JPS59197762A - Refrigeration cycle - Google Patents
Refrigeration cycleInfo
- Publication number
- JPS59197762A JPS59197762A JP7095483A JP7095483A JPS59197762A JP S59197762 A JPS59197762 A JP S59197762A JP 7095483 A JP7095483 A JP 7095483A JP 7095483 A JP7095483 A JP 7095483A JP S59197762 A JPS59197762 A JP S59197762A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- refrigeration cycle
- pressure reducing
- reducing device
- condenser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Saccharide Compounds (AREA)
- Fats And Perfumes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、例えば急速冷凍冷蔵庫などに用いる冷凍サ
イクルに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration cycle used in, for example, quick-freezing refrigerators.
第1図は従来の急速冷凍冷蔵庫に用いられている冷凍サ
イクルの回路図である。図において、1は圧縮機、2は
凝縮器、3aは第1の減圧装置、3bは第2の減圧装置
、4は上記第1の減圧装置3aに並列接続された電磁弁
、5は蒸発器をそれぞれ示す。この回路には単一冷媒、
例えば沸点が一30℃のR12が充填されており、図中
に示す矢印は冷媒の流れる方向を示す。FIG. 1 is a circuit diagram of a refrigeration cycle used in a conventional quick-freezing refrigerator. In the figure, 1 is a compressor, 2 is a condenser, 3a is a first pressure reducing device, 3b is a second pressure reducing device, 4 is a solenoid valve connected in parallel to the first pressure reducing device 3a, and 5 is an evaporator. are shown respectively. This circuit has a single refrigerant,
For example, the refrigerant is filled with R12 having a boiling point of 130°C, and the arrow shown in the figure indicates the direction in which the refrigerant flows.
ところで、急速冷凍冷蔵庫においては急速冷凍冷蔵の時
の一40℃〜−50℃の超低温と、通常の冷凍冷蔵の時
の一15℃〜−20℃の低温を得ることが必要である。By the way, in a quick-freezing refrigerator, it is necessary to obtain an extremely low temperature of 140°C to -50°C during quick freezing and refrigeration, and a low temperature of 115°C to -20°C during normal freezing and refrigeration.
上記構成を備えた従来の冷凍サイクルにおいて、電磁弁
4を開いた場合、圧縮機1で高温高圧となった冷媒ガス
は凝縮2で冷却されて液化する。この後、冷媒液は上記
電磁弁4が開いている為、第1の減圧装置3aを通らず
に第2の減圧装置3bに27かれ、ここで低温低圧とな
って蒸発器5に導かれる。この蒸発器5内で冷媒液がガ
ス化する際に、周囲から吸熱して一り0℃〜−159C
の通常の冷凍を行なう。そして、冷媒ガスは圧縮機1に
吸入される。In the conventional refrigeration cycle having the above configuration, when the solenoid valve 4 is opened, the refrigerant gas that has become high temperature and high pressure in the compressor 1 is cooled by condensation 2 and liquefied. Thereafter, since the electromagnetic valve 4 is open, the refrigerant liquid does not pass through the first pressure reducing device 3a, but is directed to the second pressure reducing device 3b, where it is brought to a low temperature and low pressure and is led to the evaporator 5. When the refrigerant liquid is gasified in this evaporator 5, it absorbs heat from the surroundings and the temperature ranges from 0°C to -159°C.
Perform normal freezing. The refrigerant gas is then sucked into the compressor 1.
次に、電磁弁4を閉じた場合、上述と同様に圧縮機1に
よって高温高圧となった冷媒ガ/には凝縮器2で冷却さ
れて液化する。この後、第1、第2の各減圧装置3 a
+、 3 bの作用によって、上述の」、J)合より
も更に低温、低圧となり蒸発器5に導かれる。この時は
−40℃〜−50℃の超低温が得られる。Next, when the electromagnetic valve 4 is closed, the refrigerant gas heated to high temperature and pressure by the compressor 1 is cooled by the condenser 2 and liquefied, as described above. After this, each of the first and second pressure reducing devices 3 a
Due to the action of + and 3b, the temperature and pressure become lower than in the above-mentioned case J), and the temperature is led to the evaporator 5. At this time, an ultra-low temperature of -40°C to -50°C is obtained.
以上の通り、従来の急速冷凍冷蔵庫などの冷凍サイクル
では、急速冷凍運転時、上記電磁弁4を閉じて冷媒を通
常冷凍運転時よりもさらに減圧して低温状態としている
。ところが、冷凍サイクルfd低温になるに伴ない圧力
も下がるのが普通で、冷凍能力は一般に低下する傾向を
示す。従って、通常冷凍運転時に最適な単一冷媒(純粋
冷媒捷たは共沸混合冷媒)を選定すると、急速冷凍運転
時には冷凍能力が不足してしまい、なかなか急速冷凍で
きないという欠点があった。As described above, in a refrigeration cycle such as a conventional quick-freezing refrigerator, during quick-freezing operation, the solenoid valve 4 is closed to further reduce the pressure of the refrigerant than during normal freezing operation, thereby bringing the refrigerant into a low-temperature state. However, as the temperature of the refrigeration cycle fd becomes lower, the pressure usually decreases, and the refrigeration capacity generally tends to decrease. Therefore, if an optimal single refrigerant (pure refrigerant mixture or azeotropic mixed refrigerant) is selected during normal refrigeration operation, the refrigeration capacity is insufficient during rapid refrigeration operation, resulting in a drawback that rapid refrigeration is difficult to achieve.
この発明は上記のような従来のものの欠点を除去するた
めになされたもので、凝縮器と減圧装置を有する冷凍サ
イクルにおいて、上記両装置を接続する分岐管を設け、
この分岐管に第2の減圧装置を具備した構成により、非
共沸混合冷媒を充填して、幅広い冷凍温度に対して冷凍
能力の高い冷凍ザイクルを得ることを目的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and in a refrigeration cycle having a condenser and a pressure reducing device, a branch pipe is provided to connect both the devices,
This branch pipe is equipped with a second pressure reducing device to fill the non-azeotropic mixed refrigerant to obtain a refrigerating cycle with high refrigerating capacity over a wide range of refrigerating temperatures.
以下、この発明の実施例を図について説明する。Embodiments of the present invention will be described below with reference to the drawings.
第2図はこの発明の一実施例を示すものであって、図に
おいて、3a、3bはそれぞれ互いに並列接続された第
1及び第2の減圧装置、6は冷媒容器で、凝縮器2の出
口からの配管が貫通し、この配管は該冷媒容器6内下部
で分断されて主管2゜と主管21を構成し、配管内の冷
媒が冷媒容器6内に流出するようになっている。22は
上記凝縮器2出口と上記第1の減圧装置3a出口とf:
接続する分岐管で、」二記第1の減圧装置3aと並列に
第2の減圧ア装置3bを配置している。7は上記主管2
0の上記分岐管22の分岐点より下流側に設けた電磁弁
である。FIG. 2 shows an embodiment of the present invention, in which 3a and 3b are first and second pressure reducing devices connected in parallel with each other, 6 is a refrigerant container, and the outlet of the condenser 2 is shown in FIG. A pipe from the pipe passes through the refrigerant container 6, and this pipe is separated at the lower part of the refrigerant container 6 to form a main pipe 2° and a main pipe 21, so that the refrigerant in the pipe flows out into the refrigerant container 6. 22 is the outlet of the condenser 2, the outlet of the first pressure reducing device 3a, and f:
A second pressure reducing device 3b is arranged in parallel with the first pressure reducing device 3a through a connecting branch pipe. 7 is the main manager 2 above
This is a solenoid valve provided downstream from the branch point of the branch pipe 22 of No. 0.
以上のように構成した冷凍サイクルにおいて、1f−7
j沸点成分として例えば非点が一30℃のR12、低沸
点成分として例えば沸点が一81℃のR13より成る非
共沸混合冷媒を封入する。超低温運転時には電磁弁7を
閉にする。これにより、該電磁弁7より下流側の回路は
遮断されて、圧縮機1で圧縮された非共沸混合冷媒ガス
は凝縮器2で凝縮されて液化し、更に第2の減圧装置3
bで減圧されて蒸発器5に入り、蒸発して再びガスとな
って圧縮機1へ戻る。このような運転でQ」、蒸発器5
内−で蒸発する時にRi、 3の沸点が一81℃と低い
為、この非共沸混合冷媒によって比較的高い蒸発圧力で
超低温を得ることが出来る。In the refrigeration cycle configured as above, 1f-7
j A non-azeotropic mixed refrigerant consisting of, for example, R12 having an astigmatism of 130° C. as a boiling point component and R13 having a boiling point of 181° C. as a low boiling point component is sealed. During ultra-low temperature operation, the solenoid valve 7 is closed. As a result, the circuit downstream of the electromagnetic valve 7 is cut off, and the non-azeotropic mixed refrigerant gas compressed by the compressor 1 is condensed and liquefied in the condenser 2, and is further transferred to the second pressure reducing device 3.
It is depressurized at step b, enters the evaporator 5, evaporates, becomes gas again, and returns to the compressor 1. With this kind of operation, Q'', evaporator 5
Since the boiling point of Ri, 3 is as low as 181° C. when evaporated inside the reactor, ultra-low temperatures can be obtained with a relatively high evaporation pressure using this non-azeotropic refrigerant mixture.
次に、通常運転時には電磁弁7を開とすると上述と同様
に非共沸混合冷媒は圧縮機1で圧縮され、凝縮器2で凝
縮される。ここでR12七R13との凝縮温度が異なる
為、R12成分の多い液体と、R13成分の多い気体と
が共存する。そして、凝縮器2より流出した冷媒の一部
は冷媒容器6に入る。ここで、R13成分の多い気体は
冷媒容器6の上部に留まり、R12成分の多い液体のみ
が第1の減圧装置3aで減圧され、蒸発器5内に入り、
蒸発して圧縮機1へ戻る。この繰り返しによりR13は
冷媒容器6の上部に気体として留まり、冷凍サイクル中
には略純粋なR12単体が循環することになる。従って
、この時のR12の蒸発により前記超低温運転と略同じ
蒸発圧力で一15℃〜−20℃の温度を得ることが出来
る。通常冷凍運転後、上記電磁弁7を閉じて超低温運転
を行うと、圧力差によって冷媒容器6内に留まっていた
R13成分の多い気体は第1の減圧装置3aを通り、冷
凍サイクル内に戻される。Next, during normal operation, when the solenoid valve 7 is opened, the non-azeotropic mixed refrigerant is compressed by the compressor 1 and condensed by the condenser 2 in the same manner as described above. Here, since the condensation temperatures of R12 and R13 are different, a liquid rich in R12 components and a gas rich in R13 components coexist. A part of the refrigerant flowing out from the condenser 2 enters the refrigerant container 6. Here, the gas rich in R13 components remains in the upper part of the refrigerant container 6, and only the liquid rich in R12 components is depressurized by the first pressure reducing device 3a and enters the evaporator 5.
It evaporates and returns to compressor 1. By repeating this process, R13 remains as a gas in the upper part of the refrigerant container 6, and substantially pure R12 alone circulates in the refrigeration cycle. Therefore, by evaporating R12 at this time, a temperature of -15°C to -20°C can be obtained with substantially the same evaporation pressure as in the ultra-low temperature operation. After normal refrigeration operation, when the electromagnetic valve 7 is closed and ultra-low temperature operation is performed, the gas rich in R13 components remaining in the refrigerant container 6 due to the pressure difference passes through the first pressure reducing device 3a and is returned to the refrigeration cycle. .
このようにこの発明の一実施例によれば急速冷涼時には
、R12とR13の非共沸混合冷媒金川い、通常冷凍時
にはサイクルの一部にR13′(il−封し込め、R1
2の単一冷媒を用いることによって、両者の蒸発圧力を
略同じに保つことができ、冷凍能力が低下せずに幅広い
温度を得ることが出来る。According to an embodiment of the present invention, during rapid cooling, a non-azeotropic mixed refrigerant of R12 and R13 is used, and during normal refrigeration, R13' (il-confined, R1
By using a single refrigerant, the evaporation pressures of both refrigerants can be kept approximately the same, and a wide range of temperatures can be obtained without reducing the refrigerating capacity.
また、この発明の他の実施例として第3図に示す如く、
冷媒容器6の入口側に第1の電磁弁7aを設けると共に
分岐管22の第2の減圧装置3bの上流j’tjllに
第2の電磁弁7bを設ける。この第2の電磁弁7bを超
低温運転時には開け、通常冷凍運転時には閉じるように
操作することにより、非沸混合冷媒は超低温運転時には
第2の減圧装置3bを流れ、通常冷媒運転時には上記第
2の減圧装置3bには流れず、第1の減圧装置3aを流
れる為、高沸点冷媒と低沸点冷媒を効率よく分離できる
。Moreover, as shown in FIG. 3 as another embodiment of the present invention,
A first electromagnetic valve 7a is provided on the inlet side of the refrigerant container 6, and a second electromagnetic valve 7b is provided in the branch pipe 22 upstream of the second pressure reducing device 3b. By operating this second solenoid valve 7b to open during ultra-low temperature operation and close during normal refrigeration operation, the non-boiling mixed refrigerant flows through the second pressure reducing device 3b during ultra-low temperature operation, and the second electromagnetic valve 7b during normal refrigerant operation. Since the refrigerant does not flow to the pressure reducing device 3b but flows through the first pressure reducing device 3a, the high boiling point refrigerant and the low boiling point refrigerant can be efficiently separated.
この実施例では、各運転時においで用いられる減圧装置
が異々る為、減圧装置の設計が容易にできるという効果
もちる。。In this embodiment, since the pressure reducing device used in each operation is different, the pressure reducing device can be easily designed. .
この発明の更に他の実施例として、第4図に示す如く蒸
発器5人口に第3の電磁弁7Cを設け、運転停止時に閉
じ、運転時には開くようにする。As a further embodiment of the present invention, as shown in FIG. 4, a third electromagnetic valve 7C is provided in the evaporator 5, and is closed when the operation is stopped and opened when the operation is stopped.
従来例では運転停止時には圧力差の為凝縮器2及び冷媒
容器6内の冷媒は蒸発器5に流れ込んでいたが、上記第
3の電磁弁7Cの作用により運転停止時に蒸発器5に流
れ込むことなく、運転停止前の状態のままに保たれる0
その結果、通常冷凍運転状態で停止して再び通常冷凍で
運転を再開する場合、すでに高沸点冷媒と低沸点冷媒と
が分離されたままの状態である為、安定した運転が可能
である。加えて、圧縮機1に負担がかかるのを防ぐとい
う効果もある。In the conventional example, when the operation is stopped, the refrigerant in the condenser 2 and the refrigerant container 6 flows into the evaporator 5 due to the pressure difference, but due to the action of the third electromagnetic valve 7C, the refrigerant does not flow into the evaporator 5 when the operation is stopped. , 0, which is kept in the state it was in before the operation was stopped.
As a result, when the normal refrigeration operation is stopped and the normal refrigeration operation is resumed, stable operation is possible because the high boiling point refrigerant and the low boiling point refrigerant are already separated. In addition, there is also the effect of preventing load on the compressor 1.
一方、第5図に示すように冷媒容器6′!il−貫通す
る主管20は上部に配置してもよい0
また、第6図に示す如く、冷媒容器6内の一部又は全部
に、例えばメツ7ユや玉などの分溜用充填物8を挿入し
、高沸点冷媒と低沸点冷媒とを更に分離しやすくしても
よい0
なお、非共沸混合冷媒としては、R1,2とR13に限
らず、他の高沸点冷媒と低沸点冷媒を混合しても同様の
効果が期待できる0
また、冷媒容器6内を貫通する主管20.21(d分り
〕iされた。1″・T成を成しているが、これの代わシ
に敬−)j所穴’71: l;ツけた](i・f成にし
てもよく、冷〃N容器6の1に冷)j、t:が?71・
れ出るような3.“〜ルZであオL(件、上記”:”:
//iQし1]と同様の効果が待1っれる。On the other hand, as shown in FIG. 5, the refrigerant container 6'! The penetrating main pipe 20 may be placed in the upper part.Also, as shown in FIG. The non-azeotropic refrigerant mixture is not limited to R1, 2 and R13, but may also include other high-boiling refrigerants and low-boiling refrigerants. The same effect can be expected even if the mixture is mixed.In addition, the main pipe 20.21 (d division) that penetrates inside the refrigerant container 6 has a 1" T configuration, but instead of this, -) j place hole '71: l; made] (can be made into i/f composition, cooled to 1 of cold N container 6) j, t: is?71.
3. “~Le Z deao L (the above”:”:
I'm looking forward to the same effect as //iQ Shi1].
以−上、!7.明しノで辿り、この発明によれば、減圧
装置ンー有する冷凍サイクルにおいて、冷媒容器を設り
、4゛・コ縮器出口からの主管″が上記冷媒容器を貫通
し、核冷媒容器内下部で少なくとも一個所以上開11す
るように41’)成すると共に、上記凝縮器と上記冷媒
?f器との間に接続する電磁弁を、上記凝縮器出口と」
−記減圧装置出口を接続する分岐・6Hzと、上記分岐
管の途中に接続する第2の減圧装置1イとを設け、非共
沸混合低温と〕1i+常低温とで充分な冷凍能力をイ4
4ることが出来るという犬なる実用的効果を奏する。That’s it! 7. According to the present invention, in a refrigeration cycle having a pressure reducing device, a refrigerant container is provided, and a 4" main pipe from the outlet of the condenser passes through the refrigerant container, and the lower part of the inside of the nuclear refrigerant container. A solenoid valve is connected between the condenser and the refrigerant, and is connected between the condenser outlet and the refrigerant outlet.
- A branch 6 Hz connecting the above pressure reducing device outlet and a second pressure reducing device 1a connected in the middle of the above branch pipe are provided to provide sufficient refrigerating capacity with the non-azeotropic mixture low temperature and 1i + room temperature. 4
4 It has the practical effect of being a dog.
第1図は従来の単−冷媒を用いた冷凍サイクルを示す回
路図、第2図はこの発明の一部がa例による冷凍サイク
ルを示す回路図、第3図はこの発明の他のすさ施1+l
iによる冷直サイクルを示す回路図、第41ンHはこの
発明のさらに他の実施例による冷凍サイクルを示す回路
図、第5図、第6図はこの発明のさらに他の実施例によ
る冷媒容器を示す拡大図である。
1・・・圧縮機、2・・・凝縮器、3a、3b・・・減
圧装置、5・・蒸発器、6・・・冷媒容器、7,7a、
7b。
7c・・・電磁弁、8・・・分溜用充填物、20.21
・・・主管、22・・・分岐管。
なk、図中、同一符号は同一部分又は相当部分を示す・
代理人 大 岩 増 雄
第1図
2
第3図FIG. 1 is a circuit diagram showing a conventional refrigeration cycle using a single refrigerant, FIG. 2 is a circuit diagram showing a refrigeration cycle according to Example A, in which a part of the present invention is implemented, and FIG. 3 is a circuit diagram showing another embodiment of the present invention. 1+l
No. 41 is a circuit diagram showing a refrigeration cycle according to still another embodiment of the present invention, and FIGS. 5 and 6 are a circuit diagram showing a refrigerating cycle according to still another embodiment of the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Condenser, 3a, 3b... Pressure reduction device, 5... Evaporator, 6... Refrigerant container, 7, 7a,
7b. 7c... Solenoid valve, 8... Fractional distillation filling, 20.21
...Main pipe, 22... Branch pipe. In the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3
Claims (4)
、上記蒸発器の出口を上記圧縮機の入口に接続して成る
冷凍サイクルにおいて、冷媒容器を設け、上記凝縮器出
口からの主管が上記冷媒容器を貫通し、該冷媒容器内下
部で少なくとも一個所以上開口するように構成すると共
に、上記凝縮器と上記冷媒容器との間に接続する電磁弁
と、上記凝縮器出口と上記減圧装置出口を接続する分岐
管と、上記分岐管の途中に接続する第2の減圧装置とを
設け、非共沸混合冷媒を充填することを特徴とする冷凍
サイクル。(1) In a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected, and the outlet of the evaporator is connected to the inlet of the compressor, a refrigerant container is provided, and A main pipe passes through the refrigerant container and opens at least one place in the lower part of the refrigerant container, and includes a solenoid valve connected between the condenser and the refrigerant container, and a solenoid valve connected between the condenser outlet and the refrigerant container. A refrigeration cycle characterized in that a branch pipe connecting an outlet of a pressure reducing device and a second pressure reducing device connected in the middle of the branch pipe are provided, and the refrigeration cycle is filled with a non-azeotropic mixed refrigerant.
する特許請求の範囲第1項記載の冷凍サイクル0(2) Refrigeration cycle 0 according to claim 1, characterized in that a second solenoid valve is provided in the branch pipe.
徴とする特許請求の範囲第1項又は第2項記載の冷凍サ
イクル。(3) The refrigeration cycle according to claim 1 or 2, characterized in that a third solenoid valve is provided at the evaporator inlet.
とする特許請求の範囲第1項、第2項又は第3項記載の
冷凍サイクル。(4) The refrigeration cycle according to claim 1, 2, or 3, characterized in that a fractionating filler is inserted into the container.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7095483A JPS59197762A (en) | 1983-04-22 | 1983-04-22 | Refrigeration cycle |
US06/588,011 US4580415A (en) | 1983-04-22 | 1984-03-09 | Dual refrigerant cooling system |
EP84103176A EP0126237B1 (en) | 1983-04-22 | 1984-03-22 | Refrigeration cycle systems and refrigerators |
DE8484103176T DE3476578D1 (en) | 1983-04-22 | 1984-03-22 | Refrigeration cycle systems and refrigerators |
ES531797A ES8503824A1 (en) | 1983-04-22 | 1984-04-18 | Refrigeration cycle systems and refrigerators. |
AU27164/84A AU559872B2 (en) | 1983-04-22 | 1984-04-19 | Refrigeration apparatus having heteroazeotropic refrigerant and separator |
US06/824,322 US4624114A (en) | 1983-04-22 | 1986-01-30 | Dual refrigerant cooling system |
HK543/90A HK54390A (en) | 1983-04-22 | 1990-07-19 | Refrigeration cycle systems and refrigerators |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7095483A JPS59197762A (en) | 1983-04-22 | 1983-04-22 | Refrigeration cycle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59197762A true JPS59197762A (en) | 1984-11-09 |
JPH0138227B2 JPH0138227B2 (en) | 1989-08-11 |
Family
ID=13446411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7095483A Granted JPS59197762A (en) | 1983-04-22 | 1983-04-22 | Refrigeration cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59197762A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6186537A (en) * | 1984-10-03 | 1986-05-02 | ダイキン工業株式会社 | Refrigerator using mixed refrigerant |
JPS63153367A (en) * | 1987-12-07 | 1988-06-25 | 松下電器産業株式会社 | Heat pump device |
JPS63163737A (en) * | 1986-12-26 | 1988-07-07 | 松下電器産業株式会社 | Heat pump device |
-
1983
- 1983-04-22 JP JP7095483A patent/JPS59197762A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6186537A (en) * | 1984-10-03 | 1986-05-02 | ダイキン工業株式会社 | Refrigerator using mixed refrigerant |
JPS63163737A (en) * | 1986-12-26 | 1988-07-07 | 松下電器産業株式会社 | Heat pump device |
JPH0544582B2 (en) * | 1986-12-26 | 1993-07-06 | Matsushita Electric Ind Co Ltd | |
JPS63153367A (en) * | 1987-12-07 | 1988-06-25 | 松下電器産業株式会社 | Heat pump device |
Also Published As
Publication number | Publication date |
---|---|
JPH0138227B2 (en) | 1989-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0126237B1 (en) | Refrigeration cycle systems and refrigerators | |
US5408848A (en) | Non-CFC autocascade refrigeration system | |
JPS59157446A (en) | Refrigeration cycle device | |
JPS59197762A (en) | Refrigeration cycle | |
US4495776A (en) | Method and cooling agent for freezing and storing products | |
JPH10220880A (en) | Air conditioner | |
JPS59197763A (en) | Refrigeration cycle | |
US4603002A (en) | Method and cooling agent for freezing and storing products | |
JPS59197761A (en) | Refrigeration cycle | |
JP4282378B2 (en) | 1-unit refrigeration equipment | |
JPH0468547B2 (en) | ||
JPS6334453A (en) | Refrigeration cycle | |
JPS58140583A (en) | Freezing refrigerator | |
JP2617172B2 (en) | Cryogenic cooling device | |
JPH0742074Y2 (en) | Freezer refrigerator | |
JPS60178259A (en) | Two-element refrigerator | |
JPH01200156A (en) | Freezing cycle device | |
JPH086205Y2 (en) | Freezer refrigerator | |
JPS6277551A (en) | Refrigerator | |
JPS616546A (en) | Heat pump type air conditioner | |
JP2523783B2 (en) | Freezer refrigerator | |
JPH01273961A (en) | Freezing cycle device | |
JP2003287293A (en) | Refrigeration unit and refrigerator | |
JPH0515943B2 (en) | ||
JPS6044788A (en) | Freezing refrigerator |