JPS59198346A - Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method - Google Patents

Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method

Info

Publication number
JPS59198346A
JPS59198346A JP7300583A JP7300583A JPS59198346A JP S59198346 A JPS59198346 A JP S59198346A JP 7300583 A JP7300583 A JP 7300583A JP 7300583 A JP7300583 A JP 7300583A JP S59198346 A JPS59198346 A JP S59198346A
Authority
JP
Japan
Prior art keywords
filter
solution
precipitate
hydrogen fluoride
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7300583A
Other languages
Japanese (ja)
Inventor
Masumi Sato
真澄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7300583A priority Critical patent/JPS59198346A/en
Publication of JPS59198346A publication Critical patent/JPS59198346A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To perform the quantitative analysis of Si in BaTiO with good accuracy within a short time, by a method wherein a specimen BeTiO3 and concn. hydrochloric acid are added to a pressure crucible and heated therein to separately take a hydrochloric acid solution and a precipitate while the precipitate is dissolved in an HF solution and Si in both solutions is measured by a plasma light emitting spectroscopic method. CONSTITUTION:A predetermined amount of conc. hydrochloric acid is added to a definite amount of a specimen BaTiO3 and the resulting mixture is put in a Teflon beaker 2 which is, in turn, introduced into a stainless container 3 while a Teflon lid 4 is applied and the beaker 2 is hermetically sealed by a screw 5 to dissolve said specimen at 150 deg.C for 6hr. After cooling, the obtained solution is filtered under vacuum by using a Teflon filter for a liquid chromatograph and a funnel and Si in the filtrate is subjected to plasma light emitting spectroscopic analysis. The precipitate, the funnel and the filter are dissolved and washed in a polyethylene beaker by an HF solution while the HF solution is filtered by the aforementioned Teflon filter 7 to be combined with the washing liquid. After H3BO4 is added to the MF solution to mask HF as BF<->, Si in this solution is subjected to plasma light emitting spectroscopic analysis. By this method, the mixing of Si from an analytical instrument is eliminated and an accurate Si- amount is subjected to quantitative analysis from the sum of Si in both liquids of the hydrochloric acid solution and the HF solution.

Description

【発明の詳細な説明】 本発明はプラズマ発光分光法によるチタン酸バリウム中
のケイ素の定量分析方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for quantitatively analyzing silicon in barium titanate using plasma emission spectroscopy.

従来チタン酸バリウム(BaTiOs)等のセラミック
中のケイ素等の元素を定量するに当っては第1図に示す
如く吸光4度法が主に用いられて来た。これら従来の分
析方法は、分析に当って、吸光4度法によって測定する
ための前処理が非常に煩雑であり長時間を要していた。
Conventionally, in quantifying elements such as silicon in ceramics such as barium titanate (BaTiOs), the absorption 4 degree method, as shown in FIG. 1, has been mainly used. In these conventional analysis methods, pretreatment for measurement by the absorption 4 degree method is very complicated and takes a long time.

例えばBaTiO3を製造原料として製品を製造する場
合、BaTiOs中の不純物及び添加物の定性、定量分
析が、工程管理、製品管理上必要である。そのためには
高精度の分析方法の確立が要請されていたが従来の吸光
光度法によっては分析所要時間が長く上記要請に応え得
なかった。
For example, when manufacturing a product using BaTiO3 as a manufacturing raw material, qualitative and quantitative analysis of impurities and additives in BaTiOs is necessary for process control and product control. To this end, there was a need to establish a highly accurate analytical method, but the conventional spectrophotometric method required too much time for analysis and could not meet the above requirements.

本発明は上記従来法に代えてプラズマ発光分光法を採用
し上記要請に応えるものである。
The present invention satisfies the above requirements by adopting plasma emission spectroscopy instead of the conventional method.

プラズマ発光分光法によると、従来法に比べて試料の溶
解を行いさえすればその1ま直接定量分析が行い得て簡
便であるため、分析所要時間も短く、また誤差を混入し
難いという利点があり、更に従来法の様に熟練を要する
ことなく誰にでも測定が行なえるものである。
Plasma emission spectroscopy has the advantage that compared to conventional methods, direct quantitative analysis can be performed simply by dissolving the sample, so the time required for analysis is short, and it is difficult to introduce errors. Moreover, anyone can perform the measurement without requiring any skill unlike conventional methods.

本発明はチタン酸バリウム中のケイ素を分析するに当9
プラズ妥発元分光法を用いて定量分析する方法を提供す
ることを目的とするものである。
The present invention is applicable to analyzing silicon in barium titanate.
The purpose of this study is to provide a method for quantitative analysis using plastron spectroscopy.

以下本発明を実施例よシ得られた知見に基いて述べる。The present invention will be described below based on examples and findings obtained.

先ずチタン酸バリウム中のケイ素を誘導結合高周波アル
ゴンプラズマ発光分光分析装置(以下rcpという)を
用いプラズマ発光分光法によって分析する場合の試料の
溶解方法について述べる。
First, a method for dissolving a sample will be described when silicon in barium titanate is analyzed by plasma emission spectroscopy using an inductively coupled radio-frequency argon plasma emission spectrometer (hereinafter referred to as RCP).

(1)試料の溶解について 本発明にて試料を一定量(0,5g)採取し溶解するに
当っては、第2図に示す如きステンレス製容器1とテフ
ロン製容器部2より成る加圧ルツボ6のテフロン部2内
に試料を入れ#塩酸を一定量(20mt)を加え容器2
をステンレス製容器1内に入れてテフロン製蓋4で嫌い
ねじ5にて密封し、温度150℃にて6時間加熱する。
(1) About dissolving the sample In order to collect and dissolve a certain amount (0.5 g) of the sample in the present invention, a pressurized crucible consisting of a stainless steel container 1 and a Teflon container part 2 as shown in Fig. 2 is used. Place the sample in the Teflon part 2 of No. 6, add a certain amount (20 mt) of #hydrochloric acid, and place the sample in the container 2.
The mixture is placed in a stainless steel container 1, sealed with a Teflon lid 4 with a screw 5, and heated at a temperature of 150° C. for 6 hours.

図中6は攪拌子である。ただし試料を充分に溶解させる
ため、6時間の加熱時間は、1時間加熱その後スターシ
ー上で30分攪拌、又1時間加熱というサイクルをくり
返す、しかしこの操作では溶液中に白色沈澱を生じる。
6 in the figure is a stirrer. However, in order to sufficiently dissolve the sample, the 6-hour heating time is repeated by heating for 1 hour, stirring for 30 minutes on a star sea, and heating for 1 hour. However, this operation produces a white precipitate in the solution.

螢光X線で調べた結果、St及び微量のT1のみ検出さ
れfc。
As a result of fluorescent X-ray examination, only St and a trace amount of T1 were detected.

これはチタニア及びSi O2と推定できる。また、溶
液側をICPで調べた結果、大量のTh * Baの他
に、Siも微量含まれているのが判明した、サンプル中
のStが総てSiO□として析出しておらず、少量Hc
l−溶液中に溶解しているものと考えられる。
This can be presumed to be titania and SiO2. In addition, as a result of examining the solution side by ICP, it was found that in addition to a large amount of Th * Ba, it also contained a trace amount of Si. All of the St in the sample was not precipitated as SiO
It is thought that it is dissolved in the l-solution.

ICPで分析するためには、 5iOzf溶解しなけれ
ばならないので、一般にSin:の分解試薬として用い
られるl(Fをサンプル溶液中に入れた。
In order to analyze by ICP, 5iOzf must be dissolved, so 1(F), which is generally used as a decomposition reagent for Sin:, was added to the sample solution.

しかし、大量の白色沈澱が生じ、Xa!回折で分析した
ところ、BaTiFeの沈澱であると判明した。
However, a large amount of white precipitate was formed, and Xa! Diffraction analysis revealed that it was a BaTiFe precipitate.

(2)  回収方法 上記の如< Ti 、 Baの共存した状態で)l F
”e添加すると、BaTiF6の沈澱が多量に折用して
しプうので、サンプルを、Siも含めて総て同筒、に溶
解できない、 そこで、逆に総てのSiを5i02の沈澱の形で回収す
る方法を検討し穴。
(2) Recovery method as described above (in a state where Ti and Ba coexist)
``When e is added, a large amount of BaTiF6 precipitate is dissolved, so the sample, including Si, cannot be dissolved in the same tube. Therefore, conversely, all the Si is dissolved in the form of 5i02 precipitate. Consider how to recover it in the hole.

巾 過塩素酸(H,cLO41による白煙処理前記試料
の溶解においてサンプルHcL溶液中にもStが含まれ
ていることが判明した力玉、この8iを酸化してSi 
02の沈澱として得るために、I(cAO4による白煙
処理を試みた。
Width White smoke treatment with perchloric acid (H, cLO41) During the dissolution of the sample mentioned above, it was found that the sample HcL solution also contained St. By oxidizing this 8i, Si
In order to obtain a precipitate of 02, white smoke treatment with I(cAO4 was attempted).

まず、Hctに溶解後の試料を、5i02の沈餓ごとガ
ラス製フラスコに入れ、時計皿でふたをして、バーナー
を用い、弱火で温めである程朋咬で液が少なくなったら
、 HcL04’if約10mt加え、再び加熱する。
First, put the sample dissolved in Hct into a glass flask together with the precipitate of 5i02, cover it with a watch glass, and warm it over low heat using a burner until the liquid becomes less. If about 10 mt is added and heated again.

その後ビーカー内に白煙が出て来たらバーナーの火を止
める。この時点で大量の沈澱を生じるので、5io2以
外の元素を再び溶解するため、Hcl一定量(20mL
)を加え加熱する。
After that, if white smoke comes out in the beaker, turn off the burner. At this point, a large amount of precipitate is generated, so in order to redissolve elements other than 5io2, a certain amount of HCl (20 mL
) and heat.

しか踵実際には多量のTi及びBaの酸化物が再びHc
tに溶解せずに沈澱のまま残シ、5102のみ分離する
ことは不可能であった、 叩 蒸発乾固 Hc204による白煙処理と同様、溶液中のSiを5i
n2として回収するため、蒸発乾固を行なった。
However, in reality, a large amount of Ti and Ba oxides are converted back into Hc.
It was impossible to separate only 5102 as it remained as a precipitate without being dissolved in the solution.
Evaporation to dryness was performed to recover as n2.

(i)と同様にガラス製フラスコに溶液を総1入れ、時
計皿でふたをして弱火で加熱する。
Pour all of the solution into a glass flask in the same way as in (i), cover with a watch glass, and heat over low heat.

液を完全に蒸発させた後直に残った沈澱物を強熱で乾固
し、火を止めた後再びHcLを加えて、5i02のみ沈
澱で得ようとした。しかし、巾と同様Ti * Baの
酸化物が大量に沈澱物として残ってしまい、5io2の
み回収するのは不可能である。
Immediately after the liquid was completely evaporated, the remaining precipitate was dried under strong heat, and after the fire was turned off, HcL was added again in an attempt to obtain only 5i02 by precipitation. However, similar to the width, a large amount of Ti*Ba oxide remains as a precipitate, making it impossible to recover only 5io2.

(3)P液と沈澱各々からのSt定定力方法以上如< 
Siを総て同時に定量するのは難かしいので、サンプル
HcL溶液から5t(hの沈澱を炉別し、ろ液と沈澱両
者に含まれるSiをおのおの定量する事にした。そこで
、まず沈澱の炉別方法及び溶解方法を検討した。
(3) St constant force method from each P solution and precipitate.
Since it is difficult to quantify all Si at the same time, we decided to separate 5 t (h) of precipitate from the sample HcL solution in a furnace and quantify the Si contained in both the filtrate and the precipitate. Alternative methods and dissolution methods were investigated.

(i)  ガラス製ロート及びポリエチレン製ロートと
5CF紙による方法 サンプル液を通常の45φガラス製ロートと5CF紙を
使用して濾過を行った。その際加圧ルツボ中から直接漣
紙上に流し出すと、酸り度が高すぎて濾紙が破れてしま
うため、あらかじめ加圧ルツボ内の液を水で希釈してか
ら濾過した。またSiO□の分解試薬であるHFはガラ
ス製品を溶解して、そこからStが混入して来るので、
HFと接触する器具は、総て合成樹脂(ポリエチレン、
テフロンetc ) pのものを使用し々ければならな
い。
(i) Method using a glass funnel, a polyethylene funnel, and 5CF paper The sample solution was filtered using an ordinary 45φ glass funnel and 5CF paper. At that time, if the solution was poured directly from the pressurized crucible onto the filter paper, the acidity would be too high and the filter paper would tear, so the liquid in the pressurized crucible was diluted with water in advance and then filtered. In addition, HF, which is a decomposition reagent for SiO□, dissolves glass products, and St is mixed in from there.
All equipment that comes into contact with HF is made of synthetic resin (polyethylene,
Teflon etc.) must be used frequently.

サンプル溶液濾過後、ポリエチレン製ビーカー中に濾紙
ごとSin、の沈澱を入れHF(HF1容積に水9容積
加えたもの。以下(1+9)という)一定量(20mA
)で溶解する。その際Siの回収率を向上せしめるため
、P砥を、ポリエチレンコーティングし、た棒でバルブ
状になる凍で良くかき混ぜた。それを再びポリエチレン
製ロートと5CF紙で濾過してIFp液fP別し、その
中に含まれるSlを定量しようと考えた。
After filtering the sample solution, put the precipitate of Sin along with the filter paper into a polyethylene beaker and add a certain amount of HF (1 volume of HF plus 9 volumes of water, hereinafter referred to as (1+9)) (20 mA).
) to dissolve. At this time, in order to improve the recovery rate of Si, the P abrasive was coated with polyethylene and stirred well with a bulb-shaped ice cube. The idea was to filter it again through a polyethylene funnel and 5CF paper to separate the IFp liquid fP, and quantify the Sl contained therein.

しかし実際は、バルブ状にした濾紙中にSiが取シ込ま
れてし1い、いくら洗浄しても螢光X線で調べると、濾
紙上バルブ中にStが検出され、炉液中に洗い出せなか
った。これは温塩酸で洗っても、HFで洗っても同様で
、83がバルブ中に残っている。
However, in reality, Si is taken into the bulb-shaped filter paper, and no matter how much you wash it, when examined with fluorescent X-rays, St is detected in the bulb on the filter paper and washed out into the furnace liquid. There wasn't. This is the same whether it is washed with warm hydrochloric acid or HF, and 83 remains in the valve.

ai)  柄出ロート及びポリエチレン製ロートと5C
F紙による方法 上述(1)の欠点解消対策として濾紙部分が8・■φの
柄出ロートによる吸引濾過を試験した。
ai) Patterned funnel and polyethylene funnel and 5C
Method using F paper As a countermeasure for solving the above-mentioned drawback (1), suction filtration using a patterned funnel with a filter paper portion of 8 mm diameter was tested.

サンプル溶液濾過後、5i02の°沈澱と8φの50濾
紙を洗浄しながら、ポリエチレン製ビーカーに入れ、c
oncHF’一定量(2mA)で溶解した後ボIノエチ
レンロ一トで濾過した。洗浄後8φの濾紙も含めて濾紙
を螢光X線で調べても、Siは検出されなかった。
After filtration of the sample solution, while washing the 5i02° precipitate and 8φ 50 filter paper, place them in a polyethylene beaker and add c.
After dissolving with a constant amount of oncHF' (2 mA), it was filtered through a boiling ethylene funnel. After washing, Si was not detected even when the filter paper, including the 8φ filter paper, was examined using fluorescent X-rays.

しかしこの方法では 5102をポリエチレン製ビーカ
ーに入れる際、柄出ロートの内壁に付着したSiO□を
ポリスマーを使って洗い出さなければならないので、完
全に洗い出せずに誤差が生じる不安がある、また、その
時洗浄水を多量に使用するので、その後HFで溶解しよ
うとしても、HF濃度が薄くな!+ 、5i02を完全
に溶解できない。
However, with this method, when putting 5102 into a polyethylene beaker, the SiO□ adhering to the inner wall of the patterned funnel must be washed out using a polymer, so there is a risk that it may not be washed out completely and errors may occur. Since a large amount of washing water is used at that time, even if you try to dissolve it with HF afterwards, the HF concentration will be too low! +, 5i02 cannot be completely dissolved.

叫 液体クロマトグラフ用テフロン製フィルターと5C
P紙による方法 上述の(11)の改善方法として、第3図に示す如き液
体クロマトグラフ用テフロン製フィルターを用いた吸引
濾過を試験した。通常液体クロマトグラフ用テフロン製
フィルターは溶液を注射器からフィルター内に押し出し
て濾過を行うフィルターであり耐薬品性、耐溶剤性にす
ぐれているものであるが、今回は吸引濾過力できる様に
加工して使用した。フィルター(7は13Iwφの大き
さである。
Shouting Teflon filter and 5C for liquid chromatography
Method using P paper As a method for improving the above-mentioned (11), suction filtration using a Teflon filter for liquid chromatography as shown in FIG. 3 was tested. Normally, Teflon filters for liquid chromatography are filters that push the solution from a syringe into the filter, and have excellent chemical and solvent resistance, but this time we have processed it to have suction filtration power. I used it. Filter (7 has a size of 13Iwφ).

コレにはロート部がないため、テフロン棒を加工して自
作しfC,。マた、フィルター自体がテフロン製のため
濾過速度が遅いので、5CF紙を13φに加工し、交換
して使用した、まず、サンプル液を第3図に示す液体ク
ロマトグラフ用フィルターでP遇する。その後、フィル
ターを分解し、沈澱、P紙、ロート、フィルタ一部をポ
リエチレン製ビーカーニ入れる。そしてHF(1+9)
一定fr(20ml)で沈澱溶解後、P紙、ロート、フ
ィルタ一部を洗浄しながら取シ出す。この際、HFに溶
解しない浮遊物がまだ残っているので、HF溶液を液体
クロマトグラフ用フィルターを用いて濾過を再度行う。
This one doesn't have a funnel part, so I made it myself by processing a Teflon rod. Since the filter itself is made of Teflon, the filtration speed is slow, so 5CF paper was processed to 13φ and replaced. First, the sample solution was filtered through the liquid chromatography filter shown in FIG. 3. Thereafter, the filter is disassembled and the precipitate, P paper, funnel, and part of the filter are placed in a polyethylene beaker. and HF(1+9)
After dissolving the precipitate at a constant rate (20 ml), take out the P paper, funnel, and part of the filter while washing them. At this time, since suspended matter that does not dissolve in HF still remains, the HF solution is filtered again using a liquid chromatography filter.

P紙に取った浮遊物を螢光X線で調べるとTiのみ検出
された。
When the floating matter taken on P paper was examined using fluorescent X-rays, only Ti was detected.

このフィルターを用いるオリ点として、ロート部及びフ
ィルタ一部も同時にHF処理でき地が無いことが言える
。また、フィルター7の径が小さい上に、テフロン自体
が撥水性を有するので、濾過後の洗浄を少量の水で充分
できることも大きな利点である。その上、HF溶液から
Tiの浮遊物を除く際にも、もう一度使用できる利点も
ある。
An advantage of using this filter is that there is no way that the funnel and part of the filter can be subjected to HF treatment at the same time. Furthermore, since the filter 7 has a small diameter and Teflon itself has water repellency, it is a great advantage that cleaning after filtration can be done with a small amount of water. Moreover, it has the advantage that it can be used again when removing suspended Ti from the HF solution.

この方法で、サンプル溶液中の5io2の沈澱は総てH
F溶液中に回収できる様になった。
With this method, all the 5io2 precipitates in the sample solution are H
It is now possible to collect it in the F solution.

そこで、実際に5in2の回収率を、無水ケイ酸の試薬
を使用してテストを行なった。その結果、纂1表に示す
如く非常に良いStの回収率第1表 液体クロマトグラ
フィー用フーイル゛=二を■が得られた。
Therefore, we actually tested the recovery rate of 5in2 using a silicic anhydride reagent. As a result, as shown in Table 1, a very good recovery of St was obtained.

使用した際のSi回収率 理論値:試薬の無水ケイ酸を秤取1直接ポリビーカー内
でHFに溶解後ICPにて測定 液体クロマトグラフ用フィルター使用:試薬の無水ケイ
酸を理論値と同量秤取LAHC120mlを加えて、液
体クロマトグラフ用フィルターで濾過し、沈澱をフィル
ターととHF処理を行なった後再び濾過してICPにて
測定 以上の如く試料の溶解液を液体クロマトグラフ用フィル
ターにて戸別し、その後沈澱、P紙、a−ト、フィルタ
一部をポリエチレン製ビーカに入れHFにて溶解し再度
枦遇する冊の方法は、サンプル溶液中の5io2沈澱凡
てHF溶液中に回収でき非常に良い結果が得られたので
本方法を採用することとした、次に定量分析方法につい
て検討を行った。
Theoretical value of Si recovery rate when used: Weigh out the reagent silicic anhydride, directly dissolve it in HF in a poly beaker, and then measure with ICP Using a liquid chromatography filter: Use the reagent silicic anhydride in the same amount as the theoretical value. Add 120 ml of weighed LAHC, filter through a liquid chromatography filter, filter the precipitate, perform HF treatment, filter again and measure by ICP. The method described in the book involves separating the precipitates, P paper, a-t, and a part of the filter into a polyethylene beaker, dissolving them in HF, and then reapplying them. All of the 5io2 precipitates in the sample solution can be recovered in the HF solution. Since very good results were obtained, we decided to adopt this method.Next, we investigated quantitative analysis methods.

(4)定量分析方法について A、  HCL溶液中のStの定量分析加圧ルツボ中で
HCLに溶解した試料を濾過した際のP液を、水で10
0 ml一定にする。
(4) Quantitative analysis method A. Quantitative analysis of St in HCL solution P solution obtained by filtering a sample dissolved in HCL in a pressurized crucible was diluted with water for 10 minutes.
Keep it constant at 0 ml.

その液中のSlを、ICPを使用して検量線法にて定量
した。
Sl in the solution was quantified by a calibration curve method using ICP.

中 Siの検量線 原子吸光用at 1000 ppm標準溶液を1/1び
(100pprn)  に希釈し、Na2CO30,4
N溶液にする。そこからSiを分取し、水で希釈してS
t儂変度05 、1.0 、1.5 PPmの6試料を
取シ検景線作成した。その際ICPの分析波長は251
6&である。その結果第4図に示す如く工を発光強度、
CをSi#度、Rを直線相関係数とすると、I=459
C+40.33  R司、999999という直線を得
た。
Calibration curve for medium Si At 1000 ppm standard solution for atomic absorption was diluted to 1/1 (100 pprn) and Na2CO30,4
Make into N solution. From there, Si is separated, diluted with water, and S
A view line was created for six samples with variations of 05, 1.0, and 1.5 PPm. At that time, the analysis wavelength of ICP is 251
It is 6&. As a result, as shown in Figure 4, the luminescence intensity and
If C is Si# degree and R is linear correlation coefficient, I=459
A straight line of C+40.33 R Tsukasa and 999999 was obtained.

叩 分解試薬の影響 Si711度をIPI)m一定にして、HCL添加量を
10.20.30mtと変化させたサンプル3つ作製し
、Siの回収率に与える影響を調べた。
Effect of beating reagent Three samples were prepared in which the amount of HCL added was changed to 10, 20, and 30 mt while keeping Si711 degrees constant at IPI)m, and the effect on the recovery rate of Si was investigated.

その結果を第2表ならびに第5図に示す。The results are shown in Table 2 and Figure 5.

添加量が多くなるにつれて、回収率が下る傾向にある。As the amount added increases, the recovery rate tends to decrease.

これは、ICPのネブライザーに試料を吸い込む際、吸
い込み口が狭いため、溶液の粘度が高くなると、吸い込
み量が減少するためである。したがって、実際のサンプ
ル溶液の酸濃度に、検量線用サンプルの醒詐度も合わせ
る必要がある。
This is because when sucking a sample into the ICP nebulizer, the suction port is narrow, and as the viscosity of the solution increases, the amount of suction decreases. Therefore, it is necessary to match the acid concentration of the calibration curve sample to the acid concentration of the actual sample solution.

第2表  HCLの影響 θ1p  共存元素の影響について Si  濃度一定にして、Ti及びBaの計度を変えて
Siの回収率の違いを調査した結果、Ba添加はSlに
伺ら影響を与え々いのが判明したが、一方Tiの添加に
よっては、大きな回収率の差が生じたえこてTiの影響
を詳細に調査した。
Table 2 Influence of HCL θ1p Influence of Coexisting Elements As a result of keeping the Si concentration constant and changing the measurement of Ti and Ba to investigate the difference in the recovery rate of Si, it was found that the addition of Ba had no effect on Sl. On the other hand, depending on the addition of Ti, there was a large difference in the recovery rate.The influence of Ti was investigated in detail.

(7) Tiの検量線について まず、実際のサンプル溶液中に含1れるTiの濃度を測
定するには、分解試薬を同じにするため、TiをHCl
に溶解しなければならない。この問題は、Tiが、加圧
ルツボを使用し、150℃で1時間はど加熱する事によ
ってHCL20mlに約2tはど溶解できたので解決し
た。ここからTiを分取し、濃度736,883,10
30.1177pprnの4つの試料を調整し、ICP
にて分析波長6685Aで測定した。なお、各試料は、
実際のサンプル溶液と同じ酸濃度になる様100mL当
たシHCL 2 [1ml−入れた。
(7) About the Ti calibration curve First, to measure the concentration of Ti contained in the actual sample solution, in order to use the same decomposition reagent, Ti was replaced with HCl.
must be dissolved in This problem was solved because about 2 tons of Ti could be dissolved in 20 ml of HCL by heating at 150° C. for 1 hour using a pressure crucible. Ti was fractionated from this and the concentration was 736,883,10
Four samples of 30.1177 pprn were prepared and ICP
The measurement was performed at an analysis wavelength of 6685A. In addition, each sample is
1 ml of HCL 2 was added per 100 ml to give the same acid concentration as the actual sample solution.

この結果第6図に示す如< Tlの検量線としてr=0
.889c+34J  R=[+、999の直線を得た
As a result, as shown in Figure 6, < r = 0 as the calibration curve for Tl.
.. A straight line of 889c+34J R=[+,999 was obtained.

また、Si及びhがTiの回収車に与える影響を調べた
が、波長3685Xで測定する際には、何んら影響を与
えないことが判明した、 こうして、TIの検量線よりサンプルHCA溶液中のT
i濃度を求めると、Ti925ppmである。
We also investigated the effects of Si and h on the Ti recovery vehicle, and found that they had no effect at all when measuring at a wavelength of 3685X. T of
When the i concentration is determined, it is 925 ppm of Ti.

(イl  Tiの添加による影響 実際のサンプル溶液中のTi濃度が、925ppmと分
かったので、その前後で濃度を変え、Siに与える影響
を調査した。
(I) Effect of addition of Ti Since the actual concentration of Ti in the sample solution was found to be 925 ppm, the concentration was varied before and after that and the effect on Si was investigated.

その結果を第3表ならびに第7図に示す。The results are shown in Table 3 and FIG.

Siの濃度をlppm一定にして、Ti0度736.8
83.1030ppnnでおる6つの試料を調整し、I
CPにてSiの回収率の差を測直線関係になった。つま
りTlG度が高くなると、それにつれてSiの実測値も
上がって行くのである。
Keeping the Si concentration constant lppm, Ti0 degree 736.8
83. Six samples with 1030 ppnn were prepared and I
In CP, the difference in Si recovery rate was measured in a straight line relationship. In other words, as the degree of TlG increases, the measured value of Si also increases accordingly.

m3表  Tiの影響 (つ)補正式の作成について (イ)で求めfcS、T、Aの関係の(1)式を式が得
られるこの(2)式より、先の第6表のSiの実測値を
補正すると、次の第4表ならびに第7図に示す様に、非
常に良好な結果となる。
Table m3 Regarding the creation of the correction formula for the influence of Ti, the formula (1) for the relationship between fcS, T, and A obtained in (a) can be obtained from formula (2). When the actual measured values are corrected, very good results are obtained as shown in Table 4 and FIG. 7 below.

第4表  Tiの影響の補正 に)補正計算 従って実サンプルとHClの濃度(HCL20mL/1
oorrlt)を合わせて作成した検量線よシ実すンプ
ル中の81及びTi濃度を測定しSt及びTit)度を
得て真のSt濃濃度上前記測定8i儂度を前記補正式(
2)式に代入し2て求めこれは’lODmt一定にした
時の値なので重量に換算して決定すればよい。
Table 4 Correction calculation (for correction of the influence of Ti) According to the actual sample and concentration of HCl (HCL20mL/1
The 81 and Ti concentrations in the sample were measured using the calibration curve prepared by combining the 81 and 81 degrees (St and Tit), and the above-mentioned measured 8i degrees were calculated based on the true St concentration and the above correction formula (
2) Substitute into equation 2 and find: This is the value when 'lODmt is constant, so it can be determined by converting it into weight.

H,HF溶液中の8iの定量分析についてSiO2の沈
澱なHFで溶解したIF浴溶液、そのままI ’CP″
′C′C測定と、測定機器を傷める恐れがあるので、H
3BO3を加えて、HFをB F4  の形でマスクし
た後測定をする。この際HF 2 mlに対するI(s
BOaの量は、過去の文献よシ3fで充分である。
For quantitative analysis of 8i in H, HF solution, SiO2 precipitate was dissolved in HF in IF bath solution, as is I 'CP''
'C'C'C measurement and measurement equipment may be damaged.
Measurement is performed after adding 3BO3 to mask HF in the form of B F4 . At this time, I(s
As for the amount of BOa, 3f is sufficient according to past literature.

HmBOsを加えた後10口mtメスフラスコで、水で
100 ml−足にして、ポリエチレン製の試料ビンに
移しておく。この作条はす早く行なわなければHFがガ
ラスを溶解する恐れがあるので注意が必要である。文献
よシ、約30分間が、ガラスと接触できる限度である。
After adding HmBOs, make up to 100 ml with water in a 10-neck mt volumetric flask and transfer to a polyethylene sample bottle. This process must be done quickly or else the HF may melt the glass, so care must be taken. According to the literature, about 30 minutes is the limit for contact with glass.

この(HF+H,BO3)溶液中のStをICPにて検
量線法によシ測定を行なった。
St in this (HF+H, BO3) solution was measured by ICP using a calibration curve method.

中 Stの検量線 Si100 ppmの標準液から8iを分取し、水で希
釈して、5 、10 、15 、20 Ppmの4−り
を測定し第8図に示す如き検量線を作成した。この結果
I=’52.38C+16  R=0.9999の直線
を得た、 (11)分解試薬の影響 5tNa度を10 ppm一定にし−(HF及びH3B
O,を添加した時のStの回収率の差を求めた。以下に
結果を第5.6表ならびに第9.10図に示す。
Calibration curve for medium St. 8i was taken from a standard solution of Si 100 ppm, diluted with water, and the four concentrations of 5, 10, 15, and 20 Ppm were measured to create a calibration curve as shown in FIG. As a result, a straight line of I = '52.38C + 16 R = 0.9999 was obtained.
The difference in the recovery rate of St when O was added was determined. The results are shown below in Table 5.6 and Figure 9.10.

第5表  H,BO,の影響 第6表  HFの影a これより、HF * H3BOs とも添加量が多くな
−ると回収高が上がる傾向になる事が判明した。したが
って、実際の検量線を作成するには、HF、及びHsB
O3濃度をサンプルに合わせる必要がある。
Table 5 Influence of H, BO, Table 6 Influence of HF a From this, it was found that as the amount of both HF*H3BOs added increases, the recovery tends to increase. Therefore, to create an actual calibration curve, HF and HsB
It is necessary to match the O3 concentration to the sample.

01+)共存元素の影響 前述の如< Baの影響が無いのでTiのみ影響を調査
した。まず(HF + HsB Oa )サンプル溶液
中のTi濃度測定し、そのTia度近辺で81の回収高
に差を及ばすかどうか判断した。
01+) Influence of Coexisting Elements As mentioned above, since there was no influence of Ba, only the influence of Ti was investigated. First, the Ti concentration in the (HF + HsB Oa) sample solution was measured, and it was determined whether there was a difference in the recovery amount of 81 in the vicinity of the Tia degree.

(7) Tiの検量線区ついて T1濃度32 、64 、96 、128ppmの試料
を作製、した。おのオノf(F 2m’−/I DO1
tHsB9g 、3り00m7声んでいる。これよりI
CPを用い、分析波長6685大で測定し第11図に示
す如< Tiの検量線を作成した、そして、I=11.
92C−14R=0.999なる直線・□を得た。実際
の(HF +H3B Os )溶液のTi濃度を求める
と70 pPmであった。
(7) Samples with Ti concentrations of 32, 64, 96, and 128 ppm were prepared for the Ti calibration curve. Ono f(F 2m'-/I DO1
tHsB9g, 3ri00m7 is shouting. From this I
Using CP, measurement was performed at an analytical wavelength of 6685, and a calibration curve of < Ti was created as shown in FIG. 11.
A straight line □ with 92C-14R=0.999 was obtained. The Ti concentration of the actual (HF + H3B Os ) solution was determined to be 70 pPm.

(イ)  Tiの影響について Si濃度10 ppm一定にして、Ti濃度;74゜8
8 、105 ppmと値の違う5つの試料を作り、T
i添加によるSiの回収系の差を求めた、第7表ならび
に第12図にその結果を示した。
(b) Regarding the influence of Ti, the Si concentration is kept constant at 10 ppm, and the Ti concentration is 74°8.
Five samples with different values of 8 and 105 ppm were made, and T
Table 7 and FIG. 12 show the results of the differences in the Si recovery system due to the addition of i.

これより、差は許容範囲&(±2%以内)にあると言え
るので、Tiの影響無しと判断した。これは、SiO量
に対重Tiのa反力S厚いためである。
From this, it can be said that the difference is within the allowable range & (within ±2%), so it was determined that there was no influence of Ti. This is because the a reaction force S of the weight Ti is thicker than the amount of SiO.

第7表  T1の影響 (つ)  HF溶液中のSiの定お一結果従って実サン
プルとBF(2m/、/Ioorrlt)及びHsBO
3”/100rnL)a度を合わせたSLの検量線より
実サンプル溶液中の810度を測定し、これは100 
rnL一定にした時の値なので重量換算して決定すれば
よい。
Table 7 Influence of T1 (1) Results of the constant concentration of Si in HF solution Therefore, the actual sample and BF (2m/, /Ioorrlt) and HsBO
3"/100rnL) 810 degrees in the actual sample solution was measured from the SL calibration curve combining a degrees, which is 100 degrees.
Since this is the value when rnL is constant, it can be determined by converting it into weight.

以上BaTiOs中の81含有量は、前記Aで述べたH
Ct溶液中のSi含有量と前記Bで述べたHF溶液中(
D Stの定量結果を加算し決定することができる、な
おSi及びTiの検量線はその都度新しく作る必要があ
る。
The 81 content in BaTiOs is the H
The Si content in the Ct solution and the HF solution described in B above (
It can be determined by adding the quantitative results of D St, but it is necessary to create new calibration curves for Si and Ti each time.

以上本発明の特徴を要約すると (1)  試料溶解後、沈澱物と炉液の両者に含まれる
ケイ素を、別々に定量することにより、試料中に含まれ
る全ケイ素量を把握する。
To summarize the features of the present invention, (1) After dissolving the sample, the total amount of silicon contained in the sample is determined by separately quantifying the silicon contained in both the precipitate and the furnace liquid.

(2)  ケイ素の分解試薬のHFにも侵され力いテフ
ロン製フィルターを用いる事で、ケイ素の回収率、精度
が向上する。
(2) By using a Teflon filter that is resistant to attack by HF, the silicon decomposition reagent, the silicon recovery rate and accuracy are improved.

(3)試料溶液と検量線用標準液の塩酸、HF、HsB
O,の濃度を一定にしてその影響を除去しく4)HFの
ガラス類を侵す性質を除去するため、%B Q3を加え
てマスクした。
(3) Sample solution and calibration curve standard solutions of hydrochloric acid, HF, and HsB
4) In order to remove the property of HF that corrodes glass, %B Q3 was added to mask it.

(5)  チタンの影響を除去するために、補正式を作
成し、ケイ素の実測値を補正し真の値を求め誤差を少く
する。
(5) In order to remove the influence of titanium, a correction formula is created and the actual measured value of silicon is corrected to find the true value and reduce the error.

(6)  チタンの検量線を試料と同じ分解試薬にする
ため、チタンを、加圧ルツボを使用して塩酸に溶解せし
めた。
(6) In order to use the same decomposition reagent as the sample for the titanium calibration curve, titanium was dissolved in hydrochloric acid using a pressurized crucible.

(7)ICPを使用し、検量線法を用いて直接足台を行
なうため、短時間で正確な値が得られる。
(7) Since the ICP is used and the calibration curve method is used to perform the footrest directly, accurate values can be obtained in a short time.

本発明によるプラズマ発光分光法CICP)によるBa
TiO3中のSiの定量分析方法は(1) BaTiO
3中のケイ素を迅速かつ精度良く定量分析できる。これ
によシ、製品の品質管理、工程管理及び製造条件の確立
などが可能。
Ba by plasma emission spectroscopy (CICP) according to the invention
The method for quantitative analysis of Si in TiO3 is (1) BaTiO
Silicon in 3 can be quickly and accurately quantitatively analyzed. This allows for product quality control, process control, and establishment of manufacturing conditions.

(2)製品を再現性良く安定して造れる。(2) Products can be manufactured stably with good reproducibility.

(3)微妙なケイ素含有量の差が及ぼす特性の違いを明
確にできる。
(3) Differences in properties caused by subtle differences in silicon content can be clarified.

等の効果を奏し有用なものである、 次に実施例について述べる。It is useful and has the following effects, Next, an example will be described.

実施例 (1)チタン酸バリウムの試料0.5tを秤取し、塩酸
20 mlを加え第2図に示す加圧ルツボ中で溶解する
。その際1時間加熱、30分攪拌を計6時間〈シ返す。
Example (1) A 0.5 t sample of barium titanate was weighed out, 20 ml of hydrochloric acid was added thereto, and the sample was dissolved in a pressurized crucible shown in FIG. 2. At that time, heat for 1 hour and stir for 30 minutes for a total of 6 hours.

また攪拌時には、スターシー上で、ルツボ内の攪拌子6
を回転させて攪拌する。(3:(2)溶解徒弟3図に示
す液体りaマトグシ7月フィルターを用いて吸引沖過を
行う。p液は100mtメスフラメスフラスコ洗浄液も
加えて、水で100mt一定にする。これをICPを用
い、第4図SLの検量線及び第6図T1の検量線よシS
i濃 (4)度及びTi濃度を求め、T1の81に対す
る影響を補正した補正式よ−12XのSt濃度を求める
Also, during stirring, the stirring bar 6 inside the crucible is
Rotate and stir. (3: (2) Dissolution Apprentice) Perform suction filtration using a liquid filter shown in Figure 3. Add a 100 mt volumetric flame flask cleaning solution to the p liquid, and make it constant at 100 m with water. Using ICP, the calibration curve of Figure 4 SL and the calibration curve of Figure 6 T1
(4) Determine the degree of i concentration and the Ti concentration, and use the correction formula that corrects the influence of T1 on 81 to determine the St concentration of -12X.

即ち実サンプルとHctの濃度(HCL20mL/10
o、、、>を合わせて作成した検量線よシ実すンプル中
の81及びTi6度を測定すると 81: 0.41 ppm、  Ti: 925 pp
mこの値を前記補正(2)に代入して求めると= 0.
28 Cppm :] これは100 ml一定した時の値なので重量で示すと 0−028mr となる。
That is, the actual sample and the concentration of Hct (HCL20mL/10
When measuring 81 and Ti 6 degrees in the sample using the calibration curve created by combining o, , , >, 81: 0.41 ppm, Ti: 925 ppm
If m is calculated by substituting this value into the above correction (2), then = 0.
28 Cppm: This is the value when 100 ml is constant, so when expressed in weight, it is 0-028 mr.

) 液体クロマトグラフ用フィルターを用いて得られた
沈澱は、まずフィルターごとポリエチレン製ビーカー内
に入れ、HF(1+9)20m/=で5i02を溶解す
る。その後フィルター及び濾紙を良く洗浄しながらビー
カー内よシ取シ除く。
) The precipitate obtained using a liquid chromatography filter is first placed in a polyethylene beaker together with the filter, and 5i02 is dissolved with 20 m/= of HF (1+9). After that, thoroughly wash the filter and filter paper and remove the contents of the beaker.

1 1−IF溶液上にTiの浮遊物が微量用るため、再
びこの液を液体クロマトグラフ用フィルターにてF M
する。ろ液は、ポリエチレン製ビーカーに採り、H2B
O33fを加えて溶解した後、100m1メスフラスコ
に移し、100mt一定にして、ポリエチレン製試料ビ
ンに再び移し換える。こ′の際、メスフラスコに(HF
 + HaB Os )液を入れてから出すまでを、す
早く行り試料ビン中の(HF+HsBOa)溶液中のS
iをIC’Pを用いて測定し、第8図に示す検量線よl
) Si2度を測定するとSt: 11.18 ppm
またこれは100 mA一定にした時の値々ので一重量
で示すと1.118rnfとなる。
1 1-Since a small amount of suspended Ti is used on the IF solution, this solution is filtered again using a liquid chromatography filter.
do. The filtrate was taken into a polyethylene beaker and added to H2B.
After adding O33f and dissolving it, transfer it to a 100 ml volumetric flask, keep the volume constant at 100 m, and transfer it again to a polyethylene sample bottle. At this time, add (HF) to the volumetric flask.
+ HaB Os
i is measured using IC'P, and the calibration curve shown in Figure 8 is used.
) When Si2 degree is measured, St: 11.18 ppm
Also, since these are values when the current is constant at 100 mA, it becomes 1.118 rnf when expressed in terms of one weight.

(5)従ってチタン酸バリウム0.52中のsii有量
は前記(2)よ#))(C1溶液中に5iO1028r
nり、前記(4)よ、9HF溶液中にSt 1.118
m?含まれている。
(5) Therefore, the amount of sii in barium titanate 0.52
According to (4) above, St 1.118 in the 9HF solution
M? include.

よってBaTi010.5 ?中に含まれるslの量は
0.028+1.118−1.146nnf テある、
これはMB%TO,229wt%になる。
Therefore, BaTi010.5? The amount of sl contained in it is 0.028+1.118-1.146nnfte,
This becomes MB%TO, 229wt%.

なお、ICPの測定波長 Si;2516^T1:36
85A 更に分析装置として次のものを用いた。
In addition, the measurement wavelength of ICP Si;2516^T1:36
85A Furthermore, the following analysis equipment was used.

誘導結合高周波アルゴンプラズマ発光分光分析装置(I
CP):日本ジャーレルアッシュ社製 ICAP−50
0螢光X線分析装置:理学電機工業社製
Inductively coupled high-frequency argon plasma emission spectrometer (I
CP): ICAP-50 manufactured by Nippon Jarrell Ash Co., Ltd.
0 Fluorescence X-ray analyzer: Manufactured by Rigaku Denki Kogyo Co., Ltd.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はBatiO3又はセラミックスの分析方法を示
すフローシャート、第2図は加圧ルツボの模式図、第3
図は液体クロマトグラフィー用フィルターの模式図、第
4図はSi濃度と発光強度との関係を示すSi検量線図
、第5図は分解試薬HCJa添加量とSi回収率との関
係を示すグラフ、第6図はTi濃度と発光強度との関係
を示すTi、検量線図、第7図は11m度とSi回収率
との関係を示す補正グラフ、第8図はHF溶液中のSi
濃度と発光強度との関係を示すSt!量線図、第9図は
HsBO3添加量とsi回収穿との関係を示すグラフ、
第10図はf(F添加量とSi回収率との関係を示すグ
ラフ、第11図はHF溶飯中のT1度と発光強度との関
係を示すTi検分線図、第12図は、116度とSi回
回収上の関係を示すグラフ、第13図は本発明における
実施例の分析フローシャート図である。 1・・・ステンレス製容器、2・・・テフロン製容器、
6・・・加圧ルツボ、4・・・テフロン製蓋、5・・・
ねじ、6・・・攪拌子、7・・・フィルター。 代理人 弁理士 木 村 三 朗 第 1 @ C:St:口(ppm) 第 5 図 )1ci瑠力a童〔ml〕
Figure 1 is a flowchart showing the analysis method for BatiO3 or ceramics, Figure 2 is a schematic diagram of a pressurized crucible, and Figure 3 is a flow chart showing the analysis method for BatiO3 or ceramics.
The figure is a schematic diagram of a filter for liquid chromatography, Figure 4 is a Si calibration curve showing the relationship between Si concentration and luminescence intensity, and Figure 5 is a graph showing the relationship between the amount of decomposition reagent HCJa added and Si recovery rate. Figure 6 is a Ti calibration curve showing the relationship between Ti concentration and luminescence intensity, Figure 7 is a correction graph showing the relationship between 11m degrees and Si recovery rate, and Figure 8 is a Ti calibration curve showing the relationship between Ti concentration and luminescence intensity.
St! shows the relationship between concentration and luminescence intensity. Fig. 9 is a graph showing the relationship between the amount of HsBO3 added and the amount of Si recovered.
Fig. 10 is a graph showing the relationship between f(F addition amount and Si recovery rate), Fig. 11 is a Ti analysis diagram showing the relationship between T1 degree in HF melt rice and luminescence intensity, and Fig. 12 is a graph showing the relationship between f(F addition amount and Si recovery rate). 13 is an analysis flowchart of an example of the present invention. 1... Container made of stainless steel, 2... Container made of Teflon,
6... Pressurized crucible, 4... Teflon lid, 5...
Screw, 6... Stirrer, 7... Filter. Agent Patent Attorney Sanro Kimura 1 @ C: St: Mouth (ppm) Figure 5) 1ci Ruri Ado [ml]

Claims (4)

【特許請求の範囲】[Claims] (1)供試々料に濃塩酸を添加し、加圧ルツボ中にて加
熱溶解し、冷却後合成樹脂製のp斗又はフィルターにて
吸引濾過し、炉液と沈澱物に炉別し、該炉液中のケイ素
含有量をプラズマ発光分光分析法によシ測定し、一方前
記沈澱物を前記フィルターごとポリエチレン製ピーカに
入れ、弗化水素溶液を添加し、前記フィルター及び濾紙
を洗滌し、得られた弗化水素溶液を前記フィルターにて
濾過し、濾紙残とP液に炉別し、得られた炉液にH3B
O3を添加し溶解後、得られた弗化水素溶液をプラズマ
発光分光分析法に、よシケイ素含有量を測定し、前記P
液中のケイ素含有量と前記弗化水素溶液中のケイ素含有
量を加算して求めることを特徴とするプラズマ発光分光
法によるチタン酸バリウム中のケイ素の定量分析方法。
(1) Add concentrated hydrochloric acid to the sample, heat and dissolve in a pressurized crucible, cool and filter with suction through a synthetic resin pouch or filter to separate into furnace liquid and precipitate, The silicon content in the furnace liquid is measured by plasma emission spectrometry, while the precipitate is placed together with the filter in a polyethylene peaker, a hydrogen fluoride solution is added, and the filter and filter paper are washed; The obtained hydrogen fluoride solution was filtered through the filter, separated into filter paper residue and P liquid, and H3B was added to the obtained furnace liquid.
After adding O3 and dissolving it, the resulting hydrogen fluoride solution was subjected to plasma emission spectrometry to measure the silicon content.
A quantitative analysis method for silicon in barium titanate using plasma emission spectroscopy, characterized in that the silicon content in the liquid is determined by adding the silicon content in the hydrogen fluoride solution.
(2)供試々科0,5?に濃塩酸20 ml添加し、加
圧ルツボ中にて1時間加熱60分攪拌をくり返し合計6
時間、150℃にて加熱溶解し、冷却後液体クロマトグ
ラフ用テフロン製フィルターにて吸引濾過し、P液と沈
澱物に炉別し、該炉液を100mt採取し、これをプラ
ズマ発光分光分析法により求め、得られた測定値をTi
の影響を除くために補正式によシ補正し、一方前記沈澱
物を前記フィルターごとポリエチレン製ビーカに入れ、
HF1容積に水9容積を加えた弗化水素溶液を添加し、
溶解し、前記フィルター及び濾紙を洗滌し、得られた弗
化水素溶液を前記フィルターにて濾過し・p紙残とろ液
KF別し、得られたp液にHiBOi 3tを添加し、
溶解後得られた弗化水素溶液を100m1とし、得られ
た弗化水素溶液をプラズマ発光分光分析法によシケイ素
含有量を測定し、前記ろ液中のケイ素含有量と前記弗化
水素溶液中のケイ素含有量を加算して求めることを特徴
とする特許請求の範囲第1項記載の分析方法。
(2) Test subjects 0,5? 20 ml of concentrated hydrochloric acid was added to the mixture, heated in a pressure crucible for 1 hour, and stirred for 60 minutes, for a total of 6
Dissolve by heating at 150°C for an hour, and after cooling, suction filtrate with a Teflon filter for liquid chromatography, separate into P liquid and precipitate, collect 100 mt of the furnace liquid, and use it for plasma emission spectrometry analysis. Ti
In order to eliminate the influence of
Add a hydrogen fluoride solution of 1 volume of HF and 9 volumes of water,
Dissolve, wash the filter and filter paper, filter the obtained hydrogen fluoride solution with the filter, separate the p paper residue and filtrate KF, add 3t of HiBOi to the obtained p liquid,
The hydrogen fluoride solution obtained after dissolution was made up to 100 ml, and the silicon content of the obtained hydrogen fluoride solution was measured by plasma emission spectrometry, and the silicon content in the filtrate and the hydrogen fluoride solution were measured. 2. The analysis method according to claim 1, wherein the analysis method is determined by adding the silicon content in the silicon content.
(3)  プラズマ発光分光分析法において、検量線と
測定すべき試料溶液のHF−H3BO3−HcLの酸濃
度を合致せしめることを特徴とする特許請求の範囲第1
項記載の分析方法。
(3) In plasma emission spectrometry, the calibration curve and the acid concentration of HF-H3BO3-HcL in the sample solution to be measured are matched.
Analytical method described in section.
(4)  プラズマ発光分光法において、Si検量線及
び共存Tiの検量線を求めるに際し分析波長をSi。 2516A”Tl:3685八〇にて測定することを特
徴とする特許請求の範囲第1項記載の分析方法。
(4) In plasma emission spectroscopy, when determining the Si calibration curve and the calibration curve of coexisting Ti, the analysis wavelength is set to Si. 2516A''Tl: 368580.
JP7300583A 1983-04-27 1983-04-27 Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method Pending JPS59198346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7300583A JPS59198346A (en) 1983-04-27 1983-04-27 Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7300583A JPS59198346A (en) 1983-04-27 1983-04-27 Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method

Publications (1)

Publication Number Publication Date
JPS59198346A true JPS59198346A (en) 1984-11-10

Family

ID=13505795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7300583A Pending JPS59198346A (en) 1983-04-27 1983-04-27 Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method

Country Status (1)

Country Link
JP (1) JPS59198346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108156A (en) * 2005-09-14 2007-04-26 Mitsui Chemical Analysis & Consulting Service Inc Method for determining quantity of silicon in organic silicon compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108156A (en) * 2005-09-14 2007-04-26 Mitsui Chemical Analysis & Consulting Service Inc Method for determining quantity of silicon in organic silicon compound

Similar Documents

Publication Publication Date Title
JPS6123627A (en) Production apparatus for polyarylene sulfide
Aramendía et al. Al determination in whole blood samples as AlF via high-resolution continuum source graphite furnace molecular absorption spectrometry: potential application to forensic diagnosis of drowning
Gibson et al. An artificial standard for use in the estimation of haemoglobin
JP2001324427A (en) Method for high accuracy boron analysis in iron and steel
CN105973824A (en) Method for detecting heavy metals in wastewater
JPS59198346A (en) Quantitative analysis of silicon in barium titanate by plasma light emitting spectroscopic method
CN106770914A (en) Boron contents assay method in a kind of boride
Clark et al. X-Ray Identification and Crystallography of Aldehydes and Ketones as 2, 4-Dinitrophenylhydrazones
CN106644679A (en) Microwave digestion-ICP-AES (inductively coupled plasma-atomic emission spectrometry) detection method for silicon elements in plastic additives
CN1687743A (en) Method for measuring alumina in cryolite
CN103185686B (en) Particulate matter component assay method in transformer oil
Smith et al. The separation and determination of the alkali metals using perchloric acid. III. Normal butyl alcohol and ethyl acetate as mixed solvents in the separation and determination of potassium, sodium and lithium
JPS6078335A (en) Analyzing method of niobium in barium titanate
JP5525058B2 (en) Fluorine distillation apparatus and method for determining sodium monofluorophosphate in toothpaste using the same
HATCH Cupriethylene diamine as solvent for precise determination of cellulose viscosity
CN108344622B (en) Detection method for simultaneously detecting contents of multiple metalloids in food
Weaver THE COLORIMETRIC DETERMINATION OF ACETYLENE.
Harada et al. Simultaneous determination of major constituents and impurities in high-purity mullite using pressure acid decomposition
CN115436562A (en) Detection method for chlorine content of snow-melting agent
CN117074235A (en) Method for measuring chlorine element content in glass
US2998305A (en) Analytical determination of carbon in reactive metal halides
JPH05223741A (en) Analyzing method for silicon in current-limiting element
Kullbom et al. Combined Infrared and X-Ray Spectrometric Method for Determining Sulfonate and Sulfate Concentration of Detergent Range Alkylbenzene Sulfonate Solutions.
SU787374A1 (en) Method of detecting antimony compounds in ores and their processing products
JPH04120445A (en) Quantitative analysis of tellurium in electrode