JPS5919733B2 - Catalyst for water-hydrogen exchange reaction - Google Patents

Catalyst for water-hydrogen exchange reaction

Info

Publication number
JPS5919733B2
JPS5919733B2 JP51082816A JP8281676A JPS5919733B2 JP S5919733 B2 JPS5919733 B2 JP S5919733B2 JP 51082816 A JP51082816 A JP 51082816A JP 8281676 A JP8281676 A JP 8281676A JP S5919733 B2 JPS5919733 B2 JP S5919733B2
Authority
JP
Japan
Prior art keywords
water
catalyst
carrier
exchange reaction
repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51082816A
Other languages
Japanese (ja)
Other versions
JPS538390A (en
Inventor
栄治 上條
正明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP51082816A priority Critical patent/JPS5919733B2/en
Publication of JPS538390A publication Critical patent/JPS538390A/en
Publication of JPS5919733B2 publication Critical patent/JPS5919733B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、水−水素系の交換反応による水素同位体の濃
縮に用いる有効な触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an effective catalyst for enriching hydrogen isotopes by a water-hydrogen exchange reaction.

重水減速型原子炉に用いる重水の製造や、原子燃料の再
処理工場の排水中からのトリチウムの除去において水素
同位体の濃縮技術は非常に重要である。
Hydrogen isotope enrichment technology is extremely important in the production of heavy water used in heavy water-moderated nuclear reactors and in the removal of tritium from wastewater at nuclear fuel reprocessing plants.

水素同位体を濃縮するための有力な方法の一つは、pt
等の貴金属を触媒として水と水素を交換反応させる二重
温度交換法である。
One of the promising methods for enriching hydrogen isotopes is pt
This is a double temperature exchange method in which water and hydrogen are exchanged using precious metals such as catalytic converters as catalysts.

二重温度交換法においては下記の式で表わされる反応が
、(1)式の反応は約25℃の低温側交換塔内で、(2
)式の反応は約200℃の高温側の交換塔内で各々触媒
の存在下で行われる。
In the double temperature exchange method, the reaction expressed by the following formula is the reaction of formula (1), which is carried out in the low-temperature side exchange column at about 25°C.
) The reaction of the formula is carried out in an exchange column on the high temperature side of about 200° C. in the presence of a catalyst.

水−水素系の交換反応において、触媒表面は常時、新た
な水ないし水蒸気と水素に触れている必要がある。
In a water-hydrogen exchange reaction, the catalyst surface must be constantly in contact with fresh water or water vapor and hydrogen.

所が、触媒表面に液相の水が付着滞留してしまうと、触
媒表面への水素の接触を防げ、交換反応触媒としての機
能を阻害するばかりでな(触媒自体の活性の低下さえま
ねく。
However, if liquid phase water adheres and remains on the catalyst surface, it will prevent hydrogen from coming into contact with the catalyst surface, which will not only inhibit its function as an exchange reaction catalyst (it may even lead to a decrease in the activity of the catalyst itself).

したがって水−水素系交換反応を工業化するためには、
触媒に直接液相の水を付着させない様な撥水性触媒の開
発が必要である。
Therefore, in order to industrialize the water-hydrogen exchange reaction,
It is necessary to develop a water-repellent catalyst that does not allow liquid phase water to adhere directly to the catalyst.

しかし、担体に触媒を担持させた後触媒表面全体を撥水
性の被膜で被ってしまうことは、水蒸気および水素ガス
の触媒への接触さえも阻止し、かえって触媒の作用を妨
げるおそれがある。
However, covering the entire surface of the catalyst with a water-repellent film after supporting the catalyst on the carrier may prevent even water vapor and hydrogen gas from coming into contact with the catalyst, and may even impede the action of the catalyst.

従って、好ましい撥水性触媒は液体にはぬれずにガスの
みは自由に触媒表面に接触する様な撥水処理法の開発が
望まれている。
Therefore, it is desired to develop a water-repellent treatment method in which a preferable water-repellent catalyst is not wetted by liquid and only gas can freely contact the surface of the catalyst.

一方触媒担体の孔構造に関しても、一般の触媒に使用さ
れている様な、高比表面積を持たせるために孔径数λ〜
数100人の微細孔を持つ多孔質撥水膜では、担体微細
孔内に担持させた触媒の表面を薄い撥水性被膜で被うこ
とは困難であり、交換反応時の200 kg/crrt
程度の圧力下では第1図に示す様に担体aの微細孔す内
の触媒3表面は、水4に完全にぬれてしまう。
On the other hand, regarding the pore structure of the catalyst carrier, in order to have a high specific surface area like that used in general catalysts, the pore size is λ~
In a porous water-repellent membrane with several hundred micropores, it is difficult to cover the surface of the catalyst supported within the micropores of the carrier with a thin water-repellent film, and the reaction rate of 200 kg/crrt during the exchange reaction is difficult to cover.
Under a certain pressure, the surface of the catalyst 3 within the micropores of the carrier a becomes completely wetted with water 4, as shown in FIG.

従って、多数の微細孔により担体表面積を増しているに
もかかわらず、表面積の大部分D−4撥水処理なしの状
態に等しい効果しか発揮できない。
Therefore, even though the surface area of the carrier is increased by a large number of micropores, most of the surface area can only exhibit the same effect as without D-4 water repellent treatment.

また、撥水性材料からなる担体を用いる等により細孔内
の撥水化を実現したとしても、細孔内の触媒表面上では
細孔部以外の触媒表面上よりも、水および水素の移動が
容易でないため、はとんど平衡に近い状態のままに置か
れてしまう。
Furthermore, even if the inside of the pores is made water repellent by using a carrier made of a water-repellent material, water and hydrogen move more easily on the catalyst surface inside the pores than on the catalyst surface outside the pores. Since it is not easy, is left in a state close to equilibrium.

すなわち、いずれにしても、担体の表面に付着させた触
媒以外はほとんど交換反応に寄与できず、担体を多孔体
としたにもかかわらず高比表面積としたことによる効果
は期待できない。
That is, in any case, almost nothing other than the catalyst attached to the surface of the carrier can contribute to the exchange reaction, and no effect can be expected from having a high specific surface area even though the carrier is porous.

すなわち、水−水素系の交換反応用触媒に用いる担体は
微細孔により高比表面積化することより、担体構造を複
雑なものにして巨大孔による表面積を増す方が大きな効
果がある。
In other words, it is more effective to make the carrier structure complex and increase the surface area due to large pores than to increase the specific surface area of the carrier used for a water-hydrogen exchange reaction catalyst using micropores.

本発明は上記の点に着目し、有効な高比表面積を持つと
共に、好ましい撥水性を持つ水−水素系の交換反応用触
媒の提供を目的とするものである。
The present invention has focused on the above points, and aims to provide a water-hydrogen exchange reaction catalyst that has an effective high specific surface area and favorable water repellency.

すなわち、水−水素系の交換反応用触媒担体として三次
元不規則網状構造多孔体が優れていることを発見し、該
多孔体を担体とした撥水性の触媒を提供するものである
That is, we have discovered that a porous material with a three-dimensional irregular network structure is excellent as a catalyst carrier for a water-hydrogen exchange reaction, and have provided a water-repellent catalyst using the porous material as a carrier.

本発明の触媒の担体として用いる三次元不規則網状構造
多孔体は第2図に示す様に微細な骨格が不規則に三次元
的に網目を形成した構造を持ち、多孔率が90〜98%
と高く骨格構造が入り組んでいるため単位体積当りの表
面積が非常に大きく、しかも、空孔は完全に連通してい
る。
The three-dimensional irregular network structure porous material used as the catalyst carrier of the present invention has a structure in which fine skeletons form an irregular three-dimensional network, as shown in Figure 2, and has a porosity of 90 to 98%.
Because of its tall and intricate skeletal structure, the surface area per unit volume is extremely large, and the pores are completely connected.

このような三次元不規則網状構造多孔体は材質により種
々の製造法がある。
There are various manufacturing methods for such a porous body having a three-dimensional irregular network structure depending on the material.

例えば樹脂の場合通常の発泡樹脂の製造法がそのま又適
用できる。
For example, in the case of resin, the usual manufacturing method for foamed resin can be applied as is.

また金属の場合は、例えば連通気孔を有するポリウレタ
ンフォームの様な発泡樹脂骨格表面にニッケル化学メッ
キ等を施すことにより導電性を付与させた後、電気メッ
キを行なうことにより製造される。
In the case of metal, it is manufactured by, for example, applying nickel chemical plating or the like to the surface of a foamed resin skeleton such as polyurethane foam having continuous pores to impart conductivity, and then electroplating.

また電気メッキ後必要に応じて樹脂骨格を焼却除去する
こともできる。
Further, after electroplating, the resin skeleton can be removed by incineration if necessary.

更に金属あるいはセラミックに適用できる方法として、
発泡樹脂骨格に金属あるいはセラミック粉末のスラリー
を浸漬塗布した後樹脂骨格の焼却除去と金属あるいはセ
ラミック粉末の焼結を行なわせる方法がある。
Furthermore, as a method that can be applied to metals or ceramics,
There is a method in which a slurry of metal or ceramic powder is dip-coated onto a foamed resin skeleton, and then the resin skeleton is removed by incineration and the metal or ceramic powder is sintered.

本発明の三次元不規則網状構造多孔体の製造法としては
上記いずれの方法も用いることができ、更にこれらの方
法に限定されるものではない。
Any of the above-mentioned methods can be used as a method for producing the three-dimensional irregular network structure porous material of the present invention, and the method is not limited to these methods.

この三次元不規則網状構造多孔体は、数10μ〜数10
0μの太さの骨格が三次元的に不規則な網目を形成する
ことにより、高比表面積を有しており、はとんどすべて
の有効孔径は数100μを越えている。
This three-dimensional irregular network structure porous body has a diameter of several tens of micrometers to several tens of micrometers.
The skeleton with a thickness of 0μ forms a three-dimensional irregular network, so it has a high specific surface area, and the effective pore diameters of almost all of them exceed several 100μ.

したがって、担体の表面に担持させた触媒はすべて均等
に被交換物と接触することができ、液体を吸着してしま
う様な部分を持っておらず、すべての触媒は有効に水−
水素系の交換反応に関与する。
Therefore, all the catalysts supported on the surface of the carrier can come into contact with the object to be exchanged evenly, and there is no part that would adsorb liquid, and all the catalysts can effectively absorb water.
Involved in hydrogen-based exchange reactions.

本発明の触媒用担体として用いる材料は使用温度まで耐
え、適当な機械的強度があれば良く、特に制限はない。
The material used as the catalyst carrier of the present invention is not particularly limited as long as it can withstand up to the operating temperature and has appropriate mechanical strength.

すなわち、セラミック材料に限らず、種々の材料が使用
できる。
That is, not only ceramic materials but also various materials can be used.

触媒材料としては第■族の貴金属が用いられ、白金が優
れていることがよく知られている。
Group 1 noble metals are used as catalyst materials, and it is well known that platinum is superior.

触媒の担持方法としては、担持量と分布が均一になる様
に制御することが重要であり、通常、塩化白金酸の溶液
に担体を浸漬させ熱分解させる方法が採られる。
As for the method of supporting the catalyst, it is important to control the amount and distribution of the catalyst to be uniform, and usually a method is adopted in which the support is immersed in a solution of chloroplatinic acid and thermally decomposed.

また、別の担持法としては塩化白金酸を用いて電気メッ
キする方法もある。
Further, as another supporting method, there is a method of electroplating using chloroplatinic acid.

発明者らは触媒に水が凝縮せず、しかも、被交換物の接
触が自由である撥水化の方法として、触媒の上に撥水性
の多孔質の膜を被覆することが有用であることを見出し
た。
The inventors discovered that it is useful to coat the catalyst with a water-repellent porous membrane as a water-repellent method that prevents water from condensing on the catalyst and allows free contact with the objects to be exchanged. I found out.

本発明による触媒表面は第3図に示すように、三次元不
規則網状構造多孔体からなる担体1およびこれに担持さ
せた触媒20粒子表面を共に薄い微細孔を持つ多孔質の
撥水性膜3で被った構造を持っている。
As shown in FIG. 3, the catalyst surface according to the present invention includes a carrier 1 made of a three-dimensional irregular network structure porous body, a catalyst 20 supported on this, and a porous water-repellent membrane 3 having thin micropores. It has a structure covered with

微細孔の孔径を、交換反応時の圧力で、水を吸着させな
いような大きさに選択することにより、気体のみが自由
に触媒に接触することができる。
By selecting the diameter of the micropores to a size that does not allow water to be adsorbed under the pressure during the exchange reaction, only gas can freely contact the catalyst.

かような、気体のみを選択的に通過させうる撥水膜3の
具体的な例としては、次式で表わされるようなフッ化炭
素の共重合体がある。
A specific example of such a water-repellent film 3 that can selectively pass only gas is a fluorocarbon copolymer represented by the following formula.

上式で表わされるフッ化炭素共重合体は、アセトンのよ
うな有機溶媒に可溶である。
The fluorocarbon copolymer represented by the above formula is soluble in an organic solvent such as acetone.

すなわち該共重合体の溶液で、担体及びその上の触媒を
同時に被覆すれば乾燥により溶媒の抜けた跡が微細孔と
して残る。
That is, if a carrier and a catalyst thereon are simultaneously coated with a solution of the copolymer, traces of the solvent left behind by drying will remain as fine pores.

この方法によれば該共重合体の濃度の調整により撥水膜
の厚みおよび、孔径のコントロールが容易に行える。
According to this method, the thickness and pore diameter of the water-repellent film can be easily controlled by adjusting the concentration of the copolymer.

実施例 平均孔径0.5m−厚さ5mmのニッケル製三次元不規
則網状構造多孔体を担体とし、との担体にヘキサクロロ
白金酸のアセトン溶液に浸漬、乾燥して担体骨格上にヘ
キサクロロ白金酸を充分沈積させた後、250℃水素気
流中で3時間還元処理を行ない、白金1.0重量%担持
触媒を得た。
Example A three-dimensional irregular network structure porous body made of nickel with an average pore diameter of 0.5 m and a thickness of 5 mm was used as a carrier.The carrier was immersed in an acetone solution of hexachloroplatinic acid and dried to coat hexachloroplatinic acid on the carrier skeleton. After sufficient deposition, reduction treatment was performed in a hydrogen stream at 250° C. for 3 hours to obtain a catalyst supported with 1.0% by weight of platinum.

更にこわされるフッ化炭素共重合体のエチルアルコール
溶液に浸漬、乾燥させガスのみを通過させる多孔質撥水
膜を被覆した。
Furthermore, it was immersed in an ethyl alcohol solution of the fluorocarbon copolymer to be destroyed, dried, and covered with a porous water-repellent membrane that only allows gas to pass through.

この触媒を、水素同位体交換反応用充填カラムに充填し
、触媒活性を測定した結果、9.5 X 103mol
e/H@ 、3の比活性が得られた。
This catalyst was packed in a packed column for hydrogen isotope exchange reaction, and the catalytic activity was measured. As a result, 9.5 x 103 mol
A specific activity of e/H@, 3 was obtained.

本発明は、上記フッ化炭素共重合体に限定されるもので
はなく、シラン、シリコーンなどの他の撥水性の材料の
微細孔を持つ撥水膜を用いることももちろんできる。
The present invention is not limited to the above-mentioned fluorocarbon copolymer, and it is of course possible to use a water-repellent film having micropores made of other water-repellent materials such as silane and silicone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の撥水性触媒表面の説明図、第2図は本発
明に用いる三次元不規則網状構造多孔体担体の説明図、
第3図は本発明の撥水性触媒の表面状態の説明図である
。 1・・・・・・担体、2・・・・・・触媒、3・・・・
・・撥水膜。
FIG. 1 is an explanatory diagram of a conventional water-repellent catalyst surface, FIG. 2 is an explanatory diagram of a three-dimensional irregular network structure porous carrier used in the present invention,
FIG. 3 is an explanatory diagram of the surface state of the water-repellent catalyst of the present invention. 1...Carrier, 2...Catalyst, 3...
...Water repellent film.

Claims (1)

【特許請求の範囲】 1 はとんどすべての有効孔径が数100μm以上の大
きさからなる三次元不規則網状構造を持つ多孔体からな
る担体に、周期律表の第8族金属から選ばれた金属触媒
を担持させ、ガスのみを通過させる多孔質撥水膜で該担
体および触媒を共に被覆したことを特徴とする水−水素
交換反応用触媒。 2 撥水膜が されるフッ化炭素共重合体の多孔質膜である特許請求の
範囲1項記載の水−水素交換反応用触媒。 3 触媒金属が白金である特許請求の範囲1または2記
載の水−水素交換反応用触媒。
[Claims] 1 is a carrier made of a porous material having a three-dimensional irregular network structure in which all the effective pores have a size of several hundred μm or more, and is made of a metal selected from Group 8 of the periodic table. 1. A catalyst for a water-hydrogen exchange reaction, characterized in that the carrier and the catalyst are both coated with a porous water-repellent membrane that allows only gas to pass through. 2. The water-hydrogen exchange reaction catalyst according to claim 1, which is a porous membrane of a fluorocarbon copolymer forming a water-repellent membrane. 3. The water-hydrogen exchange reaction catalyst according to claim 1 or 2, wherein the catalytic metal is platinum.
JP51082816A 1976-07-12 1976-07-12 Catalyst for water-hydrogen exchange reaction Expired JPS5919733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51082816A JPS5919733B2 (en) 1976-07-12 1976-07-12 Catalyst for water-hydrogen exchange reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51082816A JPS5919733B2 (en) 1976-07-12 1976-07-12 Catalyst for water-hydrogen exchange reaction

Publications (2)

Publication Number Publication Date
JPS538390A JPS538390A (en) 1978-01-25
JPS5919733B2 true JPS5919733B2 (en) 1984-05-08

Family

ID=13784919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51082816A Expired JPS5919733B2 (en) 1976-07-12 1976-07-12 Catalyst for water-hydrogen exchange reaction

Country Status (1)

Country Link
JP (1) JPS5919733B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378959A (en) * 1986-09-22 1988-04-09 三原 忠 Freezing preventing floor of heat insulating structure

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3272745B2 (en) * 1991-06-06 2002-04-08 三菱レイヨン株式会社 Method for producing methacrolein and methacrylic acid
JPH06154904A (en) * 1992-11-18 1994-06-03 Unai Kinzoku Kogyo Kk Punch pressing device
DE102005019000A1 (en) * 2005-04-22 2006-10-26 Degussa Ag Catalytically coated support, process for its preparation and thus equipped reactor and its use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155492A (en) * 1974-05-20 1975-12-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155492A (en) * 1974-05-20 1975-12-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6378959A (en) * 1986-09-22 1988-04-09 三原 忠 Freezing preventing floor of heat insulating structure

Also Published As

Publication number Publication date
JPS538390A (en) 1978-01-25

Similar Documents

Publication Publication Date Title
ES2641449T3 (en) Surface-modified metal foam body, procedure for its production and use
KR101495925B1 (en) A gas separation membrane comprising a substrate with a layer of coated inorganic oxide particles and an overlayer of a gas-selective material, and its manufacture and use
US3981976A (en) Process for hydrogen isotope concentration between liquid water and hydrogen gas
US5217939A (en) Catalyst for the prduction of nitric acid by oxidation of ammonia
EP1885492A1 (en) Improved preferential oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas
US4530918A (en) Catalysts and method of their preparation
Niu et al. Enhancing the electrocatalytic activity of Pt–Pd catalysts by introducing porous architectures
JPS5919732B2 (en) Catalyst for water-hydrogen exchange reaction
JP2022549860A (en) METAL FOAM-SUPPORTED CATALYST AND METHOD FOR MANUFACTURING SAME
JPH03131346A (en) Support catalyst for decomposition of ozone, method of its manufacture and method for catalytic cracking of ozone
KR20080034443A (en) Hydrogen generation catalysys and system for hydrogen generation
JPS5919733B2 (en) Catalyst for water-hydrogen exchange reaction
CN102441330B (en) Palladium-based dual functional film and its preparation method
Tominaka et al. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying.
CN111432961A (en) Method for producing open-porous molded bodies made of metal and molded body produced using said method
Hegedus et al. On the deactivation of supported Pt catalysts during the hydrogenation of cyclopropane
CN112955269B (en) Method for producing an open-pore metal body with an oxide layer and metal body produced by this method
CN111432962B (en) Method for producing open-porous molded bodies having modified surfaces and made of metal, and molded body produced using said method
CN107185526A (en) A kind of preparation method of eggshell type dehydrogenation catalyst
JPS624446A (en) Catalyst carrier
JPH04298239A (en) Production of catalyst for cracking hydrazine
JP2002535492A (en) Ceramic coating
RU2055638C1 (en) Oxide catalysts preparation method
JPS6147137B2 (en)
JPS5610336A (en) Catalyst for exchange reaction of water-hydrogen isotope