θυを設けたことにより、構成を簡単にすることができ
るとともに、前記商用電源系統および負荷QQ。
By providing θυ, the configuration can be simplified, and the commercial power supply system and load QQ can be simplified.

qηが単相3線式であっても、インバータ系統(1沁の
出力電圧を制御してインバータ電流の位相と負荷電流の
位相とを容易に一致させることができ、構成を簡単にす
ることができるとともに、横流の発生およびインバータ
系統0蜀の電源である太陽電池なお、第8図に示すよう
に、単相2線式の負荷の場合、第1トランス(11の2
次コイル(+3b)の両端に単相2線式負荷08)およ
びインバータ系統(14)の並列回路を接続することに
より、簡単な構成の装置により容易に横流の発生および
インバータ系統04)の電源である太陽電池の効率の低
下を防止する。
Even if qη is a single-phase three-wire system, the inverter system (one centimeter output voltage can be controlled to easily match the phase of the inverter current and the phase of the load current, simplifying the configuration. In addition, as shown in Figure 8, in the case of a single-phase two-wire type load, the first transformer (11-2
By connecting the single-phase two-wire load 08) and the parallel circuit of the inverter system (14) to both ends of the next coil (+3b), a simple device can easily generate a cross current and control the power supply of the inverter system 04). Preventing a decline in the efficiency of certain solar cells.

ことができる。be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はインバータ系統と商用′電源系統との並列運転
による電源装置の基本回路を示す図、第2図は第1図の
電源装置における電圧、電流ベクトル図、第3図は商用
電源系統が単相2線式の場合の従来の並列運転による電
源装置の結線図、第4図ないし第6図はそれぞれ商用電
源系統が単相3線式の場合の従来の並列運転による電源
装置の結線図、第7図おまひ第8図はそれぞれこの発明
の並列運転による電源装置の実施例の結線図である。 α4・・・第1トランス、(14)・インバータ系統、
06j。 0η、08)・・・負荷。
Figure 1 is a diagram showing the basic circuit of a power supply system with parallel operation of an inverter system and a commercial power supply system, Figure 2 is a voltage and current vector diagram for the power supply system in Figure 1, and Figure 3 is a diagram showing the power supply system in parallel operation of an inverter system and a commercial power supply system. A wiring diagram of a power supply device using conventional parallel operation in the case of a single-phase two-wire system, and Figures 4 to 6 are wiring diagrams of a power supply device using conventional parallel operation when the commercial power supply system is a single-phase three-wire system, respectively. , FIG. 7, and FIG. 8 are wiring diagrams of embodiments of the power supply device operating in parallel according to the present invention. α4...first transformer, (14), inverter system,
06j. 0η, 08)...Load.

Claims (1)

【特許請求の範囲】[Claims] ■ 太陽電池を電源とするインバータ系統および単相3
線式の商用電源系統を並列運転して負荷に給電する並列
運転による電源装置において、単相3線用の1次コイル
および単相2線用の2次コイルを備えたトランスを設け
、前記1次コイルに前記商用電源系統を接続するととも
に、前記2次コイルに前記インバータ系統および前記負
荷からなる並列回路を接続したことを特徴とする並列運
転による電源装置。
■ Inverter system and single-phase 3 power source powered by solar cells
In a power supply device for parallel operation in which a wire-type commercial power supply system is operated in parallel to supply power to a load, a transformer having a primary coil for single-phase 3-wire and a secondary coil for single-phase 2-wire is provided, A power supply device operating in parallel, characterized in that the commercial power supply system is connected to the secondary coil, and a parallel circuit consisting of the inverter system and the load is connected to the secondary coil.
JP58070639A 1983-04-20 1983-04-20 Power sources operated in parallel Pending JPS59198876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070639A JPS59198876A (en) 1983-04-20 1983-04-20 Power sources operated in parallel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070639A JPS59198876A (en) 1983-04-20 1983-04-20 Power sources operated in parallel

Publications (1)

Publication Number Publication Date
JPS59198876A true JPS59198876A (en) 1984-11-10

Family

ID=13437415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070639A Pending JPS59198876A (en) 1983-04-20 1983-04-20 Power sources operated in parallel

Country Status (1)

Country Link
JP (1) JPS59198876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133556A (en) * 1992-10-19 1994-05-13 Canon Inc Inverter for system interconnection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549747A (en) * 1977-06-25 1979-01-24 Mitsubishi Electric Corp Non-stopping power source unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549747A (en) * 1977-06-25 1979-01-24 Mitsubishi Electric Corp Non-stopping power source unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133556A (en) * 1992-10-19 1994-05-13 Canon Inc Inverter for system interconnection
US5548504A (en) * 1992-10-19 1996-08-20 Canon Kabushiki Kaisha Power line linking apparatus for linking a power generator to a commercial power line

Similar Documents

Publication Publication Date Title
US7224131B2 (en) High efficiency lighting system
US11050260B2 (en) Smart main electrical panel for energy generation systems
Nayar et al. A grid-interactive photovoltaic uninterruptible power supply system using battery storage and a back up diesel generator
EP2224571B1 (en) Power supply system
US9711967B1 (en) Off grid backup inverter automatic transfer switch
JP5342598B2 (en) Power converter
US20110005567A1 (en) Modular solar panel system
US20160322860A1 (en) Power distribution system and electrical system
JP2002204531A (en) Ac-interconnecting device and control method thereof
CN112350588B (en) Power supply device applied to solid-state transformer structure and three-phase power supply system
WO2011039599A1 (en) Power distribution system
JP3781977B2 (en) Distributed power supply network
JP2019118247A (en) Charging control system, power supply system, charging control method, and program
CN108879783A (en) A kind of electric power spring energy source consumption system
JP2013013174A (en) Power supply system
JPS59198876A (en) Power sources operated in parallel
JP7373194B2 (en) power supply system
JP2003116224A (en) Photovoltaic generation system, power converter thereof, and control method therefor
KR20200079606A (en) Control system of DC Uninterruptible Power Supply for load distribution
JP2000166124A (en) Auxiliary power unit
JP2001136755A (en) Inverter protection device
JPH0946912A (en) Distributed power unit
KR102718823B1 (en) Grid connected inverter for supporting upinterruptible power supply mode
US20230029981A1 (en) Auto-Configurable Energy Storage System
CN219918401U (en) Overvoltage and undervoltage protector and energy storage system