JPS59197531A - Vacuum purification of blister copper - Google Patents

Vacuum purification of blister copper

Info

Publication number
JPS59197531A
JPS59197531A JP7000783A JP7000783A JPS59197531A JP S59197531 A JPS59197531 A JP S59197531A JP 7000783 A JP7000783 A JP 7000783A JP 7000783 A JP7000783 A JP 7000783A JP S59197531 A JPS59197531 A JP S59197531A
Authority
JP
Japan
Prior art keywords
vacuum
blister copper
copper
furnace
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7000783A
Other languages
Japanese (ja)
Inventor
Toru Yabe
矢部 徹
Koichi Takeda
武田 宏一
Masanori Kato
正憲 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP7000783A priority Critical patent/JPS59197531A/en
Publication of JPS59197531A publication Critical patent/JPS59197531A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To volatilize and remove impurities in blister copper in good efficiency, in a process for preparing an anode plate for copper electrolysis, by applying vacuum treatment to molten blister copper issued from a converter. CONSTITUTION:Blister copper issued from a converter is received in a ladle 1 and the leg L of a vacuum furnace 3 having a DH type sucking part suspended and supported in a freely up-and-down movable manner by a crane is immersed in the blister copper bath issued from the converter. When the vacuum furnace 3 is reduced in pressure, molten copper rises to a predetermined height determined by pressure difference and pressure head in the vacuum furnace 3 to be exposed in vacuo. During this time, impurities such as As, Sb, Si or Pb present in the blister copper bath are volatilized and removed. After a predetermined time is elapsed, the vacuum furnace 3 is raised to return the molten copper therein to the laddle 1. This procedure is repeated several times at every min and the whole blister copper bath in the ladle 1 is subjected to vacuum treatment to volatlize and remove impurities. By using this process, an anode plate for copper electrolysis is prepared.

Description

【発明の詳細な説明】 本発明は、転炉用溶融粗銅を真空処理することにより該
粗銅中に存在する人s、Sb、Bi、Pb等の不純物を
揮発除去することを目的とする粗銅の真空精製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a process for processing blister copper for the purpose of volatilizing and removing impurities such as molten blister copper, Sb, Bi, and Pb present in the blister copper by vacuum treating the molten blister copper for converter. It relates to vacuum purification methods.

銅製錬においては、銅精鉱は基本的に、自溶炉におゆる
溶錬、転炉における錬銅及び精製炉における精製の各工
程を経て電解用陽極としての精製粗銅となるが、上記工
程による不純物の除去は必ずしも十分に達成されていな
い。特に原料中に不純物が多い場合には、精製後も残留
不純物が許容しえない程に多くなる。従って、従来技術
では、不純物の多い原料は不純物の少ない原料と混合希
釈するなどの手段を講じることにより、不純物の混入量
が多くなりすぎないようかなり厳しい原料管理をする必
要があった。
In copper smelting, copper concentrate basically goes through the following steps: smelting in a flash furnace, wrought copper in a converter, and refining in a refining furnace to become refined blister copper, which is used as an anode for electrolysis. Removal of impurities has not always been achieved satisfactorily. Particularly when there are many impurities in the raw material, the amount of impurities remaining after purification becomes unacceptably high. Therefore, in the prior art, it was necessary to carry out fairly strict raw material management to prevent the amount of impurities from becoming too large, by taking measures such as mixing and diluting raw materials with many impurities with raw materials with few impurities.

製錬工程の最終的役割を担う精製炉は元来主として転炉
出粗銅中のガス化成分、即ち硫黄と酸素の減少、殊に酸
素の減少のために設ゆられた炉であり、粗銅中に含まれ
る過剰の酸素を除去する即ち還元処理を実施するに適し
た構成を有しているから、As 、 Sb、 Bi 、
 Pb等のような重金属不純物の除去には向いていない
。これら不純物の除去率向上のために、転炉あるいは精
製炉においてカルシウム化合物又はナトリウム化合物を
添加して上記不純物を石灰スラグ又はソーダスラグとし
て除去する方法も提唱されている。しかし、この方法は
、添加物と溶鋼の接触をいかに緊密に行なうかが問題で
あり、一般に高い除去率を望むことはできず、加えて生
成スラグと溶鋼との分離性が悪いとい59点もあった。
The refining furnace, which plays the final role in the smelting process, was originally built primarily to reduce the gasified components in the blister copper extracted from the converter, namely sulfur and oxygen, and in particular to reduce oxygen. As, Sb, Bi,
It is not suitable for removing heavy metal impurities such as Pb. In order to improve the removal rate of these impurities, a method has also been proposed in which a calcium compound or a sodium compound is added in a converter or refining furnace to remove the impurities as lime slag or soda slag. However, the problem with this method is how closely contact can be made between the additives and the molten steel, and generally a high removal rate cannot be expected.In addition, the separation of the produced slag and the molten steel is poor, resulting in a score of 59. there were.

As、Sb、 Bi、 Pb等の不純物は爾後の電解工
程に重大な悪影響を及ぼすので極力これらを低減するこ
とが必要であるのみならず、積極的にこれらを除去して
製錬所の不純物許容能力を上げることにより不純物の多
い鉱石でも大量に使用できる能力を確立することが切望
されている。
Impurities such as As, Sb, Bi, and Pb have a serious negative effect on the subsequent electrolytic process, so it is not only necessary to reduce them as much as possible, but also to actively remove them to improve the impurity tolerance of the smelter. There is a strong desire to establish the ability to use large amounts of ore with many impurities by increasing its capacity.

本発明者等は、転炉用浴融粗銅の上記不純物を効果的に
除去する方法を模索するうちに、該溶融粗銅に真空精製
処理を適用することによりきわめて効率的に上記不純物
を除去することができることを見出した。
While searching for a method to effectively remove the above-mentioned impurities from bath-molten blister copper for converters, the present inventors discovered that the above-mentioned impurities could be removed extremely efficiently by applying a vacuum refining process to the molten blister copper. I discovered that it can be done.

ところで、純銀或いは銀合金の真空溶解或いは真空鋳造
は古くから行われている。これらは主に溶融メタル中の
酸素、イオウ、水素等の不純物を減少又は、混入防止を
計り、メタルのより良い特性を発揮させるためのもので
あり、転炉用粗銅を銅電解用陽極板製造工程に備えて真
空処理する本発明とは異なったカテゴリーにあるもので
ある。
By the way, vacuum melting or vacuum casting of pure silver or silver alloys has been practiced for a long time. These are mainly used to reduce or prevent impurities such as oxygen, sulfur, and hydrogen in molten metal, and to bring out better properties of the metal. This is in a different category from the present invention, which performs vacuum treatment in preparation for the process.

次に、特開昭49−26116号は真空を利用した銅マ
ットの不純物揮発除去法を開示している。しかし、マッ
トと粗銅では、マットは硫化物で一般に銅品位78%以
下で多種多量の不純物を含み、他方粗銅は銅品位97%
以上であり、両者を真空処理に関して同列に論じること
はできない。また、管理された品質の銅@極板を電解工
場に供給するためにはどうしても転炉用粗銅そのものの
不純物を銅電解用陽極板製造工程前に除去する手段を確
立する必要がある。マットと粗銅を較べると、粗銅にお
いては不純物景が少ない反面不純物が不活性となってお
り、マットにおける真空処理の作用及び効果から粗銅に
対するその作用効果を全く予測しえない。斯様にマット
の真空処理と転炉用粗銅の真空処理もまた別のカテゴリ
ーに属するものである。
Next, Japanese Patent Application Laid-Open No. 49-26116 discloses a method for removing impurities from copper matte by volatilization using a vacuum. However, between matte and blister copper, matte is sulfide and generally has a copper grade of less than 78% and contains a large amount of impurities, while blister copper has a copper grade of 97%.
This is the above, and the two cannot be discussed in the same way regarding vacuum processing. In addition, in order to supply copper@electrode plates of controlled quality to electrolytic plants, it is necessary to establish a means for removing impurities from the blister copper itself for converters before the manufacturing process of copper electrolytic anode plates. Comparing matte and blister copper, blister copper has fewer impurities, but the impurities are inactive, and the effects of vacuum treatment on matte cannot be predicted at all from the effects of vacuum treatment on blister copper. In this way, the vacuum treatment of matte and the vacuum treatment of blister copper for converters also belong to different categories.

この他、実験室規模での粗鋼の真空精製についての報告
も幾つかあるが、一般にAs及びsbに関しては除去率
が低く粗銅の真空精製は適当でないと結論づけられてい
る。こうしたるつぼ試験と工業的規模での実施との間で
は、設備、取扱量等の面から差異が太き(、この事実が
本発明とは相反する結論を導いたものと推察される。本
発明者等は、こうした報告の存在にもかかわらず、工業
的規模での粗銅真空処理を敢えて試み、成功を納めたも
のである。
In addition, there are several reports on vacuum refining of crude steel on a laboratory scale, but it is generally concluded that the removal rate of As and sb is low and that vacuum refining of blister copper is not appropriate. There are significant differences between such crucible tests and those carried out on an industrial scale in terms of equipment, amount handled, etc. (This fact is presumed to have led to a conclusion that is contradictory to the present invention.The present invention Despite the existence of such reports, these authors dared to attempt vacuum treatment of blister copper on an industrial scale, and were successful.

最後に、鉄鋼製錬においては、10年以上前から真空精
製技術が用いられており、近年はDH法或いは囲法がも
つともすぐれた真空精製法として定着している。しかし
ながら、鉄鋼製錬における真空精製は鉄鋼中の炭素、酸
素、窒素、水素等の不純物を減少することを目的とする
ものであり、本発明の場合のように重金属不純物の除去
を目的とするものとは根本的に異なる。また、鉄板の場
合には真空精製工程からの産物は圧延等の加工に供され
る・鉄鋼インゴットであり、粗銅真空精製工程からの産
物が銅電解陽極板であることを考慮する時、両者のプロ
セス中での立場も全く異なる。
Finally, vacuum refining technology has been used in steel smelting for more than 10 years, and in recent years, the DH method or wall method has become established as the superior vacuum refining method. However, the purpose of vacuum refining in steel smelting is to reduce impurities such as carbon, oxygen, nitrogen, and hydrogen in steel, and as in the case of the present invention, the purpose of vacuum refining is to remove heavy metal impurities. is fundamentally different. In addition, in the case of iron plates, the product from the vacuum refining process is a steel ingot that is subjected to processing such as rolling, and the product from the blister vacuum refining process is a copper electrolytic anode plate. Their positions in the process are also completely different.

このように、転炉用粗銅の真空精製の工業化を示唆する
先行技術や周辺技術は存在しない。こうした状況の中で
、本発明は、前述した通り、斯界で始めて転炉用粗銅の
工業的真空精製処理に取組み、その工業化に成功したも
のであり、従来の転炉−精製炉プロセスに替る、一層効
率的効果的な転炉−真空処理設備プロセスを開拓したも
のであり、その工業的意義は太きい。
Thus, there is no prior art or peripheral technology that suggests the industrialization of vacuum refining of blister copper for converters. Under these circumstances, as mentioned above, the present invention is the first in the industry to tackle industrial vacuum refining of blister copper for converters, and has succeeded in its industrialization. It pioneered a more efficient and effective converter-vacuum processing equipment process, and its industrial significance is significant.

概略的に述べると、本発明は、銅電解用陽極板を製造す
る工程において、転炉用溶融粗銅を真空処理することに
より該粗銅中の不純物を揮発除去することを特徴とする
粗銅の真空精製法を提供するものであり、特に傾転炉に
収納した粗銅に対してDHタイプの吸上げ部を有する真
空炉を使用することにより有利に実施しうる。
Briefly stated, the present invention provides vacuum purification of blister copper, characterized in that impurities in the blister copper are volatilized and removed by vacuum treating molten blister copper for a converter in the process of manufacturing an anode plate for copper electrolysis. This method can be carried out advantageously by using a vacuum furnace with a DH type suction, especially for blister copper stored in a tilting furnace.

さらに、上記傾転炉に羽目を設は脱酸処理を行なうこと
がより効率的に実施しうる。
Furthermore, the deoxidizing treatment can be carried out more efficiently by providing a wall in the tilting furnace.

以下、本発明について具体的に説明する。The present invention will be specifically explained below.

転炉において産出される転炉出粗、銅は、既述した通り
、いまだかなりの量の不純物と硫黄及び酸岩を含有して
いる。不純物としては、操業条件及び原料状況によって
変動するが、0.03〜0.08%Bi、0.03〜0
04%Sb、0.2〜0.3%As 。
As mentioned above, the converter crude copper produced in the converter still contains a considerable amount of impurities, sulfur, and acid rock. Impurities vary depending on operating conditions and raw material conditions, but include 0.03-0.08% Bi, 0.03-0.08% Bi,
04% Sb, 0.2-0.3% As.

0.015〜0.030%pb、0.001〜0.00
2%Znが代表例である。硫黄は0601〜0゜02%
そして酸素は0.50〜0,60%程度含まれている。
0.015-0.030%pb, 0.001-0.00
2% Zn is a typical example. Sulfur is 0.601~0.02%
Oxygen is contained in an amount of about 0.50 to 0.60%.

不純物の多い鉱石の割合が多いと、不純物量は更に増加
しうる。
If the proportion of ore with many impurities is high, the amount of impurities can further increase.

従来法に従えば、転炉用粗銅は、傾転型の精製炉におい
て必要なら羽口からの空気吹込や添加剤投入により硫黄
並びに不純物を除いた後、表面に浮いた酸化物を炉外に
取除く媛かき作業が行われ、その後アンモニア等の還元
剤を使用して還元処理即ち脱酸されていた。しかしなが
らこの方法では不純物が充分に除去しえず、本発明に従
えば真空処理によって上記不純物の除去を計ろうとする
ものである。
According to the conventional method, blister copper for converters is processed in a tilting type refining furnace, where sulfur and impurities are removed by blowing air through the tuyere or adding additives if necessary, and then the oxides floating on the surface are removed from the furnace. A scraping operation was carried out to remove it, and then it was reduced, that is, deoxidized, using a reducing agent such as ammonia. However, this method cannot sufficiently remove impurities, and the present invention attempts to remove the impurities by vacuum treatment.

転炉用粗銅は、取鍋、保持炉、加熱炉、傾転炉等に移さ
れた後、真空処理を受ける。転炉用粗銅の産出時温度は
1100〜1200℃であり、必要なら1350℃まで
の温度に真空適用前に加熱してもよい。真空処理中溶銅
温度が低下するので転炉用温度を高目にするか或いは予
備加熱を行うことが好ましい。
The blister copper for converters is transferred to a ladle, holding furnace, heating furnace, tilting furnace, etc., and then subjected to vacuum treatment. The production temperature of blister copper for converters is 1100-1200°C, and if necessary, it may be heated to a temperature of up to 1350°C before vacuum application. Since the temperature of the molten copper decreases during vacuum treatment, it is preferable to raise the temperature for the converter or to perform preheating.

真空処理設備自体については鉄錆業界において多くの真
空脱ガス法が確立されており、ここでもそれら技術をそ
のまま或いは修正を加えて実施しうる。真空処理法とし
ては次のものが使用しうる:(イ) 湯面法 溶鋼を収納した取鍋その他の容器を真空槽内に納置し、
湯面からの不純物揮発化を計るものであるが、処理能力
が制約される為、電磁誘導攪拌、取組傾転等による機械
的攪拌をなるだけ併用することが好ましい。
Regarding the vacuum treatment equipment itself, many vacuum degassing methods have been established in the iron rust industry, and these techniques can be implemented here either as they are or with modifications. The following vacuum processing methods can be used: (a) A ladle or other container containing molten steel is placed in a vacuum chamber,
This measures the volatilization of impurities from the surface of the hot water, but since processing capacity is limited, it is preferable to use mechanical stirring such as electromagnetic induction stirring or tilting of the grapple as much as possible.

(ロ)流滴法 真空室内に予じめ取鍋を納置し、真空室内を排気して減
圧した後に、真空室上部に設置された中間取鍋内に収納
された転炉用粗銅を小滴として飛散させながら注出する
方法であり、溶鋼が真空室内に入ると溶鋼滴中に溶解し
ている不純物が急激な圧力低下のため溶鋼から離脱する
現象を利用するものである。中間取鍋には、□転炉から
の粗銅を受取る受取取鍋を利用して粗銅が注入される。
(b) Droplet method: After placing a ladle in a vacuum chamber in advance and reducing the pressure by evacuating the vacuum chamber, the converter blister copper stored in the intermediate ladle installed at the top of the vacuum chamber is This is a method in which molten steel is poured out while being scattered as droplets, and utilizes the phenomenon that when molten steel enters a vacuum chamber, impurities dissolved in the molten steel droplets separate from the molten steel due to a sudden pressure drop. Blister copper is poured into the intermediate ladle using a receiving ladle that receives the blister copper from the converter.

真空室内には、取鍋の替りに、適宜の密閉方式で真空室
内に移入されそして移出される陽極鋳型を間欠移動方式
で配置することにより更に一層の効率化を計れる。
Further efficiency can be achieved by disposing in the vacuum chamber, in place of the ladle, an anode mold that is moved intermittently into and out of the vacuum chamber in an appropriate sealed manner.

(→ 真空吸上げ法 この方法は“訣鋼秦界で正タイプ真空炉(これはDor
tmund H6rder社により開発され、その頭文
字をとってDH法と呼ばれる)を使用する方法である。
(→ Vacuum suction method This method is known as a positive type vacuum furnace in the Qin world.
This is a method using the DH method, which was developed by Tmund H6rder and is called the DH method by its acronym.

DHタイプ真空炉は真空槽の下部に単一の吸上兼下降管
(脚)を設け、上部の真空槽及び下部の取鍋を相対的に
所定のサイクルで上下動せしめ、取鍋内の溶鋼を真空槽
内に吸上げて、真空槽内で真空処理した後、取鍋内に戻
す操作を反覆するものである。吸上管内を上昇して真空
槽内で真空処理された溶鋼は取鍋内に戻されるに際して
未処理溶鋼と激しく攪拌されて均一に混合し、途次真空
処理効果を高めていく。
The DH type vacuum furnace is equipped with a single suction and descending pipe (leg) at the bottom of the vacuum chamber, and the upper vacuum chamber and lower ladle are moved up and down relative to each other in a predetermined cycle, and the molten steel in the ladle is removed. The process is repeated by sucking up the material into a vacuum chamber, vacuum-processing it within the vacuum chamber, and then returning it to the ladle. The molten steel that ascends through the suction pipe and is vacuum-treated in the vacuum chamber is returned to the ladle where it is vigorously stirred and mixed uniformly with the untreated molten steel, gradually increasing the vacuum treatment effect.

に)循環法 吸上用と排出用の管(脚)を具備する真空炉を用いて取
鍋或いは炉内の溶鋼にこれら管を浸漬し、吸上管から真
空炉を経由して排出管への循回溶鋼流れを創出すること
により溶鋼を真空処理するものである。鉄鋼業界では皿
法(Ruhrstah1社及び旦eraus社共同開発
)と呼ばれる、吸上管にアルゴン等の不活性ガスを吹込
み、エアリフトポンプの原理によって連続脱ガス方式が
汎用されている。この方式を修正した方法により溶鋼の
真空処理が可能である(後述)。
2) Circulation method Using a vacuum furnace equipped with suction and discharge pipes (legs), these pipes are immersed in molten steel in a ladle or furnace, and from the suction pipe to the discharge pipe via the vacuum furnace. This process vacuum-processes molten steel by creating a circulating molten steel flow. In the steel industry, a continuous degassing method called the dish method (co-developed by Ruhrstah 1 and Daneraus) is widely used, in which an inert gas such as argon is blown into a suction pipe, and the principle of an air lift pump is used. Vacuum treatment of molten steel is possible by a modified method of this method (described later).

真空処理は、溶融粗銅温度= 11 ’O0〜1350
℃、そして真空度0.01−10 wiHgの条件にお
いて好適に行いうる。本発明に従う真空処理によって、
従来除去困難であったAs、Sb。
Vacuum treatment is performed at a temperature of molten blister copper = 11'O0~1350
C. and a degree of vacuum of 0.01-10 wiHg. By vacuum treatment according to the invention,
As and Sb are conventionally difficult to remove.

Bi、Pbがきわめて効果的に除去される。真空処理中
、前記不純物に限らず、硫黄や酸素のガス化しやすい元
素も同時的に除去される。酸素及び硫黄の脱ガスが真空
処理によって十分に行いえない時は、真空処理後の粗銅
を傾転炉に移して脱ガスすればよい。
Bi and Pb are removed very effectively. During the vacuum treatment, not only the impurities mentioned above but also elements that are easily gasified such as sulfur and oxygen are simultaneously removed. When oxygen and sulfur cannot be sufficiently degassed by vacuum treatment, the blister copper after vacuum treatment may be transferred to a tilting furnace for degassing.

図面は本発明の好ましい具体例を示す。The drawings illustrate preferred embodiments of the invention.

第1図は真空吸上げの実施法を示す。転炉用粗銅は、取
鍋1に収容されており、粗銅浴中には真空炉3のjll
i Lが浸漬されている。取鍋の代りに誘導炉を用いて
もよい。真空炉3は、クレーン等によりω下げられるか
或いは油圧式昇降装置(図示なし)によって上下動自在
に支持されている。真空炉には、電(タロを設はダスト
およびメタルによる固着物の発生を未然に防止すること
が好ましい。
FIG. 1 shows the implementation of vacuum pumping. The blister copper for the converter is stored in the ladle 1, and the blister copper of the vacuum furnace 3 is placed in the blister bath.
i L is immersed. An induction furnace may be used instead of a ladle. The vacuum furnace 3 is lowered by a crane or the like, or is supported so as to be vertically movable by a hydraulic lifting device (not shown). It is preferable to install an electric current in the vacuum furnace to prevent the formation of adhered substances due to dust and metal.

溶鋼を真空処理するに際して真空炉を減圧し、真空炉を
降下して吸上げ管を粗銅浴中深く浸漬すると溶鋼は真空
炉内に圧力差及びヘッドにより決定される所定高さまで
上昇して真空下に曝される。
When vacuum processing molten steel, the vacuum furnace is depressurized, the vacuum furnace is lowered, and the suction tube is immersed deeply in the blister copper bath.The molten steel rises into the vacuum furnace to a predetermined height determined by the pressure difference and the head, and is then released under vacuum. exposed to

所定時間この状態に保持した後真空炉を上昇すると、真
空炉内の溶鋼は取鍋に戻り、取鍋内粗銅と混合する。こ
の過程を毎分数回繰返すことにより、取鍋内粗銅全体が
真空処理されうる。斯うして、真空処理を受けた粗銅は
続いて傾転炉に移されて還元件ガス吹込みにより脱酸処
理される。
When the vacuum furnace is raised after being maintained in this state for a predetermined period of time, the molten steel in the vacuum furnace returns to the ladle and mixes with the blister copper in the ladle. By repeating this process several times per minute, the entire blister copper in the ladle can be vacuum treated. The blister copper thus subjected to the vacuum treatment is subsequently transferred to a tilting furnace where it is deoxidized by blowing in a reducing gas.

第2図は、転炉用粗銅を傾転炉11に収容したまま真空
炉3により前述と同様の処理を行う方法を示す。この場
合、真空処理後の粗銅は、真空炉を取り去って、そのま
ま傾転炉の羽口5からLPG士蒸気、空気、NU8+不
活性ガス、その他の吹込みにより脱酸処理される。この
方式によれば、真空処理と、脱ガス処理とが同一炉にて
実施でき効率的である。
FIG. 2 shows a method of carrying out the same treatment as described above in the vacuum furnace 3 while the blister copper for a converter is housed in the tilting converter 11. In this case, the vacuum-treated blister copper is deoxidized by removing LPG steam, air, NU8+inert gas, or other gas from the tuyere 5 of the tilting furnace after removing the vacuum furnace. According to this method, the vacuum treatment and the degassing treatment can be performed in the same furnace, which is efficient.

粗銅の真空精製の場合、鉄鋼のそれとは違って、重金属
不純物が比較的多量に揮発除去される為、これら不純物
凝固粉粒な洗浄、ろ過等の方法によって除去するダスト
除去装置10を設置する必要がある。真空炉の上下動を
許容するよう真空炉はダスト除去装置及び真空系と自在
継手にて接続されている。
In the case of vacuum refining of blister copper, unlike that of steel, a relatively large amount of heavy metal impurities is removed by volatilization, so it is necessary to install a dust removal device 10 that removes these impurities by washing, filtration, etc. There is. The vacuum furnace is connected to the dust removal device and the vacuum system by a universal joint to allow vertical movement of the vacuum furnace.

真空条件及び攪拌条件を適切に選定することにより、真
空処理中、不純物除去と脱ガスとを同時的に実施でき、
傾転炉等による別途の脱ガス処理を不要とすることがで
き、現行の精製炉工程を排除することも可能である。
By appropriately selecting vacuum conditions and stirring conditions, impurity removal and degassing can be performed simultaneously during vacuum processing.
Separate degassing treatment using a tilting furnace or the like can be made unnecessary, and the current refining furnace process can also be eliminated.

斯様に、本発明は、従来除去困難であったAs。In this way, the present invention can remove As, which has been difficult to remove in the past.

Sb、 Bi、 Pb等の不純物の除去の工業化に成功
したものであり、その意義はすこぶる太きい。
This is a successful industrialization of the removal of impurities such as Sb, Bi, and Pb, and its significance is extremely significant.

実施例1 転炉高溶融粗銅1トンを1300°Cに加熱した後、取
鍋に受け、DHタイプの吸上げ管を有する真空炉を用い
て真空処理した。真空炉内圧は0,05mxHgに減圧
し、40分間処理した。真空炉はクレーンにより毎分2
〜4回の割合で上下動された。
Example 1 After heating 1 ton of converter high-melting blister copper to 1300°C, it was placed in a ladle and subjected to vacuum treatment using a vacuum furnace having a DH type suction tube. The internal pressure of the vacuum furnace was reduced to 0.05 mxHg, and the treatment was carried out for 40 minutes. The vacuum furnace is operated by a crane at a rate of 2 times per minute.
It was moved up and down at a rate of ~4 times.

その結果を下表に示す。その後、傾転炉に移し、ガス吹
込みによる脱酸処理を行った結果、Cシ素濃度は、0.
16%に低下し脱酸率72.4%を得た。
The results are shown in the table below. Thereafter, it was transferred to a tilting furnace and deoxidized by gas injection, resulting in a carbon concentration of 0.
The deoxidation rate decreased to 16%, resulting in a deoxidation rate of 72.4%.

以上の処理により電解用アノードとして鋳造しうる品質
の881鋼が得られた。尚、試験材料とした転炉用粗銅
を現行の精製炉法で処理して得たアノー実施例 下表に示す転炉出溶融粗6?’J1tonを取鍋に受け
、そのままDHタイプの吸上げ部を有する真空炉を用い
、炉内圧0.5 rnvJgに減圧し、15分間、真空
処理した。この結果下表に示す値となった。真空処理後
、傾転炉に移し、ガス吹込による脱酸処理を行った。以
上の処理を行なうことにより粗銅中の酸素は、0.15
%となり脱酸率75%を得、アノードの品位は下記の通
りである。本処理では短時間での真空処理の効果を見ろ
ため処理時間は15分としたが、これでもsb及びAs
をそれぞれ28%及び43%除去しえた。処理時間を長
くすることにより、実施例1と同水準までの不純物除去
が可能である。
Through the above treatment, 881 steel of a quality that could be cast as an electrolytic anode was obtained. Incidentally, the blister copper for the converter used as the test material was processed using the current refining furnace method, and the molten crude copper from the converter shown in the table below is 6? 'J1 ton was received in a ladle, and the furnace pressure was reduced to 0.5 rnvJg using a vacuum furnace having a DH type suction part, and vacuum treatment was performed for 15 minutes. As a result, the values shown in the table below were obtained. After the vacuum treatment, it was transferred to a tilting furnace and deoxidized by gas injection. By performing the above treatment, the oxygen in blister copper is reduced to 0.15
% and a deoxidation rate of 75% was obtained, and the quality of the anode is as follows. In this treatment, the treatment time was set to 15 minutes to see the effect of vacuum treatment in a short time, but even with this, sb and As
could be removed by 28% and 43%, respectively. By increasing the treatment time, it is possible to remove impurities to the same level as in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明を実施する好ましい具体例設
備の概略図である。 1:取鍋(或いは誘導炉) 3:真窒炉 L:吸上は管 5:羽口 10:ダスト除去装置 11:傾転炉 第1図
1 and 2 are schematic diagrams of preferred embodiments of equipment for practicing the present invention. 1: Ladle (or induction furnace) 3: Nitrogen furnace L: Suction pipe 5: Tuyere 10: Dust removal device 11: Inclination furnace Fig. 1

Claims (1)

【特許請求の範囲】 1)銅電解用陽極板を製造する工程において、転炉用溶
融粗銅を真空処理することにより該粗銅中の不純物を揮
発除去することを特徴とする粗銅の真空精製法。 2)真空処理がDHタイプの吸上げ部を有する真空炉を
用いて実施される特許請求の範囲第1項記載の方法。 3)真空処理がDHタイプの吸上げ部を有する真空炉を
用いて傾転炉に収納した粗銅に対して実施される特許請
求の範囲第2項記載の方法。 4)傾転炉に羽目を設けてなる特許請求の範囲第3項記
載の方法。
[Scope of Claims] 1) A method for vacuum refining blister copper, characterized in that in the step of manufacturing an anode plate for copper electrolysis, molten blister copper for a converter is vacuum-treated to volatilize and remove impurities in the blister copper. 2) The method according to claim 1, wherein the vacuum treatment is performed using a vacuum furnace having a DH type suction section. 3) The method according to claim 2, wherein the vacuum treatment is carried out on blister copper stored in a tilting furnace using a vacuum furnace having a DH type suction section. 4) The method according to claim 3, wherein the tilting furnace is provided with a lining.
JP7000783A 1983-04-22 1983-04-22 Vacuum purification of blister copper Pending JPS59197531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7000783A JPS59197531A (en) 1983-04-22 1983-04-22 Vacuum purification of blister copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7000783A JPS59197531A (en) 1983-04-22 1983-04-22 Vacuum purification of blister copper

Publications (1)

Publication Number Publication Date
JPS59197531A true JPS59197531A (en) 1984-11-09

Family

ID=13419110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7000783A Pending JPS59197531A (en) 1983-04-22 1983-04-22 Vacuum purification of blister copper

Country Status (1)

Country Link
JP (1) JPS59197531A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106522A (en) * 2019-04-30 2019-08-09 上海大学 The method for producing tough cathode using Bi brass waste material Direct Electrolysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040083A (en) * 1973-08-13 1975-04-12
JPS5123451A (en) * 1974-08-13 1976-02-25 Banko Denkyokubo Kk JIDOYOSETSUYOHIFUKUAAKUYOSETSUBONO SEIZOHOHO
JPS5280204A (en) * 1975-12-27 1977-07-05 Osaka Shinku Kiki Seisakusho Apparatus for degassing treatment of nonferrous metals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5040083A (en) * 1973-08-13 1975-04-12
JPS5123451A (en) * 1974-08-13 1976-02-25 Banko Denkyokubo Kk JIDOYOSETSUYOHIFUKUAAKUYOSETSUBONO SEIZOHOHO
JPS5280204A (en) * 1975-12-27 1977-07-05 Osaka Shinku Kiki Seisakusho Apparatus for degassing treatment of nonferrous metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106522A (en) * 2019-04-30 2019-08-09 上海大学 The method for producing tough cathode using Bi brass waste material Direct Electrolysis
CN110106522B (en) * 2019-04-30 2021-06-04 上海大学 Method for preparing cathode copper by directly electrolyzing bismuth brass waste

Similar Documents

Publication Publication Date Title
US3272619A (en) Apparatus and process for adding solids to a liquid
CN107699711B (en) Copper smelting method
EP3794166B1 (en) Improvement in copper electrorefining
KR850001291B1 (en) Continuous melting and refining of secondary and/or blister copper
US7264767B2 (en) Method and device for reducing the oxygen content of a copper melt
CA1247865A (en) Method of treating the slag from a copper converter
US3528803A (en) Method for manufacturing oxygen-free copper by casting
JPS59197531A (en) Vacuum purification of blister copper
JPS59197533A (en) Continuous dry refining method and apparatus for blister copper
JPS59197532A (en) Dry refining of blister copper
CN114134356A (en) Zinc alloy production process
JP4096825B2 (en) Operation method of copper smelting furnace
US11981979B2 (en) Device and method for preparing low-impurity regenerated brass alloy through step-by-step insertion of electrode
KR20040049621A (en) Method for Heating Inner Portion of RH Degasser
CA2091857A1 (en) Process and apparatus for manufacturing low-gas and pore-free aluminum casting alloys
RU2209840C2 (en) Method of cleaning slag in electrical furnace
JPS6342335A (en) Treatment of slag concentrate of copper converter
US20240043964A1 (en) Device and method for preparing low-impurity regenerated brass alloy through step-by-step insertion of electrode
JP2000301320A (en) Method for dissolving clogging of porous plug in ladle refining furnace
SU595409A1 (en) Method of electric furnace depleting of moltentin slags
JPH036317A (en) Method and device for ladle refining
JPH01142016A (en) Continuous vacuum degassing apparatus for molten copper
CN114058878A (en) Method for effectively reducing tin content in copper slag in smelting process of tin-containing material
CN204608180U (en) Electrorefining and in-situ directional solidification prepare the device of high pure rare earth metals
JPS5928540A (en) Concentration of bismuth