JPS59198336A - Leakage detecting method and apparatus for semi-permeable membrane filtering device - Google Patents

Leakage detecting method and apparatus for semi-permeable membrane filtering device

Info

Publication number
JPS59198336A
JPS59198336A JP7456583A JP7456583A JPS59198336A JP S59198336 A JPS59198336 A JP S59198336A JP 7456583 A JP7456583 A JP 7456583A JP 7456583 A JP7456583 A JP 7456583A JP S59198336 A JPS59198336 A JP S59198336A
Authority
JP
Japan
Prior art keywords
filtration device
particles
semipermeable membrane
liquid
membrane filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7456583A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishii
清 石井
Tatsuo Goto
後藤 達乎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP7456583A priority Critical patent/JPS59198336A/en
Publication of JPS59198336A publication Critical patent/JPS59198336A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material

Abstract

PURPOSE:To make it possible to detect the leakage of germs and pyrogen by such an arrangement wherein when germs and pyrogen are to be eliminated from a liquid by means of a semi-permeable filtering device, particles are added to the liquid at the upperstreamside of the filtering device and particles are detected at the side of filtering. CONSTITUTION:A leakage detecting device is composed of a liquid supply line 4 having a semi-permeable membrane filtering device 1 and a particle mixing means 2 and a permeated liquid line 5 having a particle detecting device 3. A liquid is supplied from the liquid supply line 4 to the semi-permeable membrane filtering device 1 through a pump, etc. not shown in the figure or a water faucet, and germs and pyrogen are removed from the liquid by a semi-permeable membrane A in the device 1 and super pure water is supplied from the permeated liquid line 5 to a use point not shown in the figure. Particles are caused to enter the device 1 from the supply line 4 by the particle mixing means 2. If germs and pyrogen leak from the device 1 by some reasons, particles also flow out similarly, and those particles are detected by the particle detecting device 3 provided in the permeated liquid line 5, and the leakage of germs and pyrogen is known.

Description

【発明の詳細な説明】 本発明は半透膜濾過装置の漏洩検出方法および装置に関
し、詳しくは医薬、医療、電子工業等で使用される無菌
・無パイロジエン(以下「超純水」という)の製造装置
である半透膜濾過装置からの菌・パイロジエンの漏洩が
オンラインで即時検出可能な漏洩検出方法及びその方法
を有効に実施し得る装置に関し、供給液に粒子を混入し
、漏洩粒子を検出することにより半透膜濾過装置の安全
性を確認する方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a leak detection method and device for a semipermeable membrane filtration device, and more specifically, to a method and device for detecting leakage in a semipermeable membrane filtration device. Regarding a leakage detection method that can instantly detect the leakage of bacteria and pyrogen from a semipermeable membrane filtration device, which is a manufacturing equipment, online, and a device that can effectively implement the method, the leakage particles are detected by mixing particles into the feed liquid. The present invention relates to a method and device for confirming the safety of a semipermeable membrane filtration device.

従来から半透膜濾過装置を使用して水道水や1次処理水
から超純水を得る方法や装置は知られているが、半透膜
での濾過によシ供給液体を超純水化するシステムの最大
の問題点は、濾過装置の使用中での急激な半透膜の性能
劣化、膜の破損、濾過装置自体からのリーク等により菌
・パイロジエンが漏れだしたとしても、これをオンライ
ンで確実に且つ即座に検出する方法がないことであった
Methods and devices for obtaining ultrapure water from tap water or primary treated water using semipermeable membrane filtration devices have been known for a long time, but it is not possible to convert the supplied liquid into ultrapure water by filtration with a semipermeable membrane. The biggest problem with this system is that even if bacteria and pyrogen leak out due to rapid performance deterioration of the semipermeable membrane while the filtration device is in use, damage to the membrane, or leakage from the filtration device itself, there is no way to remove it online. However, there was no way to detect it reliably and immediately.

現在行なわれている確実な菌・パイロジエンの検出方法
は培養法、染色後に顕微鏡で計数する方法、リムラステ
スト法などがあるが、結果が出るまでにリムラステスト
法の場合30〜60分、菌培養法などでは2〜3日かか
シ、オンラインでの検出にはほど遠いものである。
Currently, reliable methods for detecting bacteria and pyrogens include culture methods, methods of counting with a microscope after staining, and Limulus test. However, it will take 2-3 days and is far from being detected online.

これらの対策としてパイロジエンの殆んどを占めるグラ
ム陰性菌由来のエンドトキシンと略同程度の分子量を持
つ溶質として着色されたブルーデキストラン(分子量2
00万)を供給液に高濃度で加え、透過側に゛吸光度測
定装置を設け、その測定結果によ)膜性能の急激な劣化
等による漏洩をオンラインで検出する提案がある(特開
昭57−39856号公報)。しかしこの検出方法は(
イ)ブルーデキストランに分子量分布があるため膜劣化
等はなくてもパイロジエンよシ小さい分子量成分が常時
透過側へ流出してきて生産される純水の純度を損う欠点
がある、(ロ)上記流出を減らす又はなくすためにはブ
ルーデキストランを精製して低分子量物を除去する必要
があり、もともと高価なブルーデキストランを更に高価
にする、(つまた検出感度を高めるために添加量を増す
と膜面での濃度分極等によシ膜濾過速度を低下させる、
等の問題点があった。
As a countermeasure to these problems, colored blue dextran (molecular weight 2
There is a proposal to add 1,000,000,000,000 yen) to the feed solution at a high concentration, install an absorbance measuring device on the transmission side, and use the measurement results to detect leakage caused by rapid deterioration of membrane performance on-line (Japanese Unexamined Patent Publication No. 57/1989). -39856). However, this detection method (
(b) Blue dextran has a molecular weight distribution, so even if there is no membrane deterioration, components with a smaller molecular weight than pyrogen always flow out to the permeate side, impairing the purity of the purified water produced, (b) The above outflow In order to reduce or eliminate blue dextran, it is necessary to purify blue dextran to remove low molecular weight substances, which makes blue dextran, which is already expensive, even more expensive. The membrane filtration rate is reduced due to concentration polarization, etc.
There were problems such as.

本発明者らは上記種々の問題点を解決すべく鋭意研究の
結果本発明に到達した。
The present inventors have arrived at the present invention as a result of intensive research to solve the various problems mentioned above.

即ち、本発明は半透膜濾過装置にょシ液体を無菌・無パ
イロジエン化する際に上記濾過装置の上流側で液体中に
粒子を加え、F流側で上記濾過装置を通過した上記粒子
を検出することを特徴とする半透膜濾過装置の漏洩検出
方法及び半透膜濾過装置と、該濾過装置への液体供給ラ
インと濾過装置からの透過液ラインと、上記供給ライン
に取付けられた粒子混入手段と、上記透過液ラインに取
付けられた粒子検出装置とからなることを特徴とする半
透膜濾過装置の漏洩検出装置を提供するものである。
That is, the present invention uses a semipermeable membrane filtration device to make a liquid sterile and pyrogen-free, adding particles to the liquid on the upstream side of the filtration device, and detecting the particles that have passed through the filtration device on the F flow side. A leak detection method for a semipermeable membrane filtration device, a semipermeable membrane filtration device, a liquid supply line to the filtration device, a permeate line from the filtration device, and a particle contamination attached to the supply line. and a particle detection device attached to the permeate line.

最初充分な除菌・除パイロジエン性能を示した半透膜濾
過装置が、使用中急激に性能劣化して菌・パイロジエン
を漏洩させる場合は、必ず膜自体・膜の接着部・シール
部材等の破損によって起っており、菌・パイロジエンの
みでなく微粒子の流出を伴なう。本発明者らの経験から
述べるなら、菌・パイロジエンの漏洩に際し微粒子成分
を伴なわない例はなく、またその微粒・ 子数は一般に
菌数より多く、また菌・パイロジエンの量と正の相関関
係がある。
If a semipermeable membrane filtration device that initially showed sufficient sterilization and pyrogen removal performance suddenly deteriorates during use and leaks bacteria and pyrogen, the membrane itself, the adhesive part of the membrane, the sealing member, etc. will be damaged. This is caused by the outflow of not only bacteria and pyrogens but also particulates. Based on the experience of the present inventors, there are no cases in which microparticles are not accompanied by leakage of bacteria and pyrogen, and the number of microparticles and particles is generally greater than the number of bacteria, and there is a positive correlation with the amount of bacteria and pyrogen. There is.

超純水装置が正常に作動している場合でも透過水中の微
粒子を皆無にすることはできない。
Even if the ultrapure water equipment is operating normally, it is not possible to completely eliminate fine particles in the permeated water.

例えば現在到達している最高水準の超純水(細菌数く1
ケ/20t、エンドトキシン<0.01ng/!l)に
おいても0.2μ以上の微粒子は10〜10外何程度存
在する(0.2μマイクロフイルターで濾過したのち走
査電子顕微鏡で計数)0しかし粒径1μ以上の微粒子は
ロケ肩 である。超純水装置が劣化したり、管理の悪い
状態に陥ったシして、透過水中に細菌が1〜10ヶ〜以
上見出され、エンドトキシン濃度が0.1 ng/ra
t以上になると、粒径1μ以上の粒子が10〜10ケA
以上検出される様になる。従って、現在の技術水準から
考えれば細菌と同程度以上の大きさの微粒子、特に1μ
以上の微粒子数を測定することによシ、よシ高感度に菌
・パイロジエンの漏洩を検出することができる訳である
。しかし、半透膜濾過装置で超純水化しようとする液体
は既に前処理で精製され、微粒子成分は僅かに含有して
いるだけの場合が多いし、微粒子成分が少なくなればな
るなどその検出には困難をきたし、現在市販されている
微粒子検出器では僅かの漏洩は見逃される恐れがある0 そこで本発明では適当な粒径の微粒子を適当量液体に加
えておき、透過液側に設けた粒子検出装置で漏洩粒子を
敏感に且つ即座に検出するようにし、使用中不意に起る
かも知れない濾過装置からの菌・パイロジエンの漏洩を
確実にキャッチできるようにした。そして供給液体に微
粒子を加えることは、高分子量溶質を添加する場合と異
なり膜の透過速度を低下させず、逆に条件によって微粒
子の添加によシ膜面を粒子が流動し膜面を擦洗すること
で透過速度の低下を防止できる場合もある。
For example, the highest level of ultra-pure water currently available (with 100% bacteria)
Ke/20t, endotoxin <0.01ng/! In 1), there are about 10 to 10 particles with a diameter of 0.2 μ or more (counted using a scanning electron microscope after filtering with a 0.2 μ microfilter). If the ultrapure water equipment has deteriorated or is poorly managed, 1 to 10 or more bacteria are found in the permeated water, and the endotoxin concentration is 0.1 ng/ra.
When the temperature exceeds t, there are 10 to 10 particles with a particle size of 1μ or more.
More than that will be detected. Therefore, considering the current state of technology, microparticles of the same size or larger as bacteria, especially 1μ
By measuring the above number of particles, leakage of bacteria and pyrogen can be detected with high sensitivity. However, the liquid to be ultra-pure water using a semipermeable membrane filtration device has already been purified through pretreatment and often contains only a small amount of particulate components. Therefore, in the present invention, a suitable amount of fine particles of an appropriate particle size is added to the liquid and placed on the permeated liquid side. The particle detection device is designed to sensitively and immediately detect leaked particles, making it possible to reliably detect leakage of bacteria and pyrogen from the filtration device that may occur unexpectedly during use. Unlike adding high molecular weight solutes, adding fine particles to the supplied liquid does not reduce the permeation rate of the membrane; on the contrary, depending on the conditions, the addition of fine particles causes the particles to flow over the membrane surface and scrub the membrane surface. In some cases, this can prevent a decrease in the permeation rate.

本発明で使用される微粒子は微粒子検出装置で容易に確
実に検出される大きさであること(0,01〜100 
/nrL>、菌及び/又はパイロジエンが膜濾過装置を
リークする通路を通って流出できる小ささであること、
菌及び/又はパイロジエンが完全に除去される場合は同
じく完全に除去される大きさく > 0.5μm)であ
ることが必要である。
The particles used in the present invention must have a size that can be easily and reliably detected by a particle detection device (0.01 to 100
/nrL>, small enough to allow bacteria and/or pyrogen to escape through the passageway leaking the membrane filtration device;
If bacteria and/or pyrogen are to be completely removed, it is also necessary that the size of the particles be completely removed (>0.5 μm).

従って本発明で使用される粒子の大きさは粒径0.5μ
m〜100μmであり、好ましくは1μm〜20μmで
ある。本発明で用いられる粒子としては1例えばポリス
チレンラテックスビーズ、スチレン/ブタジェン共重合
体ラテックスビーズ、スチレン/ジビニルベンゼン共重
合体ラテックスビーズ、ホルマジン(ヘキサメチレンテ
トラミン/硫酸ヒドラジン共重合体)などのポリマービ
ーズが挙げられる。
Therefore, the size of the particles used in the present invention is 0.5 μm.
m to 100 μm, preferably 1 μm to 20 μm. Examples of particles used in the present invention include polymer beads such as polystyrene latex beads, styrene/butadiene copolymer latex beads, styrene/divinylbenzene copolymer latex beads, and formazine (hexamethylenetetramine/hydrazine sulfate copolymer). Can be mentioned.

まだ、添加する微粒子の濃度は、漏出する微粒子数が測
定器で検出される程度が必要である。
However, the concentration of the added particulates must be such that the number of leaked particulates can be detected by a measuring device.

現在市販されている微粒子測定器で最も高感度のものは
光散乱式のもので1μ前後の微粒子数で103〜109
7箕、濃度で10〜102ppb 程度が限度である。
The most sensitive particulate measuring device currently on the market is a light scattering type, which measures 103 to 109 particulates around 1μ in size.
The maximum concentration is about 10 to 102 ppb.

また、リーク等によって超純水水質が劣化した場合の供
給水中濃度と透過水中濃度の比は殆んどの場合102〜
101′程度である。
In addition, when the quality of ultrapure water deteriorates due to leaks, etc., the ratio of the concentration in the supplied water to the concentration in the permeated water is 102~
It is about 101'.

従って、供給水中の微粒子濃度としては1〜1103p
p程度が必要である。
Therefore, the fine particle concentration in the supplied water is 1 to 1103 p.
About p is required.

次に本発明の実施例を図面により説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の装置の代表的実施例を示すフロー図で
ある。本発明の漏洩検出装置は半透膜濾過装置1と、粒
子混入手段2を有する液体供給ライン4と、粒子検出装
置3を有する透過液ライン5とからなる。
FIG. 1 is a flow diagram illustrating a representative embodiment of the apparatus of the present invention. The leak detection device of the present invention comprises a semipermeable membrane filtration device 1, a liquid supply line 4 having a particle mixing means 2, and a permeate line 5 having a particle detection device 3.

液体は液体供給ライン4からポンプ等(図示せず)又は
水道口から半透膜濾過装置1に供給され濾過装置1内の
半透膜Aにより菌やノくイロジエンを除去され、超純水
として透過液ライン5からユースポイント(図示せず)
に供給され −る。粒子は粒子混入手段2によシ供給ラ
イン4から濾過装置1に入る。何かの原因で菌・ノくイ
ロジエンが濾過装置1から漏洩すると、粒子も同じよう
に流出し、排出ライン5に設けられた粒子検出装置3に
より粒子が検出され、菌・ノ(イロジエンの漏洩が分る
。粒子装置3としては市販の高感度光散乱式粒子検出器
(例えば日本精密光学製積分球式比濁計EIIP−M−
1−8を使うと良いし、粒子混入手段2としては注射器
を使っても良いし微量注入装置を使っても良い0又粒子
検出装置3と液体供給装置(図示せず)とを連動させ、
異常の検出によシ液体供給を停止する等の自動化が可能
なことは言を待たない。
The liquid is supplied from a liquid supply line 4 to a pump, etc. (not shown) or from a water outlet to the semipermeable membrane filtration device 1, where bacteria and nitrogen are removed by the semipermeable membrane A in the filtration device 1, resulting in ultrapure water. From permeate line 5 to point of use (not shown)
- is supplied to. Particles enter the filtration device 1 via a supply line 4 via a particle incorporation means 2 . If bacteria and bacteria leak from the filtration device 1 for some reason, the particles also leak out, and the particles are detected by the particle detection device 3 installed in the discharge line 5, preventing the leakage of bacteria and bacteria. As the particle device 3, a commercially available high-sensitivity light scattering particle detector (for example, an integrating sphere nephelometer EIIP-M- manufactured by Nippon Seimitsu Kogaku Co., Ltd.) is used.
1-8 may be used, and the particle mixing means 2 may be a syringe or a microinjection device.Also, the particle detection device 3 and the liquid supply device (not shown) are linked,
It goes without saying that automation such as stopping the liquid supply upon detecting an abnormality is possible.

第2図は、菌・ノくイロジエンを完全に阻止する第2の
半透膜濾過装置6を粒子検出装置3の下流側に設けた実
施例であり、超純水供給ラインの信頼性を更に高めた例
である。
Figure 2 shows an embodiment in which a second semipermeable membrane filtration device 6 that completely blocks bacteria and nitrogen is installed downstream of the particle detection device 3, further improving the reliability of the ultrapure water supply line. This is an example of increasing the value.

第3図は、第2図での例に液体供給側で循環回路7を設
けた例でアシ、半透膜Aの膜面に粒子の停滞を防止する
ように構成した例である0又、第4図は他の実施例を示
すが、図より内容は理解されよう。
FIG. 3 shows an example in which a circulation circuit 7 is provided on the liquid supply side in the example shown in FIG. FIG. 4 shows another embodiment, and the content will be better understood from the figure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図はそれぞれ本発明の実施例を示すフローシー
トである0 1・・・半透膜濾過装置 2・・・粒子混入手段 3・・・粒子検出装置 4・・・液体供給ライン 5・・・透過液ライン 6・・・第2の半透膜濾過装置 7・・・循環回路 A・・・半透膜 出願人代理人  古 谷    磐 第  1  図 第  4  図 7
Figures 1 to 4 are flow sheets showing embodiments of the present invention, respectively. ...Permeate line 6...Second semipermeable membrane filtration device 7...Circulation circuit A...Semipermeable membrane Applicant's agent Iwata Furuya 1 Figure 4 Figure 7

Claims (1)

【特許請求の範囲】 1 半透膜濾過装置によシ液体を無菌・無パイロジエン
化する際に上記濾過装置の上流側で液体中に粒子を加え
、濾過側で上記濾過装置を通過した上記粒子を検出する
ことを特徴とする半透膜濾過装置の漏洩検出方法。 2 粒子の粒径が0.5μrrL〜100μmである特
許請求の範囲第1項記載の半透膜濾過装置の漏洩検出方
法。 3 粒子の検出を光散乱式粒子検出器で行う特許請求の
範囲第1項又は第2項記載の半透膜濾過装置の漏洩検出
方法。 4 半透膜濾過装置と、該濾過装置への液体供給ライン
と濾過装置からの透過液ラインと、上舵供給ラインに取
付けられた粒子混入手段と、上記透過液ラインに取付け
られた粒子検出装置とからなることを特徴とする半透膜
濾過装置の漏洩検出装置0 5 粒子検出装置が光散乱式粒子検出器である特許請求
の範囲第4項記載の半透膜濾過装置の漏洩検出装置。 6 液体供給側に液体の循環回路を設けた特許請求の範
囲第4項又は第5項記載の半透膜濾過装置の漏洩検出装
置。 7 粒子検出装置の下流側に混入粒子を完全に阻止する
第2の半透膜濾過装置を設けた特許請求の範囲第4項記
載の半透膜濾過装置の漏洩検出装置。
[Claims] 1. When a semipermeable membrane filtration device is used to make a liquid sterile and pyrogen-free, particles are added to the liquid on the upstream side of the filtration device, and the particles passed through the filtration device on the filtration side. A leakage detection method for a semipermeable membrane filtration device, characterized by detecting. 2. The leakage detection method for a semipermeable membrane filtration device according to claim 1, wherein the particles have a particle size of 0.5 μrrL to 100 μm. 3. A leakage detection method for a semipermeable membrane filtration device according to claim 1 or 2, wherein particles are detected using a light scattering particle detector. 4. A semipermeable membrane filtration device, a liquid supply line to the filtration device, a permeate line from the filtration device, a particle mixing means attached to the upper rudder supply line, and a particle detection device attached to the permeate line. A leak detection device for a semipermeable membrane filtration device, characterized in that the particle detection device is a light scattering type particle detector. 6. A leak detection device for a semipermeable membrane filtration device according to claim 4 or 5, wherein a liquid circulation circuit is provided on the liquid supply side. 7. A leak detection device for a semipermeable membrane filtration device according to claim 4, further comprising a second semipermeable membrane filtration device that completely blocks mixed particles on the downstream side of the particle detection device.
JP7456583A 1983-04-27 1983-04-27 Leakage detecting method and apparatus for semi-permeable membrane filtering device Pending JPS59198336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7456583A JPS59198336A (en) 1983-04-27 1983-04-27 Leakage detecting method and apparatus for semi-permeable membrane filtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7456583A JPS59198336A (en) 1983-04-27 1983-04-27 Leakage detecting method and apparatus for semi-permeable membrane filtering device

Publications (1)

Publication Number Publication Date
JPS59198336A true JPS59198336A (en) 1984-11-10

Family

ID=13550863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7456583A Pending JPS59198336A (en) 1983-04-27 1983-04-27 Leakage detecting method and apparatus for semi-permeable membrane filtering device

Country Status (1)

Country Link
JP (1) JPS59198336A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019025456A (en) * 2017-08-02 2019-02-21 野村マイクロ・サイエンス株式会社 Method and device for producing injection water
KR20230129197A (en) * 2017-03-07 2023-09-06 1934612 온타리오 인코포레이티드 Systems and methods of marker based direct integrity testing of membranes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230129197A (en) * 2017-03-07 2023-09-06 1934612 온타리오 인코포레이티드 Systems and methods of marker based direct integrity testing of membranes
JP2019025456A (en) * 2017-08-02 2019-02-21 野村マイクロ・サイエンス株式会社 Method and device for producing injection water

Similar Documents

Publication Publication Date Title
JP5101284B2 (en) How to test the separation module
CN115608165A (en) Asymmetric cellulose filter membrane for removing virus and preparation method thereof
JP2001170458A (en) Method of detecting membrane breaking and fouling in membrane cleaning
US20090299651A1 (en) Filtration testing system
Vatanpour et al. Synergistic effect of silica nanoparticles in the matrix of a poly (ethylene glycol) diacrylate coating layer for the surface modification of polyamide nanofiltration membranes
JPH08252440A (en) Method for detecting breakage of membrane and device therefor
JPS59198336A (en) Leakage detecting method and apparatus for semi-permeable membrane filtering device
WO2014098059A1 (en) Method for hydrophilizing reverse osmosis membrane
Kruithof et al. Development of a membrane integrity monitoring strategy for the UF/RO Heemskerk drinking water treatment plant
Bellara et al. Virus removal from bioproducts using ultrafiltration membranes modified with latex particle pretreatment
JP4033095B2 (en) Membrane filtration device membrane damage detection method and apparatus therefor
JP3807552B2 (en) Membrane filtration method and apparatus for membrane damage detection
JP3401541B2 (en) Membrane separation device and its operation method
JP2000342936A (en) Method and device for detecting membrane damage of hollow fiber membrane filter apparatus
JP3560708B2 (en) Membrane separation device, its leak detection method and its operation method
KR20110127011A (en) Method for membrane integrity test using reduction of surface tension
JP2009204437A (en) Integrity testing device
JP2015110212A (en) Hollow fiber membrane for microfiltration
CN208824282U (en) A kind of reverse osmose pure-water equipment
JPH04142445A (en) Completeness testing method
JP3232425B2 (en) Filtration membrane leak detection method and device
JPH11165046A (en) Defect detecting method of hollow fiber membrane module
JPS59183807A (en) Membrane filtration
JP2004305998A (en) Method and apparatus for inspecting defect in water purifying cartridge
Eudailey Membrane filters and membrane-filtration processes for health care