JPS59197772A - Engine driving heat pump type heating apparatus - Google Patents

Engine driving heat pump type heating apparatus

Info

Publication number
JPS59197772A
JPS59197772A JP58072222A JP7222283A JPS59197772A JP S59197772 A JPS59197772 A JP S59197772A JP 58072222 A JP58072222 A JP 58072222A JP 7222283 A JP7222283 A JP 7222283A JP S59197772 A JPS59197772 A JP S59197772A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
engine
hot water
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58072222A
Other languages
Japanese (ja)
Inventor
沢口 寛
島 久義
今村 研一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP58072222A priority Critical patent/JPS59197772A/en
Publication of JPS59197772A publication Critical patent/JPS59197772A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、エンジン駆動による熱ポンプ式暖房装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an engine-driven heat pump type heating device.

熱ポンプ式暖房装置の圧縮機を駆動する駆動源を、電動
機に代えてエンジン(内燃機関)にする場合は、そのエ
ンジンの排気や冷却水などが有する排熱がさらに暖房用
として利用可能になる。しかし、このエンジン排熱を利
用する場合には、冷媒回路における熱ポンプに大きな負
担をかげないで、排熱を有効に利用できるようにするこ
とが望ましい。
When using an engine (internal combustion engine) instead of an electric motor as the driving source for the compressor of a heat pump type heating system, the exhaust heat of the engine's exhaust gas and cooling water can be further used for heating purposes. . However, when utilizing this engine exhaust heat, it is desirable to be able to use the exhaust heat effectively without placing a large burden on the heat pump in the refrigerant circuit.

本発明の目的は、上述のようにエンジンを駆動源とする
場合において、熱ポンプへの負担を大きくすることなく
、エンジン排熱を効率的に利用できるようにしたエンジ
ン駆動熱ポンプ式暖房装置を提供せんとすることになる
An object of the present invention is to provide an engine-driven heat pump type heating system that can efficiently utilize engine exhaust heat without increasing the load on the heat pump when the engine is used as the drive source as described above. We will not provide it.

上記目的を達成する本発明は、エンジンにより圧縮機を
駆動し、該圧縮機により冷媒を圧縮循環させながら、循
環系途中に設けた熱交換器を介して室内循環用の温水回
路の循環水と熱交換すべくした熱ポンプ式暖房装置にお
いて、前記エンジンの排熱系に該排熱を利用した補助熱
交換器を設け、該補助熱交換器に前記温水回路の熱交換
器より下流側をバイパスさせて通し、補助熱交換器のエ
ンジン排熱を温水回路の循環水に熱交換すべくしたこと
を特徴とする特許ある。
The present invention achieves the above object by driving a compressor by an engine, and while compressing and circulating refrigerant by the compressor, it is connected to circulating water of a hot water circuit for indoor circulation via a heat exchanger provided in the middle of the circulation system. In a heat pump type heating device intended for heat exchange, an auxiliary heat exchanger that utilizes the exhaust heat is provided in the exhaust heat system of the engine, and the auxiliary heat exchanger bypasses the downstream side of the heat exchanger of the hot water circuit. There is a patent which is characterized in that the exhaust heat of the engine from the auxiliary heat exchanger is exchanged with the circulating water of the hot water circuit.

以下、本発明を図に示す実施例により説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第1図は、本発明を貯湯装置付きの冷暖房装置に組込ん
だ場合の概要を示すものである。
FIG. 1 schematically shows the case where the present invention is incorporated into an air conditioning system with a hot water storage device.

第1図において、1は例えば灯油を燃料として駆動する
エンジンで、吸気側にはエアクリーナ6、気化器7が設
けられ、また排気側には排気管8が設けられている。エ
ンジン1にはクラッチ3を介して圧縮機2が連結され、
また同時にクラッチ5を介して電動機4が連結されてお
り、複数の被駆動体が択一的または同時に選択的に駆動
されるようになっている。9は貯湯槽、10は冷暖房す
べき室である。
In FIG. 1, reference numeral 1 denotes an engine driven using, for example, kerosene as fuel, and is provided with an air cleaner 6 and a carburetor 7 on the intake side, and an exhaust pipe 8 on the exhaust side. A compressor 2 is connected to the engine 1 via a clutch 3,
At the same time, an electric motor 4 is connected via a clutch 5, so that a plurality of driven bodies can be driven selectively or simultaneously. 9 is a hot water storage tank, and 10 is a room to be heated and cooled.

圧縮機2はフレオン等の冷媒を圧縮循環する冷媒回路l
を形成している。この冷媒回路1には、室外空気熱交換
器11、水熱交換器12、これらの熱交換器に隣接して
設けた絞り17゜18及び逆止弁19,20、さらに貯
湯槽9中を通るようにした貯湯用熱交換器16が設けら
れている。これらの機器に冷媒を送る循環路は、三方切
換弁13.15及び四方切換弁14を切換えることによ
り、後述するような暖房回路、冷房回路、貯湯回路等に
それぞれ切換えられるようになっている。
The compressor 2 is a refrigerant circuit l that compresses and circulates a refrigerant such as Freon.
is formed. This refrigerant circuit 1 includes an outdoor air heat exchanger 11 , a water heat exchanger 12 , throttles 17 18 and check valves 19 and 20 provided adjacent to these heat exchangers, and a hot water tank 9 that passes through the refrigerant circuit 1 . A hot water storage heat exchanger 16 is provided. By switching the three-way switching valves 13, 15 and the four-way switching valve 14, the circulation path for sending refrigerant to these devices can be switched to a heating circuit, a cooling circuit, a hot water storage circuit, etc. as described later.

水熱交換器12には冷温水回路■が通り、水熱交換器1
2で熱交換された冷温水がポンプ22により強制循環さ
れ、室10の冷暖房を行うようになっている。冷温水回
路■における水熱交換器12の下流側には、弁23.2
4を介してバイパス回路■°が設けられ流路の切換えが
できるようになっており、さらにバイパス回路■゛には
暖房用の補助熱交換器34が設けである。
A cold/hot water circuit ■ passes through the water heat exchanger 12, and the water heat exchanger 1
The cold and hot water heat-exchanged in step 2 is forcibly circulated by a pump 22 to cool and heat the room 10. On the downstream side of the water heat exchanger 12 in the cold/hot water circuit ■, a valve 23.2 is installed.
A bypass circuit (2) is provided via the air conditioner 4 to enable switching of the flow path, and the bypass circuit (2) is further provided with an auxiliary heat exchanger 34 for heating.

エンジン1の冷却水は、冷却水回路■を介してポンプ2
5により強制循環される。冷却水回路■において、冷却
水はエンジン1のシリンダの冷却を行って熱を奪うと共
に、排気管8中の排ガス熱交換器26を通って熱を奪い
、この奪ったエンジン排熱を貯湯槽9の中に設けた排熱
回収熱交換器27及び人達した暖房用補助熱交換器34
で放出する。
The cooling water of the engine 1 is supplied to the pump 2 via the cooling water circuit ■.
Forced circulation is performed by 5. In the cooling water circuit (2), the cooling water cools the cylinders of the engine 1 and removes heat, passes through the exhaust gas heat exchanger 26 in the exhaust pipe 8, removes heat, and transfers this removed engine exhaust heat to the hot water storage tank 9. Exhaust heat recovery heat exchanger 27 and heating auxiliary heat exchanger 34 installed inside
Release with.

冷却水回路■Iには三つの弁28,29.30が設けら
れており、このうち弁28.30を閉し、29を開いた
状態にすると、最も温度が高い状態の冷却水は貯湯槽9
の排熱回収熱交換器27を通ることなくバイパスされ、
直接暖房用補助熱交換器34へ経由する。このため、エ
ンジン始動時にバイパス流路にすると、冷却水温度ノ上
昇を早め、エンジンの冷却損失を少なくすることができ
る。この場合、弁24を閉しておくと、冷却水温度の上
昇をさらに早めることができる。また暖房運転時にバイ
パス流路にすると、暖房温度の立上がりを早めることが
できる。また、弁28.29を閉じ、30を開いた状態
にで′ると、冷却水はラジェータ31へ循環し、このラ
ジェータ31において放熱する。
The cooling water circuit ■I is provided with three valves 28, 29, and 30. When valves 28, 30 are closed and valves 29 are open, the cooling water with the highest temperature will flow to the hot water tank. 9
is bypassed without passing through the exhaust heat recovery heat exchanger 27,
It passes directly to the auxiliary heat exchanger 34 for heating. Therefore, if the bypass flow path is used when starting the engine, the temperature of the cooling water can be increased quickly, and cooling loss of the engine can be reduced. In this case, if the valve 24 is closed, the temperature of the cooling water can rise even more quickly. Also, if the bypass flow path is used during heating operation, the heating temperature can be raised more quickly. Further, when the valves 28, 29 are closed and 30 is opened, the cooling water circulates to the radiator 31, where the heat is radiated.

ラジェータ31は、上述した冷媒回路Iの室外空気熱交
換器11の上部に重ねるように設けられ、かつ送風用の
ファン32を共用するようにしている。即ち、第6図に
詳細を示すように室外空気熱交換器11の上部にラジェ
ータ31が配置されており、前者には冷媒用の循環ノ々
イブ60が往復蛇行し、また後者には冷却水用の循環バ
イブロ1が往復蛇行し、これらの二種の循環バイブロ0
.61の外周に、共通の放熱用フィン62が固定されて
いる。
The radiator 31 is provided so as to overlap the outdoor air heat exchanger 11 of the refrigerant circuit I described above, and also shares the fan 32 for blowing air. That is, as shown in detail in FIG. 6, a radiator 31 is disposed above the outdoor air heat exchanger 11, the former has refrigerant circulation knobs 60 meandering back and forth, and the latter has cooling water. The circulating vibro 1 for
.. A common heat dissipation fin 62 is fixed to the outer periphery of the fin 61 .

上記した装置において、冷媒回路■における三方弁13
.15及び四方弁14を所定の位置に切換操作すること
により、次のような暖房。
In the above device, the three-way valve 13 in the refrigerant circuit
.. 15 and four-way valve 14 to predetermined positions, the following heating can be performed.

冷房、貯湯等の各運転を行うことができる。Various operations such as cooling and hot water storage can be performed.

(暖房運転) 第2図に示すように、圧縮機2で圧縮された冷媒の流れ
を、矢印で示すような流路にするように三方弁13.1
5及び四方弁14を設定する。この設定により、水熱交
換器12は冷媒の凝縮器として作用し、また室外空気熱
交換器11は蒸発器として作用する。即ち、圧縮ta2
の圧縮により高温高圧のガスになった冷媒は、水熱交換
器12において熱交換により凝縮し、その凝縮熱を冷温
水回路■の循環水に与える。液化した冷媒は、次いで絞
り17を通るとき一部ガス化した低温低圧の冷媒液とな
り、室外空気熱交換器11においてガス化し、その蒸発
熱を外気から奪う。ガス化した低温の冷媒は、再び圧縮
機2に戻り上記サイクルを救り返す。
(Heating operation) As shown in Fig. 2, the three-way valve 13.
5 and four-way valve 14 are set. With this setting, the water heat exchanger 12 acts as a refrigerant condenser, and the outdoor air heat exchanger 11 acts as an evaporator. That is, compressed ta2
The refrigerant, which has become a high-temperature, high-pressure gas by compression, is condensed by heat exchange in the water heat exchanger 12, and the condensation heat is given to the circulating water of the cold/hot water circuit (2). The liquefied refrigerant then becomes a low-temperature, low-pressure refrigerant liquid that is partially gasified when passing through the throttle 17, and is gasified in the outdoor air heat exchanger 11, taking the heat of evaporation from the outside air. The gasified low-temperature refrigerant returns to the compressor 2 and resumes the cycle.

冷温水回路IIでは、弁23を閉し、24を開いた状態
にしてあり、循環水は矢印のように循環を行う。このた
め循環水は水熱交換機12で冷媒から蒸発熱を奪って約
40〜50℃に昇温し、昇温した循環水はバイパス回路
■゛に入って暖房用補助熱交換器34を通る。暖房用?
li助熱交熱交換器では、エンジン排熱を奪ってさらに
昇温する。このように昇温した循環水は、冷7M、水回
路11を経て室10へ入り、暖房に供せられる。
In the cold/hot water circuit II, the valve 23 is closed and the valve 24 is opened, and the circulating water circulates as shown by the arrow. For this reason, the circulating water is heated to approximately 40 to 50° C. by removing the heat of evaporation from the refrigerant in the water heat exchanger 12, and the heated circulating water enters the bypass circuit 12 and passes through the heating auxiliary heat exchanger 34. For heating?
In the li heat exchanger, exhaust heat from the engine is removed to further raise the temperature. The circulating water heated in this way enters the room 10 through the cold 7M water circuit 11 and is used for heating.

上述のように水熱交換器12を通った直後の冷温水面1
洛■の下流側の循環水は、40〜50℃程度の低温度で
あり、この低温状態で暖房用補助熱交換器34において
これよりも高温のエンジン排熱を吸収するから、圧縮機
2に無理な負担をかけることなくエンジン排熱を効率的
に吸収することができる。もし、水熱交換器12の上流
側に暖房用補助熱交換器34を設けた場合には、冷媒回
路Iにより所望の最終的な高温にする必要があるため、
圧縮機2に無理な負担をかけてしまうことになる。
As mentioned above, the cold and hot water surface 1 immediately after passing through the water heat exchanger 12
The circulating water on the downstream side of Raku is at a low temperature of about 40 to 50°C, and in this low temperature state, the heating auxiliary heat exchanger 34 absorbs the engine exhaust heat at a higher temperature. Engine exhaust heat can be efficiently absorbed without imposing an unreasonable burden. If the heating auxiliary heat exchanger 34 is provided upstream of the water heat exchanger 12, it is necessary to reach the desired final high temperature using the refrigerant circuit I.
This will put an unreasonable burden on the compressor 2.

冷却水回路■では、弁28を閉じて貯湯槽9側への循環
をカソトシ、弁29を開いて冷却水を破線矢印で示すよ
うに循環させれば、一層多くの熱を冷温水回路■の循環
水に与えることができる、上述したようなエンジン始動
時や暖房運転開始時のメリットを得ることができる。
In the cooling water circuit ■, if the valve 28 is closed to limit the circulation to the hot water tank 9 side, and if the valve 29 is opened to circulate the cooling water as shown by the dashed arrow, more heat can be transferred to the hot and cold water circuit ■. It is possible to obtain the above-mentioned benefits that can be given to the circulating water at the time of starting the engine or starting the heating operation.

(冷房運転) 第3図に示すように、圧縮機2で圧縮した冷媒の流れを
矢印で示ずような流路にするように三方弁13.15及
び四方弁14を設定する。
(Cooling Operation) As shown in FIG. 3, the three-way valves 13 and 15 and the four-way valve 14 are set so that the refrigerant compressed by the compressor 2 flows through the flow paths as shown by the arrows.

この設定により、水熱交換器12は冷媒の蒸発器として
作用し、また室外空気熱交換器11は凝縮器として作用
する。即ち、圧縮機2により高温高圧のガスにされた冷
媒は、室外空気熱交換機11において熱交換により祷縮
し、その凝縮熱を放熱して高温高圧の液体になる。液化
した冷媒は、次いで絞り1Bを通るとき一部ガス化した
低温低圧の冷媒液となり、水熱交換器12において冷温
水回路Hの循環水から熱を奪って蒸発し、循■ぶ水はそ
の蒸発熱により冷却される。ガス化した冷媒は再び圧縮
機2に戻り上記サイクルを繰り返す。
With this configuration, the water heat exchanger 12 acts as a refrigerant evaporator, and the outdoor air heat exchanger 11 acts as a condenser. That is, the refrigerant that has been turned into a high-temperature, high-pressure gas by the compressor 2 is condensed through heat exchange in the outdoor air heat exchanger 11, and radiates the heat of condensation to become a high-temperature, high-pressure liquid. The liquefied refrigerant then becomes a low-temperature, low-pressure refrigerant liquid that is partially gasified when passing through the throttle 1B, and in the water heat exchanger 12, it absorbs heat from the circulating water of the cold/hot water circuit H and evaporates. Cooled by heat of evaporation. The gasified refrigerant returns to the compressor 2 again and repeats the above cycle.

冷温水回路■でば、弁23を開き、24を閉じた状態に
してあり、冷却された低温の循環水を矢印のように循環
させ、室10の冷房ムこ供する。
In the hot/cold water circuit (2), the valve 23 is opened and the valve 24 is closed, and cooled low-temperature circulating water is circulated as shown by the arrow to provide cooling for the room 10.

エンジン1の冷却水回路■では、貯湯槽9の貯湯が所定
の温度に達したら、弁28.30を切換え、ラジェータ
31から放熱するようにする。
In the cooling water circuit (2) of the engine 1, when the hot water stored in the hot water storage tank 9 reaches a predetermined temperature, the valves 28 and 30 are switched so that heat is radiated from the radiator 31.

(冷房+貯湯運転) 第4図に示すように、圧縮機2で圧縮した冷媒の流れを
、矢印で示す流路となるように三方弁13.15及び四
方弁14を設定する。この運転では、上述した第3図の
冷房運転状態の三方弁13を、冷媒通路が室外空気熱交
換器11を通らないで貯湯用熱交換器16へ通るように
切換えたものである。このため貯湯用熱交換器16が室
外空気熱交換器11に代って凝縮器として作用し、高温
ガス冷媒が発生する凝縮熱を貯湯槽9中に放出する。
(Cooling + hot water storage operation) As shown in FIG. 4, the three-way valves 13 and 15 and the four-way valve 14 are set so that the refrigerant compressed by the compressor 2 flows in the flow path shown by the arrow. In this operation, the three-way valve 13 in the cooling operation state shown in FIG. Therefore, the hot water storage heat exchanger 16 acts as a condenser instead of the outdoor air heat exchanger 11 and releases the condensation heat generated by the high temperature gas refrigerant into the hot water storage tank 9.

(貯湯運転) 第5図に示すように、圧縮機2で圧縮された冷媒の流れ
を、矢印で示す流路となるように三方弁13.15及び
四方弁14を設定する。この冷媒流路により室外空気熱
交換器11は蒸発器として作用し、また貯湯用熱交換器
16は凝縮器として作用する。室外空気熱交換器11ば
絞り17により減圧された冷媒をガス化させ、また貯湯
用熱交換器16は圧縮機2により加圧された高温ガス冷
媒の凝縮熱を貯湯槽9中に放出する。
(Hot water storage operation) As shown in FIG. 5, the three-way valves 13 and 15 and the four-way valve 14 are set so that the refrigerant compressed by the compressor 2 flows in the flow path shown by the arrow. Due to this refrigerant flow path, the outdoor air heat exchanger 11 acts as an evaporator, and the hot water storage heat exchanger 16 acts as a condenser. The outdoor air heat exchanger 11 gasifies the refrigerant whose pressure has been reduced by the throttle 17, and the hot water storage heat exchanger 16 releases the heat of condensation of the high temperature gas refrigerant pressurized by the compressor 2 into the hot water storage tank 9.

上述した各運転モードへの切換えは、第1図に示すよう
に、コンビラ4−夕50を利用して三方弁13.15及
び四方弁14、並びに弁23゜24を切換制御すること
により容易に実施することができる。また、冷暖房運転
中に冷暖房負荷がなくなったときに、冷暖房運転モード
から貯湯運転モードへの自動切換えを行うようにするこ
ともできる。また、冷却水回路■における弁28,29
.30の切換えは、同じくコンピュータ50により、貯
湯槽9における温度の検知信号により、所定温度に達し
たことを検知して自動制御することができる。
Switching to each of the above-mentioned operation modes can be easily performed by switching and controlling the three-way valves 13, 15, the four-way valves 14, and the valves 23 and 24 using the combiners 4-50, as shown in FIG. It can be implemented. Furthermore, when the cooling/heating load disappears during the cooling/heating operation, it is also possible to automatically switch from the cooling/heating operation mode to the hot water storage operation mode. In addition, valves 28 and 29 in the cooling water circuit
.. 30 can be automatically controlled by the computer 50 by detecting that a predetermined temperature has been reached using a temperature detection signal in the hot water storage tank 9.

また、コンピュータ50ば、気化器7におけるスロット
ル開度信号又はエンジン1の回転数信号を入力するよう
にし、エンジンの設定回転数と実回転数との差に応じて
ファン32の回転数を制御するようにし、熱負荷を制御
することによってエンジン1の過負荷を防止することが
できる。さらには、−上記エンジンの設定回転数と実回
転数との差に応してアンロード弁33を開閉するように
し、その差の大きいとき圧縮機せ、エンジン1の過負荷
を防止するようにすることもできる。
Further, the computer 50 inputs the throttle opening signal of the carburetor 7 or the rotation speed signal of the engine 1, and controls the rotation speed of the fan 32 according to the difference between the set rotation speed of the engine and the actual rotation speed. By doing so and controlling the heat load, overload of the engine 1 can be prevented. Furthermore, - the unload valve 33 is opened and closed according to the difference between the set engine speed and the actual engine speed, and when the difference is large, the compressor is turned off to prevent the engine 1 from being overloaded. You can also.

第6図のように、ラジェータ31を室外空気熱交換器1
1の上部に設けておくと、暖房・貯湯運転時において室
外空気熱交換器11に着霜している場合、上記ラジェー
タ31に冷却水を流せば簡単に除霜することができる。
As shown in Fig. 6, the radiator 31 is connected to the outdoor air heat exchanger 1.
1, if frost has formed on the outdoor air heat exchanger 11 during heating/hot water storage operation, it can be easily defrosted by flowing cooling water to the radiator 31.

また、このような除霜は、第1図中に図示するように、
排気管8の排気の−・部を導管35によりファン32の
上流側へ導くようにしても行うことができる。
In addition, such defrosting is performed as shown in Figure 1.
This can also be done by guiding the exhaust part of the exhaust pipe 8 to the upstream side of the fan 32 through the conduit 35.

上述したように本発明は、上記装置を暖房装置として適
用した場合、エンジンにより圧縮機を駆動し、該圧縮機
により冷媒を圧縮循環させながら、循環系途中に設けた
熱交換器を介して室内循環用の温水回路の循環水と熱交
換すべくした熱ポンプ式暖房装置において、前記エンジ
ンの排熱系に該排熱を利用した補助熱交換器を設け、該
補助熱交換器に前記温水回路の熱交換器より下流側をバ
イパスさせて通し7、補助熱交換器のエンジン排熱を温
水回路の循環水に熱交換すべくしたので、前述した暖房
運転モードの項で説明したように熱ポンプへの負担を大
きくjることなく、エンジン排熱を効率的に利用するこ
とが可能となる。
As described above, in the present invention, when the above device is applied as a heating device, the compressor is driven by the engine, and the refrigerant is compressed and circulated by the compressor while the refrigerant is compressed and circulated indoors through a heat exchanger provided in the middle of the circulation system. In a heat pump type heating device designed to exchange heat with circulating water of a hot water circuit for circulation, an auxiliary heat exchanger that utilizes the exhaust heat is provided in the exhaust heat system of the engine, and the auxiliary heat exchanger is connected to the hot water circuit. Bypassing the downstream side of the heat exchanger 7 and exchanging heat from the engine exhaust heat from the auxiliary heat exchanger to the circulating water in the hot water circuit, the heat pump It becomes possible to efficiently utilize engine exhaust heat without placing a large burden on the engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置を組込んだ貯湯装置付きの冷暖房
装置を示す回路図、第2図は同装置を暖房運転時の冷媒
フローの説明図、第3図は同しく冷房運転時の冷媒フロ
ーの説明図、第4図は同じく冷房→−貯湯運転時の冷媒
フローの説明図、第5図は同しく貯湯運転時の冷媒フロ
ーの説明図、第6図は同装置に使用した室外空気熱交換
器及びラジェータの斜視図である。 ■・・エンジン、 2・・圧縮機、 8・・排気管、 
 10・・室、 12・・水熱交換器、26・・排ガス
熱交換器、 34・・暖房用補助や熱交換器、■・・冷
媒回路、 ■・・冷温回路。
Fig. 1 is a circuit diagram showing a heating and cooling system with a hot water storage device incorporating the device of the present invention, Fig. 2 is an explanatory diagram of the refrigerant flow during heating operation of the device, and Fig. 3 is a diagram showing the refrigerant flow during cooling operation of the same device. Fig. 4 is an explanatory diagram of the refrigerant flow during cooling → - hot water storage operation, Fig. 5 is an explanatory diagram of the refrigerant flow during hot water storage operation, and Fig. 6 is an explanatory diagram of the refrigerant flow during hot water storage operation. It is a perspective view of an air heat exchanger and a radiator. ■...Engine, 2...Compressor, 8...Exhaust pipe,
10... Room, 12... Water heat exchanger, 26... Exhaust gas heat exchanger, 34... Heating auxiliary or heat exchanger, ■... Refrigerant circuit, ■... Cold temperature circuit.

Claims (1)

【特許請求の範囲】[Claims] エンジンにより圧縮機を駆動し、該圧縮機により冷媒を
圧縮循環させながら、循環系途中に設けた熱交換器を介
して室内循環用の温水回路の循環水と熱交換すべくした
熱ポンプ式暖房装置において、前記エンジンの排熱系に
該排熱を利用した補助熱交換器を設け、該補助熱交換器
に前記温水回路の熱交換器より下流側をバイパスさせて
通し、補助熱交換器のエンジン排熱をn、;1水回路の
循環水に熱交換すべくしたエンジン駆動熱ポンプ式暖房
装置。
A heat pump type heating system in which a compressor is driven by an engine, and the refrigerant is compressed and circulated by the compressor, and heat is exchanged with the circulating water of the hot water circuit for indoor circulation via a heat exchanger installed in the circulation system. In the apparatus, an auxiliary heat exchanger that utilizes the exhaust heat is provided in the exhaust heat system of the engine, and the downstream side of the heat exchanger of the hot water circuit is bypassed and passed through the auxiliary heat exchanger. An engine-driven heat pump type heating device designed to exchange engine exhaust heat with circulating water in a water circuit.
JP58072222A 1983-04-26 1983-04-26 Engine driving heat pump type heating apparatus Pending JPS59197772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58072222A JPS59197772A (en) 1983-04-26 1983-04-26 Engine driving heat pump type heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58072222A JPS59197772A (en) 1983-04-26 1983-04-26 Engine driving heat pump type heating apparatus

Publications (1)

Publication Number Publication Date
JPS59197772A true JPS59197772A (en) 1984-11-09

Family

ID=13483004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58072222A Pending JPS59197772A (en) 1983-04-26 1983-04-26 Engine driving heat pump type heating apparatus

Country Status (1)

Country Link
JP (1) JPS59197772A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282065A (en) * 1988-09-19 1990-03-22 Yamaha Motor Co Ltd Engine drive heat pump type temperature conditioner
WO2011155386A1 (en) 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282065A (en) * 1988-09-19 1990-03-22 Yamaha Motor Co Ltd Engine drive heat pump type temperature conditioner
WO2011155386A1 (en) 2010-06-11 2011-12-15 ヤンマー株式会社 Engine-driven hot water supply circuit, and engine-driven hot water supply system using same

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US10377207B2 (en) Vehicle air-conditioning device
US7155927B2 (en) Exhaust heat utilizing refrigeration system
KR102495460B1 (en) Cooling and heating system for electrical vehicle
JP2001260640A (en) Heating device for vehicle
JP4201062B2 (en) Hybrid refrigerant compression heat transfer device
JP2003035467A (en) Engine cooling equipment
JPS6155018B2 (en)
WO2022068606A1 (en) Thermal management system
JPS59197772A (en) Engine driving heat pump type heating apparatus
KR102473096B1 (en) Cooling and heating system for electrical vehicle
JPH074777A (en) Engine waste heat recovery device
JPS5848824B2 (en) Air conditioning/heating water heater
JP3828957B2 (en) Refrigerant circulation type heat transfer device
JP2508758B2 (en) Freezing / heating control device mounted on the vehicle
JP3583792B2 (en) Hot water supply / air conditioning system
KR101127463B1 (en) The air-conditioning and heating cycle for the vehicle
JP3467294B2 (en) Engine driven heat pump device
JP2002234335A (en) Vehicular air conditioner
JP7297560B2 (en) Unit warming system
JP3626927B2 (en) Gas heat pump type air conditioner
JP3448142B2 (en) Engine driven air conditioner
JPH10170095A (en) Engine driven heat pump
JP4262901B2 (en) Refrigeration equipment
KR20240009818A (en) Heat pump system for vehicle