JPS59197813A - Attitude measuring method by optical cutting - Google Patents

Attitude measuring method by optical cutting

Info

Publication number
JPS59197813A
JPS59197813A JP58073314A JP7331483A JPS59197813A JP S59197813 A JPS59197813 A JP S59197813A JP 58073314 A JP58073314 A JP 58073314A JP 7331483 A JP7331483 A JP 7331483A JP S59197813 A JPS59197813 A JP S59197813A
Authority
JP
Japan
Prior art keywords
work
slit
workpiece
image
sensor body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58073314A
Other languages
Japanese (ja)
Inventor
Morihiko Kawabe
川辺 守彦
Masaru Morita
勝 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMUNIPATSUKU KK
IHI Corp
Original Assignee
OMUNIPATSUKU KK
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMUNIPATSUKU KK, IHI Corp filed Critical OMUNIPATSUKU KK
Priority to JP58073314A priority Critical patent/JPS59197813A/en
Publication of JPS59197813A publication Critical patent/JPS59197813A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/006Bending sheet metal along straight lines, e.g. to form simple curves combined with measuring of bends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure an attitude of a work by a mutual relation of an obtained cut image by inclining mutually two slit-like lights and irradiating them to the work. CONSTITUTION:This method is constituted so that slit lights 4a, 4b from a light source are irradiated to a work 2 through projecting windows 5, 6 provided on a sensor body 1, and the slit lights 4a, 4b are inclined by a necessary angle, respectively, against the vertical surface and crossed in the lower part of the sensor. Also, a lens 7 is provided on an intermediate position of the projecting windows 5, 6 of the lower face of the sensor body 1, so that cut images 8a, 8b can be formed on an image pickup element 9. The cut image 8a, 8b obtained by the sensor measure an attitude of a work by a correlation to these two cut images 8a, 8b. That is to say, a distance DW of the sensor body 1 and the work 2, an angle phiS of the center line in the H direction of the sensor body 1 and a weld line, a shift (ld) of the center of the sensor body 1 and the center of the work, an inclination PSIS of a vertical line Z and the weld line, and an inclination alpha of the work in the right angle direction to the vertical line Z and the weld line can be measured, and a three-dimensional attitude of the work 2 measured.

Description

【発明の詳細な説明】 本発明はスリット状光線を被測定物に照射し被測定物上
に得られる切断像によシ、被測定物の姿勢等の測定を行
う光切断による姿勢測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an attitude measurement method using optical cutting, which measures the attitude, etc. of an object to be measured by irradiating the object with a slit-shaped light beam and using a cut image obtained on the object to be measured. .

現在非接触測定法の−として光切断による法が知られて
いる。
Currently, a method using optical cutting is known as a non-contact measurement method.

これは、スリット状の光線(平板状の光線、点光線を同
一平面上に配したもの、−の点光線を同一平面内に走査
させたものをいう)を被測定物(以下ワークと称す)に
照射し、被測定物上に得られる切断像をスリット状光線
の斜方よシ観察し、切断像の形状を観察してワークの形
状等を判断するものである。
This refers to a slit-shaped light ray (a flat ray, a point ray arranged on the same plane, a - point ray scanned in the same plane) to the object to be measured (hereinafter referred to as a workpiece). The cut image obtained on the object to be measured is observed obliquely through the slit-like beam, and the shape of the cut image is observed to determine the shape of the workpiece.

然し、従来の1のスリット状光線による光切断法では、
ワークとスリット状光線との相互関係、例えば該光線に
対してワークが傾いていることによっても切断像の形状
は変化し、正確な測定が行えないと共に得られる情報量
が少なくワークの姿勢判断まではできなかった。
However, in the conventional light cutting method using a slit-shaped beam,
The shape of the cut image changes due to the mutual relationship between the workpiece and the slit-shaped light beam, for example, if the workpiece is tilted with respect to the light beam, making it impossible to perform accurate measurements and the amount of information obtained is small, making it difficult to judge the posture of the workpiece. I couldn't.

即ち、従来の光切断法を自動溶接の倣いセンサに用いた
場合で該方法により溶接線の探査を行う時、得られる切
断像(α)は第1図に示すものであシ、この切断像で得
られる情報は溶接線方向(H)に対し直角方向(V)の
位置と、近接離反方向の距離しかない。従って、溶接線
の水平面内の傾き、水平面に対する傾き等は判断するこ
とはできない。
That is, when the conventional optical cutting method is used for a scanning sensor for automatic welding and the weld line is searched by this method, the obtained cutting image (α) is as shown in Fig. 1. The only information that can be obtained is the position in the direction (V) perpendicular to the welding line direction (H) and the distance in the direction of approach and separation. Therefore, the inclination of the weld line in the horizontal plane, the inclination with respect to the horizontal plane, etc. cannot be determined.

本発明は斯かる実情に鑑み、ワーク特に種々の形状の溝
を有するワークの姿勢をも測定できる様にした光切断に
よる姿勢測定方法を提供するものであり、2のスリット
状光線を相互に傾剥させてワークに照射せしめ、両光線
で得られる切断像の相互関係によりワークの姿勢を測定
することを特徴とするものである。
In view of the above circumstances, the present invention provides a method for measuring the posture of a workpiece, particularly a workpiece having grooves of various shapes, by optical cutting. This method is characterized in that the workpiece is exposed to the peeled beam and the posture of the workpiece is measured based on the mutual relationship between the cut images obtained with both beams.

以下図面を参照しつつ本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

先ず第2図、第6図によって概略を説明する。First, the outline will be explained with reference to FIGS. 2 and 6.

第2図は本発明を実施する為のセンサの一例を示し、図
中(1)はセンサ本体、(2)はワーク、(3)は開先
溝である。
FIG. 2 shows an example of a sensor for implementing the present invention, in which (1) is a sensor body, (2) is a workpiece, and (3) is a groove.

センサは図示しないが2のスリット光源を有しており、
該光源からのスリット光(4a) (4h)をセンサ本
体(1)に設けた投射窓(5) (6)を通してワーク
(2)に照射する様になっており、該スリット光(4a
)(4/I)は鉛直面に対してそれぞれ所要角度傾斜さ
せセンサ下方で交差する様にしである。
The sensor has two slit light sources (not shown),
The slit light (4a) (4h) from the light source is irradiated onto the workpiece (2) through projection windows (5) (6) provided in the sensor body (1), and the slit light (4a)
)(4/I) are each inclined at a required angle with respect to the vertical plane so that they intersect below the sensor.

又、センサ本体(1)の下面、投射窓(5) (6)の
中間位置にレンズ(7)を設けて、切断像(8(Z) 
(sh)を撮像素子(9)上に結像し得る様にする。尚
、レンズ(7)、撮像素子(9)は通常のテレビカメラ
であってもよい。
In addition, a lens (7) is provided on the lower surface of the sensor body (1), at a position intermediate between the projection windows (5) and (6), so that the cut image (8 (Z)
(sh) so that it can be imaged on the image sensor (9). Note that the lens (7) and the image sensor (9) may be a normal television camera.

尚、図中Hは溶接線方向、■は溶接線に対して直角方向
、Zは鉛直方向を示している。
In the figure, H indicates the welding line direction, ■ indicates the direction perpendicular to the welding line, and Z indicates the vertical direction.

上記センサによって得られる切断像(8a)(8!+)
は例えば第5図に示す通りであり、この2の切断像(8
α) 、!= (8h)との相関関係によってワーク(
2)の姿勢を測定するものである。
Cut image (8a) (8!+) obtained by the above sensor
is as shown in FIG. 5, for example, and the cut image of these 2 (8
α),! = Work (
2) is used to measure posture.

即ち、切断像(8a)と(8h)によって、センサ本体
(1)とワーク(2)との距離Dw、センサ本体(1)
のH方向中心線と溶接線(開先溝(3)長手方向)との
角度Φ5、センサ本体(1)の中心(測定中心とワーク
の中心ずれtri、鉛直線(Z)と溶接線との傾きF5
、鉛直線(Z)と溶接線と直角方向のワークの傾きαが
測定し得、ワーク(2)の6次元的な姿勢が測定できる
That is, from the cut images (8a) and (8h), the distance Dw between the sensor body (1) and the workpiece (2), the sensor body (1)
Angle Φ5 between the center line in the H direction and the welding line (longitudinal direction of the groove groove (3)), center of the sensor body (1) (displacement tri between the measurement center and the center of the workpiece, and angle between the vertical line (Z) and the welding line) Tilt F5
, the inclination α of the workpiece in the direction perpendicular to the vertical line (Z) and the welding line can be measured, and the six-dimensional posture of the workpiece (2) can be measured.

以下、切断像(8a) (ah)について詳述する。The cut image (8a) (ah) will be described in detail below.

図中(3)は開先溝、(10)は、前記レンズ(7)、
撮像素子(9)を組込んだ撮像装置、(11a)(11
A)はスリット光光源てあシ、スリット光(4a) (
4b)は鉛直面に対し反対方向にそれぞれθ、たけ傾い
ている。
In the figure, (3) is the bevel groove, (10) is the lens (7),
Imaging device incorporating image sensor (9), (11a) (11
A) is a slit light source with a slit light source (4a) (
4b) are tilted by θ in opposite directions with respect to the vertical plane.

又、第5図は撮像装置00)がとらえた切断像(8θ)
(8/’)と画面との位置関係を示し、■1c・ ;画
面の溶接線方向の中火の座標731画面の溶接線と直角
方向の中央の座標RAV;切断像(8a)の屈曲点のV
方向の座標RAll +切断像(8σ)の屈曲点のH方
向の座標RI3V;切断像(8h)の屈曲点のV方向の
座標”+3H’切断像(8b)の屈曲点のH方向の座標
V7.;座標V。より上方の任意の座標V、n;座標V
Cより下方の任意の座標71A;座標Vユに於ける座標
H6から切断像(8a)迄の距離 lllAl座標vnLに於ける座標H3から切断像(8
a)迄の距離 ル13;座標V11.に於ける座標H6から切断像(8
b)迄の距離 mB  ;座標■7nに於げる座標H6から切断像(8
k)迄の距離 dwA;座標H3から屈曲点RAH迄の距離ctWB+
座標H6から屈曲点REH迄の距離であp、又Z方向の
関係は第6図に示す様に、Od;基準レベルOからスリ
ット光(4α)。
Also, Fig. 5 is a cut image (8θ) captured by the imaging device 00).
Indicates the positional relationship between (8/') and the screen, ■1c.; Coordinates of medium heat in the direction of the welding line on the screen 731 Coordinates RAV at the center of the screen in the direction perpendicular to the welding line; Bending point of the cut image (8a) V of
Directional coordinates RAll + H-direction coordinates of the bending point of the cut image (8σ) RI3V; V-direction coordinates of the bending point of the cut image (8h) "+3H' H-direction coordinates of the bending point of the cut image (8b) V7 .; Coordinate V. Any above coordinate V, n; Coordinate V
Arbitrary coordinate 71A below C; Distance from coordinate H6 at coordinate V to cut image (8a)
a) Distance to Le13; Coordinates V11. A cut image (8
Distance mB to b); cut image (8) from coordinate H6 at coordinate ■7n
k) Distance dwA; Distance ctWB+ from coordinate H3 to bending point RAH
The distance from the coordinate H6 to the bending point REH is p, and the relationship in the Z direction is Od, as shown in FIG. 6; from the reference level O to the slit light (4α).

(4b)が交わる点迄の距離 DW;レベル0がらワーク塩の距離 り、 D、’ ; 0,1からのワーク塩の距離であシ
、D、はDw<O,zのとき、p 、/はDw>Odの
ときを示す である。
Distance to the point where (4b) intersects DW; Distance of the work salt from level 0, D,'; Distance of the work salt from 0,1, D, is p when Dw<O,z, / indicates when Dw>Od.

次に、Φ、、 tri・・・等の算出について順次説明
する。
Next, calculations of Φ, tri, etc. will be sequentially explained.

(1)先ずΦ、について 第7図ばOd>Dwの時の切断像(4c) (4A)の
状態、第8図はOd<Dwの時の状態を示しているが、
いずれの場合でも屈曲点RA、 RBの座標から容易に
求めることができる。即ち、で求められ、更に(RAV
−RBV)、 (RAHRBH)の値、正負判断により
、O5の正負及びDwが求められる。
(1) First, regarding Φ, Fig. 7 shows the state of cutaway image (4c) (4A) when Od>Dw, and Fig. 8 shows the state when Od<Dw.
In either case, it can be easily determined from the coordinates of the bending points RA and RB. That is, it is determined by, and furthermore, (RAV
-RBV), (RAHRBH), and the positive/negative determination of O5, and the positive/negative value of O5 and Dw are determined.

(ii)  ldについて lrlは第9図で示される様に、 l d= (■o’fl AV (OγRBv)’)・
Mで得られ、誤差を少なくする為RAVとR13Vで求
められるldの平均をとれば となる。ここでMは光学的倍率である。
(ii) Regarding ld, lrl is as shown in Figure 9, l d= (■o'fl AV (OγRBv)')・
M is obtained, and in order to reduce the error, take the average of ld obtained from RAV and R13V. Here M is the optical magnification.

(iii)  W、について 第10図では作図上ワーク(2)を水平とし、センザ本
体を傾けている。又、図中(1つはワーク(2)の上面
、α1は開先溝底位置であり、d、。
(iii) Regarding W, in Fig. 10, the workpiece (2) is drawn horizontally, and the sensor body is tilted. Also, in the figure (one is the top surface of the workpiece (2), α1 is the groove bottom position, and d).

D、はそれぞれスリット光(4α)(41!l)の交点
から開先溝底位置(13、ワーク上面α■迄の距離を示
し、dA、d、A′及びd、B、d、B′は作図で得ら
れた直角三角形の斜辺の長さを示している。
D indicates the distance from the intersection of the slit beams (4α) (41!l) to the groove bottom position (13, workpiece top surface α), dA, d, A' and d, B, d, B' indicates the length of the hypotenuse of the right triangle obtained by construction.

第10図より aA7= d、Acos> V/。From Figure 10 aA7=d, Acos>V/.

7L B ”” (L B CO8F3dA= cl、
 (tarb V’、 + tan (偶〜籏))dB
= cl、 (tan (θ7+W、 ) −tan 
質)’WA = clA’ cos F。
7L B ”” (L B CO8F3dA= cl,
(tarb V', + tan (even to 籏)) dB
= cl, (tan (θ7+W, ) −tan
quality) 'WA = clA' cos F.

cl、wB == cl、BHCOS W3d、A’=
D、 (tarb ’11.−1− tan (θi’
sNd、B’−D s (tan、 (O7十F、 )
 〜tan、 W、 )が得られ、 となシ、?′LA  ’WA、n、B  ’WBの正負
でW、9の正負が求まる。
cl, wB == cl, BHCOS W3d, A'=
D, (tarb '11.-1-tan (θi'
sNd, B'-D s (tan, (O70F, )
~tan, W, ) is obtained, and tonashi, ? 'LA' WA, n, B ' The positive and negative of W and 9 are determined by the positive and negative of WB.

更に、第5図で示したmA、nLBについても同一様な
処理を行えは測定精度が向上する1、(1■)  α(
について 第11図(a) (!’) (C)に於いて、スリット
光(4α)(4/))さ開先溝(3)古の傾斜角αさし
、開先溝(3)の開先角の半角をθにとし、θα、θα
′を画像に於けるスリンl−像のV方向に対する傾き角
、7LB。
Furthermore, if the same processing is performed for mA and nLB shown in Fig. 5, the measurement accuracy will be improved.
In Fig. 11 (a) (!') (C), the slit light (4α) (4/)) and the groove groove (3) old inclination angle α, the groove groove (3). Let θ be the half angle of the groove angle, and θα, θα
' is the inclination angle of the Surin l-image in the image with respect to the V direction, 7LB.

II+、 Bは崩底位置α]を通過するスリット光(8
b)の位置((JJ断像(8b)の屈曲点)から切断像
(8h)のV′力内向等距離点に於ける座標H6からの
距離を示す、。
II+, B is the slit light (8
b) shows the distance from the coordinate H6 at a point equidistant inward from the V′ force in the cut image (8h) from the bending point of the JJ cross-sectional image (8b).

ここでO7顔・O2,7とする。Here, it is assumed that O7 face/O2,7.

第11図((1,) (/+) (C)よりツノ1.1
”WA−−d、1t(tTL偶(−二重−−M])7ノ
1.2   d、wΔ−−(t21(171θi  (
=R’h)d 1−”:l y、、/ (to、rL(
θに一α))i12== V、、/ (tan (IJ
K+α))へ4+−(V7μ(7jlθi )/’(t
arL(θに一α))M2’ ” (V+l、  1a
7L θ、  )/(1a−(O1(+α) )■n tan (θに一α) = −−tanθ。
Figure 11 ((1,) (/+) Horn 1.1 from (C)
"WA--d, 1t (tTL even (-double--M]) 7 no 1.2 d, wΔ--(t21 (171θi (
=R'h)d 1-":ly,, / (to, rL(
θ to α)) i12== V, , / (tan (IJ
K+α)) to 4+-(V7μ(7jlθi)/'(t
arL (one α to θ)) M2' ” (V+l, 1a
7L θ, )/(1a−(O1(+α))■n tan (one α to θ) = −−tanθ.

1 −  V。1 - V.

“ α−瞥(MFT 、ta嶋ドθ7 −■、9 α”” tan、’ (O2’ ta、嶋)−θに従っ
て O3 α−(tan−1(M2’を鴫)−t6ルー1(ン、t
a+虎)/2となシ傾き角αが求められる。
"α-view (MFT, tashimado θ7 - ■, 9 α") tan, '(O2' ta, shima) - θ according to O3 α-(tan-1 (M2' is blank) - t6 ru 1 (n) ,t
The inclination angle α is calculated as a + tiger)/2.

以上述べた様に本発明ではワークの姿勢をも判断し得る
As described above, the present invention can also determine the posture of the workpiece.

尚、上記実姉例ではスリット状光線を対称的に傾斜させ
てワークに照射したが、第12図(a)(A+に示す様
に一方はワークに対して垂直、或は両光線とも同方向に
傾斜して照射(ワークの形状はV溝)してもよく、又2
つのスリット状光線の関係は、平面に照射した場合第1
3図(a)に示す様に平行であっても、第16図(h)
に示す様に傾斜させておいてもよい。特に第16図(b
)に示す様に傾斜させておけば、溝の長手方向に光線が
直角となる様回転させることなく測定が可能である。
In the above example, the workpiece was irradiated with slit-shaped light beams tilted symmetrically, but as shown in FIG. It is also possible to irradiate at an angle (the shape of the workpiece is a V-groove), or
The relationship between the two slit-shaped rays is the first when irradiating a plane.
Even if they are parallel as shown in Figure 3 (a), Figure 16 (h)
It may also be tilted as shown in . In particular, Figure 16 (b
), it is possible to measure without rotating the groove so that the light beam is perpendicular to the longitudinal direction of the groove.

次に、本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

本発明では2のスリット状光線を用い、両光線の相互関
係でワークの形状、姿勢を判断するものであるが、両光
線を同時に撮像しその画像処理を行う吉すると、その切
断像の形状分析等か複雑となる。従って以下に示す方法
では両光線を交互にワ〜りに照射し画像には常に一光線
による切断像である様にする。
In the present invention, two slit-shaped light beams are used to determine the shape and posture of the workpiece based on the mutual relationship between the two light beams.However, if both light beams are imaged simultaneously and the image processing is performed, the shape analysis of the cut image is possible. It becomes complicated. Therefore, in the method described below, both light beams are alternately irradiated in a continuous manner so that the image is always a sectioned image by one light beam.

然して、光線が切換わる迄の画面を一画面とし、−画面
度に形状分析等を行えその情報をストアして次画面の形
状分析結果とを比較する様にすれば、形状分析等に要す
る計算容量は同一画面に2の光線による切断像を表示し
た場合に比へ大幅に減少させることができる。
However, if you treat the screen until the light beam switches as one screen, perform shape analysis, etc. every screen, store that information, and compare it with the shape analysis results of the next screen, the calculations required for shape analysis, etc. The capacity can be significantly reduced compared to the case where images cut by two light beams are displayed on the same screen.

又、第14図〜第16図は更に他の実施例を説明するも
のである。
Further, FIGS. 14 to 16 explain still other embodiments.

該実施例では撮像装置としてテレビカメラを用いた場合
である。
In this embodiment, a television camera is used as the imaging device.

図中0Φはテレビカメラ、(11a)(11b)はスリ
ット光源を示す。
In the figure, 0Φ indicates a television camera, and (11a) and (11b) indicate a slit light source.

テレビカメラa4で撮像されたスリット光源(4a’)
(4b)の切断像はアナログ信号としてA/D変換器(
1騰に送られ、デジタル化されて記憶装置0Qに送られ
ストアされる。記憶装置αOにストアされた信号はマイ
クロコンピュータα乃で処理され形状判断がなされる。
Slit light source (4a') imaged by TV camera A4
The cut image in (4b) is converted to an analog signal by an A/D converter (
The data is sent to the storage device 0Q, digitized, and sent to the storage device 0Q for storage. The signals stored in the storage device αO are processed by the microcomputer αO to determine the shape.

スリット光源(11a)(11h)はドライバ(18a
)(18b)で駆動され間欠発光する。この発光時期は
タイミング発生回路α9)によって制御される。又、テ
レビカメラ0→の画像は多数の走査線によって成り、該
走査線は一つおきに起動し画面を2回走査(走査線とし
ては1巡)して像が完成する様になっている。従って、
1回目の走査と2回目の走査で照射するスリット光を変
えてやれば、1回目の走査と2回目の走査で異なった撮
像が   □得られ、且画面中に同時に2のスリット光
の切断像が表示されることはない。翰は同期回路であり
、スリンI・光の切換りt(合せて1回目の走査と2回
目の走査とを同期させている。
The slit light sources (11a) (11h) are connected to the driver (18a).
) (18b) to emit light intermittently. This light emission timing is controlled by a timing generation circuit α9). In addition, the image from the TV camera 0→ is made up of a large number of scanning lines, and the scanning lines are activated every other time and scan the screen twice (one round as a scanning line) to complete the image. . Therefore,
By changing the slit light irradiated in the first and second scans, different images can be obtained in the first and second scans, and the cut images of the two slit lights can be displayed simultaneously on the screen. is never displayed. The wire is a synchronization circuit that switches Surin I and light (combined to synchronize the first and second scans).

又、走査線が苗列に起動せず連続的に起動する場合でも
、査定線の位置と記憶装置α→のアドレスを対応させ、
且−走査毎にスリット光を切換えてやれば上記したと同
様に一画面に2のスリット光の切断像を表して且容易に
2の像を分離して処理することができる。
Also, even if the scanning line does not start in the row of seedlings but starts continuously, the position of the assessment line and the address of the storage device α→ are made to correspond,
Moreover, by switching the slit light for each scan, it is possible to display cut images of two slit lights on one screen and easily separate and process the two images in the same manner as described above.

例えは、第15図に示す様に苗列に切断像(8α)(8
b)を表示する様にする。この時の査定線の信郊、スリ
ット光源(Ila)(1L6)の駆動のタイミングを表
示すれば第16図の通りであり、第16図中−に査線は
1Hであられされ、信号中突出する点が一走査線に於け
る切断像の1点である。
For example, as shown in Figure 15, cut images (8α) (8
b) will be displayed. The timing of driving the slit light source (Ila) (1L6) at this time is as shown in Figure 16. This point is one point on the cut image in one scanning line.

該実施例では走査線が1巡する間に信号処理が完了でき
るので信号処理速度を大幅に向上させることができる。
In this embodiment, the signal processing can be completed while the scanning line makes one round, so the signal processing speed can be greatly improved.

以上述べた如く本発明によれば、従来の光切断法では測
定し得々かったワークの姿勢測定が〒j]能となる1、
As described above, according to the present invention, it becomes possible to measure the posture of a workpiece, which could not be measured using the conventional optical cutting method.1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光切断法による切断像を示す図、第2図
は本発明を実施する為の装置の概略図、第3図は同装置
で得られる切断像の説明図、第4図は同装置とワークと
の関係を示す図、第5図は切断像の画面に対する位置付
の説明図、第6図はスリット光とワークとの関係を示す
図、第7図、第8図、第9図は画面中の2の切断像の位
置関係を示す図、第10図はワークに対するスリット光
の関係を示す図、第11図(a)(b)(c)はワーク
に対するスリット光の関係、及び切断像の画像を示す説
明図、第12図(a) (151、第16図(C1(/
+1はそれぞれ2のスリット光の関係を示す説明図、第
14図は他の実施例を示すブロック図、第15図は同実
施例に於ける画像の図、第16図は同実施例に於けるタ
イミングチャートを示す。 (4c) (4b)はスリット光、(8(Z)(8/)
)は切断像、C0)は撮像素子、(11a)(11h)
はスリット光源を示す。 第7図 第8図 第10図 第11図 (b)           (a) 第12図 (a)(b) 第13図 (a)(b)
Fig. 1 is a diagram showing a cut image obtained by a conventional optical cutting method, Fig. 2 is a schematic diagram of an apparatus for carrying out the present invention, Fig. 3 is an explanatory diagram of a cut image obtained with the same apparatus, and Fig. 4 is a diagram showing the relationship between the device and the workpiece, FIG. 5 is an explanatory diagram of the position of the cut image on the screen, FIG. 6 is a diagram showing the relationship between the slit light and the workpiece, FIGS. 7 and 8, Figure 9 is a diagram showing the positional relationship between the two cut images on the screen, Figure 10 is a diagram showing the relationship of the slit light to the workpiece, and Figures 11 (a), (b), and (c) are diagrams showing the relationship of the slit light to the workpiece. Explanatory diagram showing the relationship and cut image, FIG. 12(a) (151, FIG. 16(C1(/
+1 is an explanatory diagram showing the relationship between the two slit lights, FIG. 14 is a block diagram showing another embodiment, FIG. 15 is an image diagram in the same embodiment, and FIG. 16 is an illustration in the same embodiment. A timing chart is shown below. (4c) (4b) is a slit light, (8(Z)(8/)
) is a cut image, C0) is an image sensor, (11a) (11h)
indicates a slit light source. Figure 7 Figure 8 Figure 10 Figure 11 (b) (a) Figure 12 (a) (b) Figure 13 (a) (b)

Claims (1)

【特許請求の範囲】 1)2のスリット状光線を相互に傾斜させてワークに照
射せしめ、両光線で得られる切断像の相互関係によシワ
ークの姿勢を測定することを特徴さする光切断による姿
勢測定方法。 2)前記2のスリット状光線を交互にワークに照射する
様にした特許請求の範囲第1項記載の光切断による姿勢
測定方法。
[Claims] 1) By optical cutting, which is characterized in that the two slit-shaped light beams are irradiated onto the workpiece at an angle with respect to each other, and the posture of the workpiece is measured based on the mutual relationship between the cut images obtained by both light beams. Posture measurement method. 2) The posture measuring method by light cutting according to claim 1, wherein the two slit-shaped light beams are alternately irradiated onto the workpiece.
JP58073314A 1983-04-26 1983-04-26 Attitude measuring method by optical cutting Pending JPS59197813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073314A JPS59197813A (en) 1983-04-26 1983-04-26 Attitude measuring method by optical cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073314A JPS59197813A (en) 1983-04-26 1983-04-26 Attitude measuring method by optical cutting

Publications (1)

Publication Number Publication Date
JPS59197813A true JPS59197813A (en) 1984-11-09

Family

ID=13514583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073314A Pending JPS59197813A (en) 1983-04-26 1983-04-26 Attitude measuring method by optical cutting

Country Status (1)

Country Link
JP (1) JPS59197813A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003704A1 (en) * 1989-09-05 1991-03-21 Fanuc Ltd Object recognition method by otpical cutting method
WO1991013318A1 (en) * 1990-02-23 1991-09-05 Amada Company, Limited Method and apparatus for measuring the angle of work
JPH05332746A (en) * 1992-03-31 1993-12-14 Toshiba Corp Recognizing device of solder paste form
US5379106A (en) * 1992-04-24 1995-01-03 Forensic Technology Wai, Inc. Method and apparatus for monitoring and adjusting the position of an article under optical observation
US5531087A (en) * 1990-10-05 1996-07-02 Kabushiki Kaisha Komatsu Seisakusho Metal sheet bending machine
US5652805A (en) * 1993-05-24 1997-07-29 Kabushiki Kaisha Komatsu Seisakusho Bending angle detector and straight line extracting device for use therewith and bending angle detecting position setting device
WO2020206479A1 (en) * 2019-04-11 2020-10-15 Trumpf Maschinen Austria Gmbh & Co. Kg. Measuring device for determining the bending angle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003704A1 (en) * 1989-09-05 1991-03-21 Fanuc Ltd Object recognition method by otpical cutting method
WO1991013318A1 (en) * 1990-02-23 1991-09-05 Amada Company, Limited Method and apparatus for measuring the angle of work
US5329597A (en) * 1990-02-23 1994-07-12 Amada Company, Ltd. Device and method for measuring angles of a work
US5531087A (en) * 1990-10-05 1996-07-02 Kabushiki Kaisha Komatsu Seisakusho Metal sheet bending machine
JPH05332746A (en) * 1992-03-31 1993-12-14 Toshiba Corp Recognizing device of solder paste form
US5379106A (en) * 1992-04-24 1995-01-03 Forensic Technology Wai, Inc. Method and apparatus for monitoring and adjusting the position of an article under optical observation
US5652805A (en) * 1993-05-24 1997-07-29 Kabushiki Kaisha Komatsu Seisakusho Bending angle detector and straight line extracting device for use therewith and bending angle detecting position setting device
US5661671A (en) * 1993-05-24 1997-08-26 Kabushiki Kaisha Komatsu Seisakusho Bending angle detecting position setting device
US5899964A (en) * 1993-05-24 1999-05-04 Kabushiki Kaisha Komatsu Seisakusho Bending angle detector and straight line extracting device for use therewith and bending angle detecting position setting device
WO2020206479A1 (en) * 2019-04-11 2020-10-15 Trumpf Maschinen Austria Gmbh & Co. Kg. Measuring device for determining the bending angle
AT522419A1 (en) * 2019-04-11 2020-10-15 Trumpf Maschinen Austria Gmbh & Co Kg Measuring device for determining the bending angle
AT522419B1 (en) * 2019-04-11 2021-11-15 Trumpf Maschinen Austria Gmbh & Co Kg Measuring device for determining the bending angle
CN113692325A (en) * 2019-04-11 2021-11-23 特鲁普机械奥地利有限公司及两合公司 Measuring device for determining a bending angle

Similar Documents

Publication Publication Date Title
US7502504B2 (en) Three-dimensional visual sensor
JP5438475B2 (en) Gap step measurement device, gap step measurement method, and program thereof
JPS59197813A (en) Attitude measuring method by optical cutting
JPS61500185A (en) Multidimensional measurement method and device for objects
JP3428122B2 (en) 3D shape measuring device
US20040184040A1 (en) Shape measuring device
JP2008014882A (en) Three-dimensional measuring device
JP2000161916A (en) Inspection device for semiconductor packages
US20020075485A1 (en) Optoelectronic measuring method and distance measuring device for carrying out the method
JPH10288508A (en) External appearance inspection device
JPH10105719A (en) Optical measurement method for hole position
JP2008164491A (en) Device and method for measuring human body shape
JP2932418B2 (en) Work position measurement method
JP4454714B2 (en) Method and apparatus for measuring object to be measured
JPH0282106A (en) Optical measuring method for three-dimensional position
WO2021240934A1 (en) Marker for measuring position and orientation of subject, device, system, and measurement method
JPS6129709A (en) Measuring method of shape
JPS6133880A (en) Method of controlling gripping of robot
JPS5855804A (en) Body detecting device
JPS59136606A (en) Detector for weld line
JPH01227910A (en) Optical inspection device
JPH04164205A (en) Three dimensional image analysis device
JP3222664B2 (en) Member position / posture measuring method and member joining method
JP2725207B2 (en) Position measuring device
JPH05296744A (en) Form measuring device