JPS59198120A - Tubular molding and manufacture thereof - Google Patents

Tubular molding and manufacture thereof

Info

Publication number
JPS59198120A
JPS59198120A JP58073466A JP7346683A JPS59198120A JP S59198120 A JPS59198120 A JP S59198120A JP 58073466 A JP58073466 A JP 58073466A JP 7346683 A JP7346683 A JP 7346683A JP S59198120 A JPS59198120 A JP S59198120A
Authority
JP
Japan
Prior art keywords
pps
tubular
molding
reinforcing fibers
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58073466A
Other languages
Japanese (ja)
Inventor
Hirokazu Kobayashi
裕和 小林
Akira Yoshioka
章 吉岡
Minoru Kitanaka
北中 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58073466A priority Critical patent/JPS59198120A/en
Publication of JPS59198120A publication Critical patent/JPS59198120A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/566Winding and joining, e.g. winding spirally for making tubular articles followed by compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain a novel tubular molding excellent in the mechanical nature and resistances to heat and chemicals by winding an integral composite of a specified length of a reinforcing fiber and polyphenylene sulfide around a mandrel as melted to perform a compression molding. CONSTITUTION:A reinforcing fiber (preferably carbon fiber) 3mm. or more long and polyphenylene sulfide (hereafter called pps) are integrated in such a manner that the content of the reinforcing fiber in the molding reaches 10-70vol% to form a filamentous or sheet-shaped product. Then, this product is wound around a mandrel evenly as heated upto the melting temperature of the pps and then, fed to a pair of tubular mold or tubular rolls to obtain a tubular molding by a compression molding. USE:This is used for driving shafts, pipings requiring resistances to heat and chemicals.

Description

【発明の詳細な説明】 本発明は補強m維を含有するポリフェニレンスルフィド
からなる機械的性質、耐熱性および耐薬品性のすぐれた
管状成形品およびその効率的な製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tubular molded article made of polyphenylene sulfide containing reinforcing m-fibers and having excellent mechanical properties, heat resistance and chemical resistance, and an efficient method for producing the same.

ポリフェニレンスルフィド(以下PPSと略称する)は
耐熱性および耐薬品性がすぐれ、各種配管などの管状用
途に適した性能を有しているが、その成形−にの問題か
らいまだに満足すべき管状成形品としては実用化されて
いないのが現状である。すなわち耐用成形によりPPS
の管状成形品を得ようとする際には、この方法が本来管
状物に適さないことに加えて、管状物が部分的に配向し
、たとえPPSに補強繊維を配合して射出成形に供して
も、成形時に補強繊維が切断され、その繊維長が著しく
減少するため機械的性質が不十分で、しかも補強繊維の
配向やウェルド強度の影響により望ましい特性を有する
管状物を得ることができない。また管状物の成形法とし
ては最も一般的な押出成形によりPPSの管状成形品を
成形する際には、PPS自体の溶融粘度が低すぎて成形
の実施が困難であり、たとえ補強繊維を加えたとしても
この問題は解決できない。さらに圧縮成形の場合にはP
PSの冷却速度が遅いために結晶化の進行が著しく、結
晶化収縮にともなう割れが発生して良好な管状成形品を
得ることができない。
Polyphenylene sulfide (hereinafter abbreviated as PPS) has excellent heat resistance and chemical resistance, and has performance suitable for tubular applications such as various types of piping. The current situation is that it has not been put into practical use. In other words, by durable molding, PPS
When trying to obtain a tubular molded product, this method is inherently unsuitable for tubular products, and the tubular product may be partially oriented. However, the reinforcing fibers are cut during molding and the fiber length is significantly reduced, resulting in insufficient mechanical properties, and furthermore, it is impossible to obtain a tubular product with desirable properties due to the influence of the orientation of the reinforcing fibers and weld strength. Furthermore, when molding PPS tubular products by extrusion molding, which is the most common method for molding tubular products, the melt viscosity of PPS itself is too low, making it difficult to mold. However, this problem cannot be solved. Furthermore, in the case of compression molding, P
Since the cooling rate of PS is slow, crystallization progresses significantly and cracks occur due to crystallization shrinkage, making it impossible to obtain a good tubular molded product.

そこで本発明者らは機械的性質、耐熱性および耐薬品性
などが均衡にすぐれたPPSからなる管状成形品を効率
的に製造することを目的として鋭意検討した結果、3絹
以上の長さを有する補強長繊維をPPSと一体化せしめ
、次いでその複合物を溶融状態でマンドレルに巻きつけ
、圧縮成形することにより、補強amの繊維長を阻害す
ることがなく、目的とする性能を十分保持した新規なP
PS管状成形品が容易に得られることを見出し、本発明
に到達した。
Therefore, the present inventors conducted intensive studies with the aim of efficiently manufacturing tubular molded products made of PPS with excellent balance in mechanical properties, heat resistance, chemical resistance, etc., and found that By integrating the reinforcing long fibers with PPS, then winding the composite in a molten state around a mandrel and compression molding, the fiber length of the reinforcing am was not inhibited and the desired performance was sufficiently maintained. new P
We have discovered that PS tubular molded products can be easily obtained, and have arrived at the present invention.

すなわち本発明は補強m維を10〜b %含有するPPSからなり、補強a雑が実質的に3寵以
上の長さを保持していることを特徴とする管状成形品お
よび長さ3 zm以上の補強繊維およびPPSを一体化
してなる線状物またはシート状物を、PPSが溶融する
温度に加熱した状態でマンドレルに均密に巻きつけ、次
いでこれを一対の管状金型または管状ロールに供給して
圧縮成形することを特徴とする実質的に3問以1−の長
さを保持した補強繊維を10〜70容量%含有するPP
S管状成形品の製造方法を提供するものである。
That is, the present invention relates to a tubular molded product made of PPS containing 10 to 10% of reinforcing fibers, and characterized in that the reinforcing material has a length of substantially 3 cm or more, and a tubular molded product with a length of 3 zm or more. A linear or sheet-like product made by integrating reinforcing fibers and PPS is heated to a temperature at which PPS melts and evenly wound around a mandrel, and then fed to a pair of tubular molds or tubular rolls. PP containing 10 to 70% by volume of reinforcing fibers that substantially maintain a length of 3 or more, characterized by compression molding.
The present invention provides a method for manufacturing an S-tubular molded product.

本発明のPPS管状成形品は実質的に3酊以上の長さを
保持した補強繊維を10〜70容量%含有することによ
って、補強効果が十分なレベルに達し、しかも成形時の
結晶化収縮に起因する割れの発生が回避されるため、そ
の機械的性質は極めて高い水準となる。また本発明のP
PS管状成形品はPPS本来のすくれた耐熱性および耐
薬品性を保持しているため、とくに高度な機械的性質が
要求される用途以外にも、濃硫酸と濃硝酸を除く酸、ア
ルカリ、塩および各種有機薬品や油などの配管用途に極
めて有用である。さらに本発明の製造方法によると%P
P3− 8管状成形品は、長手方向および円周方向ともに連続的
に分布した補強繊維により補強されることが可能である
ため、均一な機械的性質が得られ、とくに補強繊維を規
則的に配列した構成では、補強繊維分率を大きくするこ
とが可能で、均一かつ極めてすぐれた機械的性質を有す
る管状成形品を得ることが可能である。
The PPS tubular molded product of the present invention has a sufficient reinforcing effect by containing 10 to 70% by volume of reinforcing fibers with a length of substantially 3 mm or more, and is also effective against crystallization shrinkage during molding. Since the occurrence of cracks caused by this process is avoided, its mechanical properties are of an extremely high level. Also, P of the present invention
Since PS tubular molded products retain the excellent heat and chemical resistance inherent to PPS, they can be used for applications that require particularly high mechanical properties, as well as for acids, alkalis, and alkalis other than concentrated sulfuric acid and concentrated nitric acid. Extremely useful for piping applications such as salt and various organic chemicals and oils. Furthermore, according to the production method of the present invention, %P
Since the P3-8 tubular molded product can be reinforced with reinforcing fibers continuously distributed in both the longitudinal and circumferential directions, uniform mechanical properties can be obtained, especially when the reinforcing fibers are regularly arranged. With this configuration, it is possible to increase the reinforcing fiber fraction, and it is possible to obtain a tubular molded product having uniform and extremely excellent mechanical properties.

本発明で用いるPPSとは構造式+S)−で示される縁
り返し単位を90モル%IJ、 k 、好ましくは95
モル%す、上含む重合体であり、上記繰り返し単位が9
0モル%未満では、ポリマの結晶性が十分でなく、耐熱
性および耐薬品性の低下を招くため好ましくない。また
PPSは繰り返し単位の10モル%未満をたとえば下記
の構造式を有する繰り返し単位で構成するとと4− これらPPSは温度300℃、みかけの剪断速度200
8eC−1の条件下で測定した溶融粘度が50〜500
00 poise 、好ましくは100〜5000 p
oise の範囲にあることが適当であり、溶融粘度が
50 poise 以、下では十分な機械的性質が発現
せず、また5 0000 poise 以」−テハ補強
繊維とPPSとを複合する際に補強繊維間隙へのPPS
の含浸が不十分となって望ましい機械的性質が期待でき
ないため適当ではない。
The PPS used in the present invention is composed of 90 mol% IJ, k, preferably 95
Mol% is a polymer containing the above, and the above repeating unit is 9
If it is less than 0 mol %, the crystallinity of the polymer will not be sufficient, leading to a decrease in heat resistance and chemical resistance, which is not preferable. In addition, if less than 10 mol% of the repeating units in PPS are composed of repeating units having the following structural formula, 4- these PPS will have a temperature of 300°C and an apparent shear rate of 200°C.
Melt viscosity measured under 8eC-1 condition is 50-500
00 poise, preferably 100-5000 p
If the melt viscosity is less than 50 poise, sufficient mechanical properties will not be exhibited, and if the melt viscosity is less than 50,000 poise, reinforcing fibers are PPS into the gap
This is not suitable because desired mechanical properties cannot be expected due to insufficient impregnation.

なお本発明で用いるPPSには酸化防止剤、熱安定剤、
滑剤、結晶核剤、紫外線吸収剤、着色剤、充填剤および
離型剤などの通常の添加剤のほか、表面平滑性などを改
善する目的でさらに短繊維を含有せしめること、あるい
は本発明の効果を阻害しない範囲で他種ポリマを少量ブ
レンドすることも可能である。
Note that the PPS used in the present invention contains antioxidants, heat stabilizers,
In addition to ordinary additives such as lubricants, crystal nucleating agents, ultraviolet absorbers, colorants, fillers, and mold release agents, short fibers may be further included for the purpose of improving surface smoothness, or the effects of the present invention. It is also possible to blend a small amount of other types of polymers within a range that does not inhibit.

本発明で用いる補強繊維は、3ff以上の長さを有する
ことが必要であり、補強効果の意味では5 wm以上の
長さを有することが一層好適である。これらの補強繊細
は連続および不連続いずれの形態でもよく、また製編織
された形態、規則的に配列された形態、あるいはランダ
ムに分布された形態およびそれらを組合せた形態のいず
れをとることも可能であるが、長繊維であることが重要
であり、短繊維を用いたのでは、機械的性質の補強効果
が十分でなく、成形時の結晶化収縮に起因する割れを防
止できないため好ましくない。
The reinforcing fibers used in the present invention need to have a length of 3 ff or more, and in terms of the reinforcing effect, it is more preferable that they have a length of 5 wm or more. These reinforcing elements can be either continuous or discontinuous, and can be woven, regularly arranged, randomly distributed, or combinations thereof. However, it is important to use long fibers; using short fibers is not preferable because the effect of reinforcing mechanical properties is insufficient and cracking due to crystallization shrinkage during molding cannot be prevented.

本発明で用いる補強繊維の種類は、PPSの溶融成形温
度において溶融または分解しないものであれば特に制限
はなく、ガラス繊維、金属繊維、アスベス1〜繊維およ
び炭線繊維などの無機繊維や、芳香族ポリアミド繊維な
どの有機繊維などが挙げられ、これらのうち一種または
二種以−にを組合せて用いることができる。またこれら
補強繊維はPPsとの密着性を改善するための各種の処
理を施して用いることもできる。
The type of reinforcing fiber used in the present invention is not particularly limited as long as it does not melt or decompose at the melt-molding temperature of PPS, and may include inorganic fibers such as glass fiber, metal fiber, asbestos 1-fiber and charcoal fiber, and aromatic fiber. Examples include organic fibers such as group polyamide fibers, and one type or a combination of two or more of these can be used. These reinforcing fibers can also be used after being subjected to various treatments to improve their adhesion to PPs.

なお補強繊維の中でも機械特性の改善効果および耐薬品
性の意味で炭素繊維が特に好ましく用いられ得る。
Among the reinforcing fibers, carbon fibers are particularly preferably used from the viewpoint of improving mechanical properties and chemical resistance.

本発明における管状成形品中の補強繊維の含有量は10
〜70容量%、好ましくは20〜60容量%の範囲にあ
るのが適当である。補強繊維の含有量が10容量%未満
では、単繊維が十分な補強効果を発現する長繊維補強で
もなお補強効果が不十分で、しかも成形時の割れ防止が
困難であり、また70容量%を超すと、補強繊細間隙を
完全にPPSで満たすことが困難となり、望ましい機械
的性質が期待できないため好ましくない。
The content of reinforcing fibers in the tubular molded product in the present invention is 10
A suitable range is from 20 to 60% by volume, preferably from 20 to 60% by volume. If the reinforcing fiber content is less than 10% by volume, the reinforcing effect is still insufficient even with long fiber reinforcement, in which single fibers exhibit sufficient reinforcing effect, and it is difficult to prevent cracking during molding. If this is exceeded, it becomes difficult to completely fill the reinforcing delicate gaps with PPS, and desirable mechanical properties cannot be expected, which is not preferable.

本発明の管状成形品を製造する際に用いる補強繊維とP
PSとを一体化してなる線状物とは、実質的に数百本〜
数十万本、好ましくは1000〜30000本の補強繊
維をたて方向に集束した束に、PPSを含浸または付着
してなる線状7− 物であって、含まれる補強繊維の撚りの有無、繊維長の
連続および不連続は適宜選択できる。
Reinforcing fibers and P used in manufacturing the tubular molded product of the present invention
The linear object that is integrated with PS is actually several hundred pieces.
A linear product made by impregnating or adhering PPS to a bundle of several hundred thousand reinforcing fibers, preferably 1000 to 30000 reinforcing fibers in the warp direction, and whether or not the reinforcing fibers contained are twisted; Continuous or discontinuous fiber length can be selected as appropriate.

補強繊維束にPPSを含浸または付着せしめる方法にと
くに制限はなく、たとえば(1)溶融状態のPPS中に
補強繊維束を浸漬または通過させる方法、(2)通常の
ワイヤーコーティング用のダイスを用いて補強繊維束を
溶融PPSで被覆する方法、(3)粉末状のPPSを補
強繊維束に付着させPPSの融点以」−に加熱する方法
および(4)前記(1)、(2)または(3)の操作に
引き続き、PPSの融点以上の温度において、少なくと
も一対のロール間を線状物のたて方向に通過せしめる方
法などが挙げられるが、とくに(4)の方法は、線状物
の状態で補強繊維間隙のPPSによる完全充填が実現さ
れ、これにより一層補強効率のすぐれた管状成形品の取
得が容易となる。
There are no particular restrictions on the method of impregnating or adhering PPS to the reinforcing fiber bundle, such as (1) immersing or passing the reinforcing fiber bundle in molten PPS, (2) using a normal wire coating die. A method of coating a reinforcing fiber bundle with molten PPS, (3) a method of attaching powdered PPS to a reinforcing fiber bundle and heating it to a temperature above the melting point of PPS, and (4) a method of (1), (2) or (3) above. ), followed by a method in which the linear object is passed between at least a pair of rolls in the vertical direction at a temperature higher than the melting point of PPS, etc., but method (4) is particularly effective because the condition of the linear object is Complete filling of the reinforcing fiber gaps with PPS is achieved in this way, which makes it easier to obtain a tubular molded product with even better reinforcement efficiency.

また本発明における補強繊維とPPSとを一体化してな
るヅート状物とは、シート状物中における補強繊細の形
態が、補強繊維を集束したストランドを製編織してなる
織物、編物、組物8− および網状物などの形態、連続長または不連続長の補強
繊維を規則的またはランダムに配列シてなる形態であっ
て、これら補強繊維とPPSとを一体化してなるシート
状物であり、その厚さに特に制限はないが、管状成形品
の成形の容易さの意味では、より薄いものほど好ましく
用いられ得る。補強繊維とPPSとを一体化してシー1
−状物にする方法にも特に制限はなく 、+11補強繊
維とPPSとを重ね合せて加熱プレスする方法、(2)
クロスへラドダイを用いて補強繊維にPPSを押出被覆
する方法および(3)補強繊維にPPSを押出積層する
方法などが挙げられ、補強繊維が製編織された形態をと
らず規則的またはランダムに配列された形態の場合は、
本発明における前記線状物を規則的またはランダムに配
列せしめて加熱一体化する方法も可能である。また加熱
一体化の方法としては、一対の無端ベルト間に補強繊維
とPPSとを供給して加熱、加圧、冷却を連続的に実施
する方法もとり得る。
In addition, in the present invention, the string-like product formed by integrating reinforcing fibers and PPS refers to a woven fabric, a knitted fabric, a braided fabric, etc., which is formed by weaving and weaving strands in which reinforcing fibers are bundled. - A sheet-like product in the form of a mesh or a regular or random arrangement of reinforcing fibers of continuous or discontinuous length, which is made by integrating these reinforcing fibers with PPS; There is no particular restriction on the thickness, but from the standpoint of ease of molding into a tubular molded product, thinner materials are preferably used. Sea 1 by integrating reinforcing fiber and PPS
There are no particular restrictions on the method of forming a --shaped material, including a method of superimposing +11 reinforcing fibers and PPS and hot pressing; (2)
Examples include a method in which PPS is extruded and coated on reinforcing fibers using a cross-layer rad die, and (3) a method in which PPS is extruded and laminated on reinforcing fibers, in which the reinforcing fibers are not woven or woven but are arranged regularly or randomly. In the case of the form
A method of arranging the linear objects in the present invention regularly or randomly and heating and integrating them is also possible. Further, as a method of heating and integrating, a method may be adopted in which reinforcing fibers and PPS are supplied between a pair of endless belts and heating, pressurization, and cooling are performed continuously.

本発明における補強繊維とPPSとを一体化してなる線
状物またはシー1−状物をマンドレルに巻きつける方法
は、PPSが溶融状態にあれば特に制限はなく、線状物
を巻きつける方法においては、適宜マンドレル軸方向と
線状物とのなす角を選択して均密に巻きつけることが可
能であり、シー1〜状物を巻きつける方法においては、
ソート状物の幅を管状物の長さと一致させて巻きつける
方法、リボン状のシート状物をマンドレル軸方向と任意
の角度をなして巻きつける方法およびこれらを組合せj
こ方法などをとることが可能である。この際マンドレル
温度および雰囲気温度は必ずしもPPSの融点以上であ
る必要はないが、各温度が高い程、成形品内面の表面状
態の改善および成形品中のボイドの低減の意味で好まし
い。またマンドレルの形態は、若干の抜き勾配を設ける
ことが可能であり、離型剤を塗布することも可能である
。なおマンドレルに巻きつける操作は、PPSと補強繊
維とを一体化して線状物またはシート状物を得る工程に
引き続き、P I) Sの溶融状態のまま冷却すること
なく行なうのが効率士すぐれ、巻きつける工程と平行し
て、線状物またはシーl−秋物をロール4(どでマンド
レルに圧着することも可能である。
In the present invention, there is no particular restriction on the method of winding the linear or sheet-like material formed by integrating reinforcing fibers and PPS around a mandrel as long as the PPS is in a molten state. can be wound evenly by appropriately selecting the angle between the mandrel axis direction and the linear object, and in the method of winding the sheet 1 ~ shaped object,
A method of winding a sorted material with the width matching the length of a tubular material, a method of winding a ribbon-like sheet material at an arbitrary angle with the mandrel axis direction, and a combination of these methods.
It is possible to take this method. At this time, the mandrel temperature and the ambient temperature do not necessarily have to be higher than the melting point of PPS, but higher temperatures are preferable in terms of improving the surface condition of the inner surface of the molded product and reducing voids in the molded product. Further, the shape of the mandrel allows a slight draft angle to be provided, and it is also possible to apply a mold release agent. It is best practice to wind the PPS around the mandrel in a molten state without cooling it, following the process of integrating PPS and reinforcing fibers to obtain a linear or sheet-like product. Parallel to the winding process, it is also possible to press the wire or seal onto the mandrel with a roll 4.

本発明における一対の管状金型または管状ロールにより
実質的に圧縮成形する方法は、PPSの融点以上の温度
の金型で行なう方法およびPPSの融点り、下の温度の
金型またはロールで行なう方法のいずれかを選択するこ
とが可能である。マンドレルに巻きつけられた線状物ま
たはシー1・状物中でPPSが補強繊維の中に十分に含
浸していない場合、またはマンドレルに巻きつけられた
PPSがすでに固化している場合には、ppsの融点以
上の温度に設定した一対の金型により圧縮成形する必要
があり、一方含浸が十分であり、かつPPSが溶融状態
にある場合は%PPSの融点以下の温度に設定した金型
で圧縮成形を行ケうか、あるいはPPSの融点以下の温
度に設定された、管状成形品の断面11− に対応した空隙を有する一対のロール間を通過せしめる
ことにより賦形と冷却を同時に行なうことも可能であり
、特に後者の方法は生産性の意味ですぐれている。
The method of substantially compression molding using a pair of tubular molds or tubular rolls in the present invention includes a method of performing compression molding with a mold at a temperature above the melting point of PPS, and a method of performing the compression molding with a mold or rolls at a temperature below the melting point of PPS. It is possible to select either one. If PPS is not sufficiently impregnated into the reinforcing fibers in the linear or sheet-like material wound around the mandrel, or if the PPS wound around the mandrel has already solidified, It is necessary to perform compression molding with a pair of molds set at a temperature above the melting point of pps, while if the impregnation is sufficient and the PPS is in a molten state, a mold set at a temperature below the melting point of %PPS is used. Shaping and cooling can be performed simultaneously by compression molding, or by passing it between a pair of rolls that have a gap corresponding to the cross section of the tubular molded product and are set at a temperature below the melting point of PPS. It is possible, and the latter method in particular is superior in terms of productivity.

かくして得られる本発明のPPS管状成形品は、機械的
強度が要求される各種駆動軸用途のほか、特に耐熱性お
よび耐薬品性の要求される各種配管用途に極めて有用で
ある。
The thus obtained PPS tubular molded article of the present invention is extremely useful not only for various drive shaft applications that require mechanical strength, but also for various piping applications that require particularly heat resistance and chemical resistance.

以下に実施例を挙げて本発明の効果をさらに説明する。The effects of the present invention will be further explained below with reference to Examples.

実施例1 直径7 IIの炭素繊維3000本を集束してなる炭素
繊維束(東しく株)製ゞトレカ’T300)を温度30
0℃で溶融状態のpps (米国フィリップスペトロリ
アム社製)中を通過せしめ、1.5ff径のダイスより
引き取ったものを300℃に設定しである一対の鉄製ロ
ール間を通過せしめ炭素繊維束中にPPSの含浸された
線状物を得た。得られた線状物を約4flの長さに切断
したのちランダムに凝集せしめたものを30012− ℃に設定しである一対の平金型により圧縮成形し約0.
5朋厚のシート状物を得た。このシー1〜状物から幅約
200鰭、長さ約1.2521mの矩形片を切り出し、
熱風加熱炉で330℃に加熱したものを長さ220m、
直径18龍(抜き勾配Q〕ため一方の端は1.7.8 
朋)の丸棒状で表面に離型剤(トーμ・シリコーン(株
)製S H−7020’)が塗布され、300℃に加熱
されているマンドレルに巻きつけたのち、それぞれに半
円柱に対応する空隙を有し、300℃に加熱されている
一対の20mMΦX 220 mmの円柱成形用金型(
両端部名10Mにマンドレルを円柱の中心に配置するよ
うに突起を設けであるもの)に供給し、301g / 
cdの圧力で2分間保持した。
Example 1 A carbon fiber bundle (Toreka 'T300 manufactured by Toshiku Co., Ltd.) made by bundling 3000 carbon fibers with a diameter of 7 II was heated at a temperature of 30
The carbon fibers were passed through PPPS (manufactured by Phillips Petroleum, USA) which was in a molten state at 0°C, and taken from a die with a diameter of 1.5 ff, and then passed between a pair of iron rolls set at 300°C to form carbon fiber bundles. A wire impregnated with PPS was obtained. The obtained linear material was cut into a length of about 4 fl, and then randomly agglomerated, and compression molded using a pair of flat molds set at 30012-°C to give a length of about 0.4 fl.
A sheet material having a thickness of 5 mm was obtained. A rectangular piece with a width of about 200 fins and a length of about 1.2521 m was cut out from this Sea 1~ shaped piece.
220m long, heated to 330℃ in a hot air heating furnace.
Diameter 18 dragon (draft angle Q) so one end is 1.7.8
The mold release agent (S H-7020' manufactured by TOMU Silicone Co., Ltd.) was applied to the surface of the round rod shape, and after winding it around a mandrel heated to 300℃, each piece was shaped into a semi-cylindrical shape. A pair of 20 mm Φ x 220 mm cylindrical molds (
301g / 301g /
It was held at a pressure of cd for 2 minutes.

次いでこれを冷却水を通じであるプレスに移して冷却し
、内径18酊、外径20酊で長さ200龍の管状成形品
を得ナコ。
This was then transferred to a press using cooling water to cool it down, and a tubular molded product with an inner diameter of 18 mm, an outer diameter of 20 mm and a length of 200 mm was obtained.

この管状成形品の内面、外面の表面状態は良好であった
。またこの成形品中の炭素繊維含有率は24容量%であ
り、この管状成形品から切り出した長さ20flの管状
片について、長手方向に垂直な方向で圧縮試験を行なっ
たところ、破壊荷重は105 kqであり、機械的強度
がすぐれていた。なおこの破壊荷重から、試片内に生ず
る最大モーメントをM=WR7πの関係式より求めて算
出した破壊応力は24 kq /−であった。
The surface condition of the inner and outer surfaces of this tubular molded product was good. Furthermore, the carbon fiber content in this molded product was 24% by volume, and when a compression test was performed on a 20fl length tubular piece cut out from this tubular molded product in a direction perpendicular to the longitudinal direction, the breaking load was 105%. kq, and had excellent mechanical strength. The fracture stress calculated from this fracture load by determining the maximum moment generated within the specimen from the relational expression M=WR7π was 24 kq/-.

(たtごし、ここでMはモーメント、Wは荷重、Rは管
の半径である。) 比較例1 実施例1で用いたPPSと繊維長6絹の炭素繊維チョツ
プドストランド(東しく株)製ゞトレカ’T300”l
 とを70対30の重量比で押出機により溶融混練した
のちペレタイズしたものを射出成形に供し、内径18順
、外径20朋で長さが100朋の管状成形品を得た。射
出成形に用いた金型のゲートは管状品長手方向の一端に
配着されたフィルム・ゲートであり、溶融温度および金
型温度をそれぞれ300℃および120℃に設定して成
形を行なった。得られた管状成形品の表面状態は比較的
良好であったが、実施例1と同様の方法で圧縮試験を実
施したところ、破壊荷重29 kq、対応する破壊応力
6.6kQ /−であり、機械的強度が不十分であった
(Here, M is the moment, W is the load, and R is the radius of the tube.) Comparative Example 1 Carbon fiber chopped strands of PPS used in Example 1 and silk with a fiber length of 6 Trading card 'T300''l manufactured by Co., Ltd.
The mixture was melt-kneaded in an extruder at a weight ratio of 70:30 and then pelletized, which was then subjected to injection molding to obtain a tubular molded product with an inner diameter of 18 mm, an outer diameter of 20 mm, and a length of 100 mm. The gate of the mold used for injection molding was a film gate placed at one end of the tubular product in the longitudinal direction, and the molding was performed with the melting temperature and mold temperature set at 300° C. and 120° C., respectively. The surface condition of the obtained tubular molded product was relatively good, but when a compression test was performed in the same manner as in Example 1, the breaking load was 29 kq, the corresponding breaking stress was 6.6 kQ/-, Mechanical strength was insufficient.

なお、この管状成形品中の炭素繊維含有率は25容量%
、炭素繊維の長さは02〜0.5絹であり、成形品長手
方向への配向が著しかつtコ。
The carbon fiber content in this tubular molded product is 25% by volume.
, the length of the carbon fibers is 02 to 0.5 silk, and the orientation in the longitudinal direction of the molded product is significant.

比較例2 比較例1で用いたPPSと炭素繊細とを溶融混練してな
るペレツI・を、実施例1で用いた金型にマンドレルを
配置したものに供給し、実施例1と同様の温度条件で圧
縮成形を行なった。
Comparative Example 2 Pellet I, which was obtained by melting and kneading the PPS and carbon fines used in Comparative Example 1, was supplied to the mold used in Example 1 with a mandrel arranged, and heated to the same temperature as in Example 1. Compression molding was carried out under the following conditions.

冷却後金型を開いたところ、成形品の長手方向に割れが
生しており、良好な成形品が得られなかった。
When the mold was opened after cooling, cracks had appeared in the longitudinal direction of the molded product, and a good molded product could not be obtained.

実施例2 ガラス繊維織物(旭ファイバーグラス(株)製MS−2
50.日付量208g/m’)と厚さ約02朋のPPS
シートとを重ね合せたものを。
Example 2 Glass fiber fabric (MS-2 manufactured by Asahi Fiberglass Co., Ltd.)
50. PPS with a weight of 208g/m') and a thickness of approximately 0.2mm
The sheets are stacked one on top of the other.

300℃の温度に設定しである平金型に供し、圧縮成形
により約0.25 MM厚の複合シートを得15− た。このシートから幅約20011.長さ約250絹の
矩形片を切り出し、実施例1と同様の方法で成形を行な
い、内径18ffI!、外径20m肩で長さが200絹
の管状成形品を得た。この成形品中のガラス繊維含有率
は56容量%であり、実施例】と同様の方法で測定した
破壊荷重および応力はそれぞれ260 kgおよび59
kq/−と機械的強度がすぐれるものであった。
A composite sheet with a thickness of about 0.25 mm was obtained by compression molding in a flat mold set at a temperature of 300°C. Width approx. 20011mm from this sheet. A rectangular piece of silk with a length of approximately 250 mm was cut out and molded in the same manner as in Example 1, with an inner diameter of 18 ffI! A tubular molded product with an outer diameter of 20 m and a length of 200 m was obtained. The glass fiber content in this molded article was 56% by volume, and the breaking load and stress measured in the same manner as in Example were 260 kg and 59 kg, respectively.
It had an excellent mechanical strength of kq/-.

実施例3 実施例1で用いた炭素繊維束を温度300℃で溶融状態
のPPS中を通過せしめ、1.0朋径のダイスより引き
取りつつ、300℃の熱風加熱炉中で20回/分の速度
で回転している直径30wmのマンドレルに、マンドレ
ルの長手方向300絹にわたって3回/分の周期で往復
させつつ4)を給し、約110 Q m長をマンドレル
に均密に巻きつけた。引き続き線状物の巻きつけられた
マンドレルを第1図の形状および寸法で表面にシリコー
ン系潤滑グリース(1・−レ春シリコーン(株)製5H
−111)を塗布してあり、16− ロール間の圧縮荷重が100 kt)、温度が180℃
、回転速度が5回/分に設定しである一対のロール間を
通過せしめて圧縮賦形、冷却したのち、マンドレルを取
り外し、内径30闘、外径34朋で長さ300nの管状
成形品を得た。得られた成形品中で炭素繊維は成形品の
長手方向とほぼ45 の角度で配列されており、成形品
中の炭素繊細含有率は52容量%であった。
Example 3 The carbon fiber bundle used in Example 1 was passed through PPS in a molten state at a temperature of 300°C, and while being taken from a die of 1.0 mm diameter, it was heated 20 times/min in a hot air heating furnace at 300°C. 4) was fed to a mandrel with a diameter of 30 wm rotating at a speed of 30 wm in the longitudinal direction of the mandrel while reciprocating at a cycle of 3 times/min, and a length of about 110 Q m was evenly wound around the mandrel. Next, apply silicone-based lubricating grease (5H manufactured by Lesharu Silicone Co., Ltd.) to the surface of the mandrel wrapped with the linear material in the shape and dimensions shown in Figure 1.
-111) is applied, the compressive load between the rolls is 100 kt), and the temperature is 180℃.
After passing through a pair of rolls with a rotational speed of 5 times/min, compression shaping and cooling, the mandrel was removed and a tubular molded product with an inner diameter of 30mm, an outer diameter of 34mm, and a length of 300n was produced. Obtained. In the obtained molded article, the carbon fibers were arranged at an angle of approximately 45 degrees with respect to the longitudinal direction of the molded article, and the carbon fines content in the molded article was 52% by volume.

また実施例1と同様の方法で測定した破壊荷重および応
力は、それぞれ49にりおよび18 kq/−であった
Furthermore, the breaking load and stress measured in the same manner as in Example 1 were 49 kg/- and 18 kq/-, respectively.

実施例4 繊維長12MMの炭素繊維(東しく株)製5トレカ’T
300)が等方向に分散してなるマットで目付量が25
0 g/ m”のものと、Q、 4 +u厚のPPSシ
ートとを重ね合せ、300℃の温度で加圧一体化し、約
0゜5絹厚の複合シー1−を得た。このシートから幅約
200MM、長さ約125朋の矩形片を切り出し、熱風
加熱炉で330℃に加熱したものを、実施例1で用いた
マンドレルで温度が約260℃のものに巻きつけたのち
、ナコナごちに実施例1で用いt二金型で温度が180
℃に設定しであるものに供給し、加圧して賦形、冷却し
、管状成形品を得た。
Example 4 5 trading card'T made of carbon fiber (Toshiku Co., Ltd.) with a fiber length of 12 MM
300) is dispersed in the same direction and has a basis weight of 25.
0g/m'' and a PPS sheet of Q, 4+u thickness were stacked and integrated under pressure at a temperature of 300°C to obtain a composite sheet 1- of approximately 0°5 silk thickness.From this sheet A rectangular piece with a width of about 200 mm and a length of about 125 mm was cut out, heated to 330°C in a hot-air heating furnace, and then wrapped around a piece at a temperature of about 260°C using the mandrel used in Example 1. In the second mold used in Example 1, the temperature was 180℃.
The mixture was supplied to a vessel set at ℃, shaped under pressure, and cooled to obtain a tubular molded product.

この成形品中の炭素繊維含有率は29容量%であり、実
施例1と同様の方法で測定]7た破壊荷重および応力は
、それぞれ121 kqおよび28にり/−であった。
The carbon fiber content in this molded article was 29% by volume, and the breaking load and stress measured in the same manner as in Example 1 were 121 kq and 28 N/-, respectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例で用いる一対のロールの正面図
であり、寸法数字はいずれもWll単位を示す。 特許出願人 東 し 株 式 会 壮 図面の浄書(内容に変更なし) 19− 手  続  補  正  書 1、事件の表示 昭和58年特許願第 73466  号2、発明の名称 管状成形品およびその製造方法 五補正をする者 41、補正命令の日付 昭和58年7月26日(発送日) 5、 補正により増加する発明の数 06補正の対象 図面 Z補正の内容
FIG. 1 is a front view of a pair of rolls used in an embodiment of the present invention, and all dimension numbers indicate Wll units. Patent applicant Toshi Co., Ltd. Engraving of the grand drawing (no change in content) 19- Procedural amendment 1, Indication of the case Patent application No. 73466 of 1982 2, Name of the invention Tubular molded product and method for manufacturing the same 5. Person making the amendment 41. Date of amendment order: July 26, 1980 (shipment date) 5. Number of inventions increased by the amendment 06. Contents of the drawing Z amendment subject to the amendment

Claims (1)

【特許請求の範囲】 1、補強繊維を10〜70容量%含有するポリフェニレ
ンスルフィドからなり、補強繊維が実質的に3朋以上の
長さを保持していることを特徴とする管状成形品。 2゜長さ3闘以上の補強繊維およびポリフェニレンスル
フィドを一体化してなる線状物またはンート状物を、ポ
リフェニレンスルフィドが溶融する温度に加熱した状態
でマンドレルに均密に巻きつけ、次いてこれを一対の管
状金型または管状ロールに供給して圧縮成形することを
特徴とする補強繊維を10〜70容量%含有するポリフ
ェニレンスルフィドからなり、補強繊維が実質的に3 
zyx以上の長さを保持している管状成形品の製造方法
[Scope of Claims] 1. A tubular molded article made of polyphenylene sulfide containing 10 to 70% by volume of reinforcing fibers, characterized in that the reinforcing fibers have a length of substantially 3 mm or more. A linear or thread-like product made by integrating reinforcing fibers with a length of 2° or more and polyphenylene sulfide is heated to a temperature at which the polyphenylene sulfide melts, and then wrapped uniformly around a mandrel. Composed of polyphenylene sulfide containing 10 to 70% by volume of reinforcing fibers, characterized in that it is supplied to a pair of tubular molds or tubular rolls for compression molding, and the reinforcing fibers are substantially 3% by volume.
A method for manufacturing a tubular molded product having a length of zyx or more.
JP58073466A 1983-04-26 1983-04-26 Tubular molding and manufacture thereof Pending JPS59198120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073466A JPS59198120A (en) 1983-04-26 1983-04-26 Tubular molding and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073466A JPS59198120A (en) 1983-04-26 1983-04-26 Tubular molding and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59198120A true JPS59198120A (en) 1984-11-09

Family

ID=13519065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073466A Pending JPS59198120A (en) 1983-04-26 1983-04-26 Tubular molding and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59198120A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265915A2 (en) * 1986-10-28 1988-05-04 Phillips Petroleum Company Compacting filament wound thermoplastic structures
US5256743A (en) * 1990-03-05 1993-10-26 Kureha Kagaku Kogyo K.K. Poly(arylene thioether) resin compositions and extruded products thereof
JP2014070080A (en) * 2012-09-27 2014-04-21 Jx Nippon Oil & Energy Corp Lubricant composition and molding method using the same
CN104251812A (en) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 High-acidity gas field wellbore string material optimization evaluation system and method
JP2016065918A (en) * 2014-09-24 2016-04-28 富士ゼロックス株式会社 Resin tubular body, fixing device, and image forming apparatus
JP2021094790A (en) * 2019-12-18 2021-06-24 ミズノ テクニクス株式会社 Manufacturing method for fiber-reinforced resin pipes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265915A2 (en) * 1986-10-28 1988-05-04 Phillips Petroleum Company Compacting filament wound thermoplastic structures
US5256743A (en) * 1990-03-05 1993-10-26 Kureha Kagaku Kogyo K.K. Poly(arylene thioether) resin compositions and extruded products thereof
JP2014070080A (en) * 2012-09-27 2014-04-21 Jx Nippon Oil & Energy Corp Lubricant composition and molding method using the same
CN104251812A (en) * 2013-06-27 2014-12-31 中国石油化工股份有限公司 High-acidity gas field wellbore string material optimization evaluation system and method
CN104251812B (en) * 2013-06-27 2017-04-12 中国石油化工股份有限公司 High-acidity gas field wellbore string material optimization evaluation system and method
JP2016065918A (en) * 2014-09-24 2016-04-28 富士ゼロックス株式会社 Resin tubular body, fixing device, and image forming apparatus
JP2021094790A (en) * 2019-12-18 2021-06-24 ミズノ テクニクス株式会社 Manufacturing method for fiber-reinforced resin pipes

Similar Documents

Publication Publication Date Title
JP2569380B2 (en) Fiber reinforced molded product
US4549920A (en) Method for impregnating filaments with thermoplastic
US5213889A (en) Fibre-reinforced compositions and methods for producing such compositions
JPS6337694B2 (en)
HUT59969A (en) Textile and endless strengthening fibre made form thermoplastic fibres
JP2011073436A (en) Intermediate product and intermediate-product composite
JPS6047111B2 (en) Composite manufacturing method
CN103061162B (en) A kind of degradable composite material prepreg cloth and preparation method thereof and device
JPS59198120A (en) Tubular molding and manufacture thereof
WO2022075265A1 (en) Fiber-reinforced resin pultruded article and method for producing same
JP2019073407A (en) Glass roving, and manufacturing method of glass fiber-reinforced resin molding
JPH01198635A (en) Highly thermostable polyarylene thioether ketone prepreg and molded product thereof
WO2021124907A1 (en) Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
US20030215633A1 (en) Fiber glass product incorporating string binders
JP7446289B2 (en) Melt drawn polyamide filament
WO2021124977A1 (en) Fiber-reinforced resin hollow molded body and method for producing same
JP3386158B2 (en) Molding materials and filament wound moldings
JPH02308824A (en) Material for thermoplastic composite
TWI849269B (en) Fiber-reinforced resin hollow molded body and manufacturing method thereof
JP2017160316A (en) Carbon fiber composite material and method for producing the same
KR20180130699A (en) Continuous fiber reinforced composites and method for manufacturing the same
JPH05177629A (en) Preparation of pellet
JP2013203942A (en) Thermoplastic prepreg and method of manufacturing the same
RU2252353C2 (en) Method of producing sealing material from porous polytetrafluoroethylene