JPS5919723Y2 - Ion nitriding equipment - Google Patents

Ion nitriding equipment

Info

Publication number
JPS5919723Y2
JPS5919723Y2 JP13292079U JP13292079U JPS5919723Y2 JP S5919723 Y2 JPS5919723 Y2 JP S5919723Y2 JP 13292079 U JP13292079 U JP 13292079U JP 13292079 U JP13292079 U JP 13292079U JP S5919723 Y2 JPS5919723 Y2 JP S5919723Y2
Authority
JP
Japan
Prior art keywords
heating element
glow discharge
nitriding
workpiece
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13292079U
Other languages
Japanese (ja)
Other versions
JPS5653768U (en
Inventor
瑞郎 枝村
敏 古都
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP13292079U priority Critical patent/JPS5919723Y2/en
Publication of JPS5653768U publication Critical patent/JPS5653768U/ja
Application granted granted Critical
Publication of JPS5919723Y2 publication Critical patent/JPS5919723Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【考案の詳細な説明】 本考案は、グロー放電により窒素ガスをイオン化させ、
その窒素イオンを被処理物に衝突させて窒化処理を行う
ようにしたイオン窒化処理装置の改良に関するものであ
る。
[Detailed explanation of the invention] This invention ionizes nitrogen gas by glow discharge,
The present invention relates to an improvement of an ion nitriding apparatus that performs nitriding by colliding the nitrogen ions with a workpiece.

従来、この種の装置は真空反応炉内で被処理部を陰極、
炉壁を陽極として真空中(1〜10 Torr)で直流
電圧を印加してグロー放電を生ぜしめ、このグロー放電
により窒素ガスをイオン化させ、その窒素イオンを被処
理物に衝突させながら、被処理物を加熱し、続いて被処
理物をグロー放電により処理温度に維持しつつ窒化処理
を行っていた。
Conventionally, this type of equipment uses a cathode,
Direct current voltage is applied in vacuum (1 to 10 Torr) using the furnace wall as an anode to generate a glow discharge.The glow discharge ionizes nitrogen gas, and while the nitrogen ions collide with the workpiece, The nitriding treatment was performed by heating the object and then maintaining the object at the treatment temperature by glow discharge.

そのため、被処理物が当初冷えているとグロー放電が不
安定となり、真空度、ガス雰囲気状態等によっては局部
アーク放電が発生するため、均一な処理ができず、しか
も加熱に時間がかかり、1サイクルの効率が悪いという
欠点があった。
Therefore, if the object to be treated is initially cold, glow discharge becomes unstable, and depending on the degree of vacuum, gas atmosphere, etc., local arc discharge may occur, making it impossible to process uniformly, and heating takes time. The drawback was that the cycle efficiency was poor.

また、処理温度(300〜570’ C)に到達した後
においても、被処理物の形状により鋭利な尖端や細孔を
有する部品では、そこにグロー放電が集中して局部的な
過熱を生じ、均一な窒化処理ができないという欠点も有
していた。
Furthermore, even after the processing temperature (300 to 570'C) has been reached, glow discharge concentrates on parts that have sharp points or pores due to the shape of the object, causing local overheating. It also had the disadvantage that uniform nitriding treatment could not be performed.

更に、被処理物の装入量が多くなると、窒化に必要なグ
ロー放電出力を大きくする必要があるが、反面、窒化処
理時に炉外へ放出する熱量が少ないと、被処理全体の過
熱を招き、窒化不能となる場合もある。
Furthermore, as the amount of material to be treated increases, it is necessary to increase the glow discharge output required for nitriding, but on the other hand, if the amount of heat released outside the furnace during nitriding is small, this may lead to overheating of the entire material to be treated. In some cases, nitriding becomes impossible.

そこで、イオン窒化処理を均一に且つ効率よく行うため
に、真空反応炉内の外周に発熱体を配設し、グロー放電
と発熱体による発熱との併用によって被処理物の加熱並
びに窒化処理を行うようにしたイオン窒化処理装置が本
考案者等によって開発された。
Therefore, in order to perform the ion nitriding process uniformly and efficiently, a heating element is placed around the outer periphery of the vacuum reactor, and the workpiece is heated and nitrided using a combination of glow discharge and heat generated by the heating element. An ion nitriding apparatus as described above was developed by the inventors of the present invention.

本考案は上記グロー放電と併せて発熱体による発熱を用
いるイオン窒化処理装置を更に改良したものであり、被
処理物の加熱並びに窒化処理を更に熱効率よく短時間に
且つ均一に行えるようにするものであって、前記発熱体
の内周に開閉可能な内壁遮蔽体を外周に開閉可能なブラ
インドシャッタ手段をそれぞれ設置し、予熱時に内熱遮
蔽体を開くと同時にブラインドシャッタ手段を閉じるこ
とによって加熱率を高め、一方、窒化時には内壁遮蔽体
を閉じてブラインドシャッタ手段を放出熱量に応じて開
けることにより、グロー放電に伴う炉外放出熱量を調整
して被処理物の過熱を防止し、窒化効率を向上させるよ
うにしたイオン窒化処理装置を提供するものである。
The present invention is a further improvement of the ion nitriding apparatus that uses heat generated by a heating element in addition to the glow discharge described above, and enables heating of the object to be treated and nitriding treatment to be performed more thermally efficiently, in a shorter time, and more uniformly. An inner wall shield that can be opened and closed is installed on the inner periphery of the heating element, and a blind shutter means that can be opened and closed is installed on the outer periphery of the heating element, and the heating rate is adjusted by closing the blind shutter means at the same time as opening the internal heat shielding at the time of preheating. On the other hand, during nitriding, by closing the inner wall shield and opening the blind shutter means according to the amount of heat released, the amount of heat released outside the furnace due to glow discharge is adjusted, preventing overheating of the workpiece, and improving nitriding efficiency. An object of the present invention is to provide an ion nitriding treatment apparatus that improves the performance of the ion nitriding process.

以下、図面に示す実施例に基づいて本考案を説明する。The present invention will be described below based on embodiments shown in the drawings.

第1図および第2図において、1は鋼製の真空反応炉で
あって、円筒形状の炉体2と該炉体2の上方開口部(被
処理物の搬出入口)を被冠する蓋体3とからなり、炉体
2および蓋体3はそれぞれ適温に冷却せしめるように水
冷二重構造になっている。
In FIGS. 1 and 2, reference numeral 1 denotes a steel vacuum reactor, which includes a cylindrical furnace body 2 and a lid body that covers the upper opening (portion for carrying in and out of the processed material) of the furnace body 2. 3, and the furnace body 2 and lid body 3 each have a water-cooled double structure so as to be cooled to an appropriate temperature.

この真空反応炉1内の外周に円筒形状に配列した発熱体
4が炉体2と同心状に配設されている。
Heat generating elements 4 arranged in a cylindrical shape are arranged concentrically with the furnace body 2 on the outer periphery of the vacuum reactor 1 .

該発熱体4の内周側には、垂直軸5に回動可能に装着さ
れた帯板状の回動板6を円筒上に多数配列してなる開閉
可能な内壁遮蔽体7が配設され、閉作動時に各回動板6
が接線方向に向いて円周上に連続状に連なって発熱体4
の内周側を被処理物8 (陰極)に対して電気的に遮蔽
する(第2図の下半部分参照)ように、開作動時には各
回動板6が半径方向に向いて発熱体4の内周側を開放す
る(第2図の上半部分参照)のように構成されている。
On the inner circumferential side of the heating element 4, an openable and closable inner wall shield 7 is arranged, which is made up of a cylindrical arrangement of a large number of band-like rotating plates 6 rotatably attached to a vertical shaft 5. , each rotating plate 6 during the closing operation.
The heating elements 4 are oriented in the tangential direction and are continuous on the circumference.
In order to electrically shield the inner circumferential side of the heating element 4 from the object to be treated 8 (cathode) (see the lower half of Fig. 2), each rotary plate 6 is oriented radially in the direction of the heating element 4 during the opening operation. The inner circumferential side is open (see the upper half of FIG. 2).

また、発熱体4の外周側には、垂直軸9に回動可能に装
着された帯板状のブラインド10を円周上に多数配列し
てなる開閉可能なブラインドシャッタ手段11が配設さ
れ、閉作動時に各ブラインド10が接線方向に向いて円
周上に連続状に連なって発熱体4の外周側を遮蔽する(
第2図の上半部分参照)のように、開作動時には各ブラ
インド10が半径方向に向いて発熱体4の外周側を開放
する(第2図の下半部分参照)ように構成されている。
Further, on the outer circumferential side of the heating element 4, an openable/closeable blind shutter means 11 is arranged, which is formed by arranging a large number of strip-shaped blinds 10 rotatably mounted on a vertical shaft 9 on the circumference. During the closing operation, each blind 10 faces in the tangential direction and is continuous on the circumference to shield the outer peripheral side of the heating element 4 (
As shown in the upper half of FIG. 2), each blind 10 is configured to face in the radial direction and open the outer circumferential side of the heating element 4 during the opening operation (see the lower half of FIG. 2). .

12は前記内壁遮蔽体7を陽極、真空反応炉1内に装入
される被処理物8を陰極として両極間に直流電圧を印加
するグロー放電用電源、13は前記発熱体4に交流電圧
を印加する発熱体用電源であって、該発熱代用電源13
には真空反応炉1内に装入された測温用熱電対14を具
備する温度制御装置15が接続され、炉内温度を検出し
て発熱体用電源13を制御するように構成されている。
12 is a glow discharge power source that applies a DC voltage between the two electrodes, with the inner wall shield 7 as an anode and the workpiece 8 charged in the vacuum reactor 1 as a cathode; 13, a glow discharge power source that applies an AC voltage to the heating element 4; A power supply for a heating element to which the power is applied, the heat generation substitute power supply 13
A temperature control device 15 having a temperature measuring thermocouple 14 inserted into the vacuum reactor 1 is connected to the vacuum reactor 1, and is configured to detect the temperature inside the furnace and control the power source 13 for the heating element. .

16は被処理物8を載置する陰極載置台であって、絶縁
材製の三脚状支持台17によって真空反応炉1の底部に
支持され、陰極載置台16の脚部16 aが支持台17
上に当接する部分にグロー放電が集中しないように該当
核部分に、下面が凸面状の導電性円盤18と上面が平面
状の絶縁材製円板19とを重積して嵌合し、円盤18と
円板19との間にクサビ状スリットを形成している。
Reference numeral 16 denotes a cathode mounting table on which the object to be processed 8 is placed, and is supported at the bottom of the vacuum reactor 1 by a tripod-shaped support 17 made of an insulating material.
A conductive disk 18 having a convex lower surface and an insulating disk 19 having a flat upper surface are stacked and fitted to the corresponding core portion so that the glow discharge does not concentrate on the portion that abuts the upper surface. A wedge-shaped slit is formed between 18 and disk 19.

20は真空反応炉1外がら陰極載置台16に陰極端子2
1を導入するための電気絶縁性と真空シール性とを備え
た端子導入管、22は真空反応炉1の支脚である。
20 is a cathode terminal 2 placed on a cathode mounting table 16 from outside the vacuum reactor 1.
A terminal introduction tube 22 is a support leg of the vacuum reactor 1 and has electrical insulation and vacuum sealing properties for introducing the reactor 1 .

次に、その作動について説明すれば、グロー放電用電源
12によって内壁遮蔽体7を陽極、陰極載置台16(即
ち被処理物8)を陰極として両極間に直流電圧を印加す
るとグロー放電が発生し、一方、発熱体用電源13によ
って発熱体4に交流電圧を印加すると発熱する。
Next, to explain its operation, when a direct current voltage is applied between the inner wall shielding body 7 as an anode and the cathode mounting table 16 (i.e. the object to be treated 8) as a cathode using the glow discharge power supply 12, a glow discharge occurs. On the other hand, when an AC voltage is applied to the heating element 4 by the heating element power supply 13, heat is generated.

真空反応炉1内に装入された被処理物8を放電窒化可能
な処理温度 (300〜570°C1好ましくは550〜560°C
)に加熱する予熱時には、その加熱を発熱体4の発熱の
みによって行い、第2図上半部分に示すように、内壁遮
蔽体7を開き、ブラインドシャッタ手段11を閉じる。
The processing temperature (300 to 570°C, preferably 550 to 560°C) at which the workpiece 8 charged in the vacuum reactor 1 can be discharge nitrided
), the heating is performed only by the heat generated by the heating element 4, and the inner wall shield 7 is opened and the blind shutter means 11 is closed, as shown in the upper half of FIG.

よって、内壁遮蔽体7を開くことにより発熱体4の発熱
が直接被処理物8を輻射加熱するようにすると同時に、
ブラインドシャッタ手段11を閉じておくことにより、
発熱体4の外周から炉外へ放出しようとする熱線を遮断
して放出熱量を少なくすることができるため、被処理物
8の加熱処理を効率よく短時間に且つ均一に行うことが
できる。
Therefore, by opening the inner wall shield 7, the heat generated by the heating element 4 directly radiates and heats the object 8, and at the same time,
By keeping the blind shutter means 11 closed,
Since the heat rays trying to be emitted from the outer periphery of the heating element 4 to the outside of the furnace can be blocked and the amount of emitted heat can be reduced, the heat treatment of the workpiece 8 can be efficiently performed in a short time and uniformly.

続いて、処理温度にまで加熱された予熱終了後は、第2
図下半部分に示すように、内壁遮蔽体7を閉じて発熱体
4を被処理物8から電気的に遮蔽し、被処理物8を前記
発熱体4による発熱によって処理温度に保持しつつ、上
記内壁遮壁体7を陽極としたグロー放電との併用によっ
て窒化処理を行う。
Subsequently, after preheating to the processing temperature, the second
As shown in the lower half of the figure, the inner wall shield 7 is closed to electrically shield the heating element 4 from the object to be processed 8, and while the object to be processed 8 is maintained at the processing temperature by the heat generated by the heating element 4, The nitriding treatment is performed in combination with glow discharge using the inner wall shielding body 7 as an anode.

この窒化処理の際には、被処理物8の装入量に適応して
グロー放電出力を上げつつ、発熱体4による発熱を中止
または制御し、前記ブラインドシャッタ手段11を放熱
量に応じてその開閉を調整することにより、窒化に必要
なグロー放電出力の増大に応じて炉外放出熱量を増大さ
せ、被処理物8の過熱を防止して窒化効率を上げ、しか
も窒化処理を均一に行うことができる。
During this nitriding treatment, the glow discharge output is increased in accordance with the amount of charged material 8, while the heat generation by the heating element 4 is stopped or controlled, and the blind shutter means 11 is adjusted according to the amount of heat radiation. By adjusting the opening and closing, the amount of heat released outside the furnace is increased in accordance with the increase in the glow discharge output required for nitriding, preventing overheating of the object 8 to be treated, increasing the nitriding efficiency, and performing the nitriding process uniformly. Can be done.

また、発熱体4は閉じた内壁遮蔽体7によって被処理物
8(陰極)に対して電気的に遮蔽されているので、発熱
体4と被処理物8との間にアーク放電や異常なグロー放
電が発生することはない。
Furthermore, since the heating element 4 is electrically shielded from the workpiece 8 (cathode) by the closed inner wall shield 7, arc discharge or abnormal glow may occur between the heating element 4 and the workpiece 8. No discharge occurs.

このように、被処理物8の装入量が多い場合等窒化処理
温度において窒化に必要なグロー放電出力が大きくグロ
ー放電のみによっても被処理物8の温度が上昇傾向にあ
る時にはブラインドシャッタ手段11をこの上昇度合に
応じた開度に開き、発熱体4による発熱を中止または制
御し、炉外への放熱を大きくして、被処理物8の過熱を
防止し、窒化に必要なグロー放電出力が小さくてよく、
グロー放電のみでは被処理物8の温度が低下する傾向に
あるときには、ブラインドシャッタ手段11を閉じ、発
熱体4による加熱を併行して行うことも可能である。
In this way, when the glow discharge output necessary for nitriding is large at the nitriding temperature and the temperature of the workpiece 8 tends to rise even by glow discharge alone, such as when a large amount of the workpiece 8 is charged, the blind shutter means 11 is opened to an opening degree corresponding to the degree of rise, the heat generation by the heating element 4 is stopped or controlled, and the heat radiation to the outside of the furnace is increased to prevent overheating of the workpiece 8 and to reduce the glow discharge output necessary for nitriding. is small and good;
When the temperature of the object 8 tends to decrease with glow discharge alone, it is also possible to close the blind shutter means 11 and perform heating by the heating element 4 at the same time.

これにより、窒化温度の高低、放電出力の大小、被処理
物8の装入量とは関係なく、被処理物8を意図する温度
に正確にがつ均一に保持することが極めて容易である。
Thereby, it is extremely easy to accurately and uniformly maintain the target temperature of the workpiece 8, regardless of the level of the nitriding temperature, the magnitude of the discharge output, or the amount of the workpiece 8 charged.

尚、内壁遮蔽体7、ブラインドシャッタ手段11の開閉
構造としては、上記したもののほかに、第3図に示すよ
うに、それぞれ円周方向の定間隔でもって多数の短冊形
状孔23 a又は24 aを有する同心状の円筒体23
.24を発熱体4の内周もしくは外周に介装し、円筒体
23.24の一方を回動させて短冊形状孔23a、24
a同士を合致させることによって開き、合致させないこ
とによって閉しるように構成した開閉構造を用いること
もある。
In addition to the above-mentioned opening/closing structure for the inner wall shield 7 and the blind shutter means 11, as shown in FIG. a concentric cylindrical body 23 having
.. 24 is interposed on the inner or outer periphery of the heating element 4, and one of the cylindrical bodies 23 and 24 is rotated to open the rectangular holes 23a and 24.
An opening/closing structure may be used in which the opening/closing structure is configured to open when the openings a match and close when they do not match.

上記短冊形状孔23a、24aの他に、方形状孔、矩形
状孔等の種々の形状の孔としてもよい。
In addition to the above-mentioned strip-shaped holes 23a and 24a, the holes may have various shapes such as square holes and rectangular holes.

また、上記発熱体4を上下方向に2分割以上に分割した
多分割構造とし、各分割発熱体の出力を個別に制御する
こともある。
Further, the heating element 4 may have a multi-segmented structure in which it is vertically divided into two or more parts, and the output of each divided heating element may be individually controlled.

この場合、炉内温度分布を良好に且つ均一にすることが
できる利点を有する。
In this case, there is an advantage that the temperature distribution in the furnace can be made good and uniform.

したがって、本考案によれば、発熱体による発熱によっ
て被処理物の加熱を行い、グロー放電と、発熱体による
発熱との併用によって被処理物の窒化処理を行うことが
できるから、従来の如き被処理物の局部的な過熱による
局部アーク放電の発生を防止し、被処理物の加熱および
窒化処理を短時間に且つ均一に行うことができ、1サイ
クルの熱効率および処理効率を向上させることができる
とともに、上記被処理物の予熱時には、内壁遮蔽体を開
けることにより発熱体による被処理物の加熱効率を向上
すると同時に、ブラインドシャッタ手段を閉じることに
より、炉外放出熱量が少なくなり、加熱効率を一層高め
ることができる。
Therefore, according to the present invention, the workpiece can be heated by the heat generated by the heating element, and the workpiece can be nitrided by a combination of glow discharge and heat generation by the heating element. It is possible to prevent the occurrence of local arc discharge due to local overheating of the object to be treated, and to perform heating and nitriding of the object to be treated uniformly in a short time, thereby improving one-cycle thermal efficiency and processing efficiency. At the same time, when preheating the object to be processed, the inner wall shield is opened to improve the heating efficiency of the object to be processed by the heating element, and at the same time, by closing the blind shutter means, the amount of heat released outside the furnace is reduced, and the heating efficiency is improved. It can be further improved.

さらに、被処理物の窒化時には内壁遮蔽体を閉じてアー
ク放電等の発生を防止して安定したグロー放電を得る一
方、ブラインドシャッタ手段の開閉により炉外放出熱量
を制御して過熱を防止し、窒化効率を一層向上させ、窒
化処理を良好に且つ均一に行うことができる。
Furthermore, when nitriding the workpiece, the inner wall shield is closed to prevent the occurrence of arc discharge and the like to obtain a stable glow discharge, while the amount of heat released outside the furnace is controlled by opening and closing the blind shutter means to prevent overheating. The nitriding efficiency can be further improved and the nitriding process can be performed satisfactorily and uniformly.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の実施態様を例示するもので、第1図は全
体構成を示す縦断面図、第2図は上半部分に予熱状態を
下半部に窒化状態を示す横断面図、第3図は内壁遮蔽体
又はブラインドシャッタ手段の変形例を示す一部切除し
た要部正面図である。 1・・・・・・真空反応炉、2・・・・・・炉体、3・
・・・・・蓋体、4・・・・・・発熱体、5・・・・・
・垂直軸、6・・・・・・回動板、7・・・・・・内壁
遮蔽体、8・・・・・・被処理物、9・・・・・・垂直
軸、10・・・・・・ブラインド、11・・・・・・ブ
ラインドシャッタ手段、12・・・・・・グロー放電用
電源、13・・・・・・発熱体用電源、14・・・・・
・測温用熱電対、15・・・・・・温度制御装置、16
・・・・・・陰極載置台、16 a・・・・・・脚部、
17・・・・・・支持台、18・・・・・・円盤、19
・・・・・・円板、20・・・・・・端子導入管、21
・・・・・・陰極端子、22・・・・・・支脚、23.
24・・・・・・円筒体、23a、24a・・・・・・
短冊形状孔。
The drawings illustrate an embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view showing the overall structure, FIG. 2 is a cross-sectional view showing the upper half in a preheated state and the lower half in a nitrided state. The figure is a partially cutaway front view of a main part showing a modification of the inner wall shield or blind shutter means. 1... Vacuum reactor, 2... Furnace body, 3.
... Lid body, 4 ... Heating element, 5 ...
・Vertical axis, 6... Rotating plate, 7... Inner wall shield, 8... Processing object, 9... Vertical axis, 10... ... Blind, 11 ... Blind shutter means, 12 ... Power supply for glow discharge, 13 ... Power supply for heating element, 14 ...
・Thermocouple for temperature measurement, 15...Temperature control device, 16
・・・・・・Cathode mounting table, 16 a・・・・Legs,
17...Support stand, 18...Disc, 19
...Disk, 20...Terminal introduction tube, 21
...Cathode terminal, 22... Support leg, 23.
24... Cylindrical body, 23a, 24a...
Rectangular hole.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 真空反応炉内の外周に発熱体を配設し、グロー放電と前
記発熱体による発熱との併用によって被処理物の窒化処
理を行うイオン窒化処理装置において、前記発熱体の内
周を開閉可能な内壁遮蔽体で遮蔽するとともに、発熱体
の外周に開閉可能なブラインドシャッタ手段を設け、前
記内壁遮蔽体は被処理物の予熱時に開き窒化時には閉じ
てグロー放電の陽極を構成する一方、ブラインドシャッ
タ手段は被処理物の予熱時に閉じ窒化時には放出熱量に
応じて開閉制御されることを特徴とするイオン窒化処理
装置。
In an ion nitriding treatment apparatus in which a heating element is disposed on the outer periphery of a vacuum reactor and a workpiece is nitrided by a combination of glow discharge and heat generated by the heating element, the inner periphery of the heating element can be opened and closed. In addition to shielding with an inner wall shielding member, a blind shutter means that can be opened and closed is provided on the outer periphery of the heating element, and the inner wall shielding member opens during preheating of the object to be treated and closes during nitriding to constitute an anode for glow discharge. An ion nitriding treatment apparatus characterized in that the apparatus is closed when preheating the object to be treated and is controlled to open and close during nitriding according to the amount of heat released.
JP13292079U 1979-09-25 1979-09-25 Ion nitriding equipment Expired JPS5919723Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13292079U JPS5919723Y2 (en) 1979-09-25 1979-09-25 Ion nitriding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13292079U JPS5919723Y2 (en) 1979-09-25 1979-09-25 Ion nitriding equipment

Publications (2)

Publication Number Publication Date
JPS5653768U JPS5653768U (en) 1981-05-12
JPS5919723Y2 true JPS5919723Y2 (en) 1984-06-07

Family

ID=29364520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13292079U Expired JPS5919723Y2 (en) 1979-09-25 1979-09-25 Ion nitriding equipment

Country Status (1)

Country Link
JP (1) JPS5919723Y2 (en)

Also Published As

Publication number Publication date
JPS5653768U (en) 1981-05-12

Similar Documents

Publication Publication Date Title
US3423562A (en) Glow discharge apparatus
US2768277A (en) Electric furnace
US3190772A (en) Method of hardening work in an electric glow discharge
US4124199A (en) Process and apparatus for case hardening of ferrous metal work pieces
US3730863A (en) Method of treating workpieces in a glow discharge
ZA854041B (en) Electric arc furnace having a space provided on one side of the furnace vessel for accommodating charging material
CN110274441A (en) The vacuum bakeout device of lithium ion cell electrode volume and the method for toasting battery pole coil using it
JPS5919723Y2 (en) Ion nitriding equipment
GB934335A (en) Improvements in heat treating furnaces
EP0163906A3 (en) Method and vacuum furnace for heat treatment a charge
CA1113425A (en) Ion-nitriding apparatus
US3935412A (en) Induction heated vapor source
US4179618A (en) Apparatus for ion-nitriding treatment
JPS55151328A (en) Method and apparatus for fabricating hydrogen-containing amorphous semiconductor film
GB1021776A (en)
JPH06124955A (en) High-temperature vacuum heating furnace and its cooling method
CN220355906U (en) Drying device and equipment
CN220224307U (en) Sputtering equipment
JPH09229561A (en) Lateral pressurizing sintering furnace
JP2000241281A5 (en)
JP3875322B2 (en) Vacuum heat treatment furnace
JPH0719081Y2 (en) Ion source
JP2571421B2 (en) Plasma carburizing heat treatment furnace
JPH0832954B2 (en) Ion carbonitriding furnace
Zuhr et al. Effects of neutral beam injection and gas puffing on deuterium and impurity levels in the scrapeoff layer of ISX-B