JPS59196487A - Distance sensor - Google Patents

Distance sensor

Info

Publication number
JPS59196487A
JPS59196487A JP58071932A JP7193283A JPS59196487A JP S59196487 A JPS59196487 A JP S59196487A JP 58071932 A JP58071932 A JP 58071932A JP 7193283 A JP7193283 A JP 7193283A JP S59196487 A JPS59196487 A JP S59196487A
Authority
JP
Japan
Prior art keywords
light
light emitting
light receiving
distance
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071932A
Other languages
Japanese (ja)
Inventor
Yasuhiro Nagata
永田 保広
Kazuhisa Shigemori
和久 重森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP58071932A priority Critical patent/JPS59196487A/en
Publication of JPS59196487A publication Critical patent/JPS59196487A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To reduce cost by enabling both of accurate measurement and rough measurement, by using light emitting and receiving elements having narrow light emitting and receiving angles and light emitting and receiving elements having wide light emitting and receiving angles while changing over said elements. CONSTITUTION:Among light emitting and receiving elements 41, 42..., 51, 52, the light receiving elements 51, 52 are constituted of a combination of the element 52 having wide light receiving angle and the element 51 having a narrow light receiving element. Light emitting sources 21, 22... corresponding to the light emitting elements 41, 42... are successively driven by a drive means 6. When distance measurement is performed with low accuracy, the light receiving sensor 32 corresponding to the element 52 having a wide light receiving angle is driven and, when distance measurement is performed with high accuracy, the light receiving sensor 31 corresponding to the element 51 having a narrow light receiving angle is driven. The outputs of the light receiving sensors 31, 32 are inputted to an operation means 9 to calculate a distance up to an object 7 to be measured.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、受光センサを用いた非接触式の距離センサに
関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a non-contact distance sensor using a light receiving sensor.

〈従来技術〉 距離センサを制御系で用いる場合、最終的に合わせられ
る距離の付近に近づくまでは特に高い精度が要求きれな
いのでラフな距離測定を行ない、その付近では所望の高
い精度での距離測定を行なうことが要請てれることがあ
る。ところが、従来の受光センサを用いる距離センサで
は距離センサのダイナミックレンジと距離分解能とは一
意的に決まっているので、このような要請に応えるため
(こけ、高距離分解能と低距離分解能のものとの2つの
距離センサを用いなければならないので、測定のための
コストが高くつくものとなる。
<Prior art> When a distance sensor is used in a control system, particularly high accuracy is not required until the distance is close to the final distance, so rough distance measurement is performed, and then the distance is measured with the desired high accuracy. You may be asked to take measurements. However, in distance sensors that use conventional light-receiving sensors, the dynamic range and distance resolution of the distance sensor are uniquely determined. Since two distance sensors have to be used, the cost for the measurement is high.

く目 的) 本発明は、1つの距離センサで高い距離分解能での精密
な距離測定と低い距離分解能でのラフな測定との両方の
測定が可能なようにし、測定コストを低減できるように
することを目的とする。
(Purpose) The present invention enables a single distance sensor to perform both precise distance measurement with high distance resolution and rough measurement with low distance resolution, thereby reducing measurement costs. The purpose is to

く構 成〉 本発明は、このような目的を達成するために、複数の発
光源と、各発光源(こ個別的に対応して並置きれた複数
の投光エレメント、発光源からの光が投光エレメントを
介して被測定物に投光式れたときの該投光の被測定物で
の反射光を受光するため【こ前記投光エレメントに並置
された複数の受光エレメントと、各受光エレメントに個
別的に対応して設けられた複数の受光センサと、前記投
光・受光エレメントの少なくとも一方のエレメントを投
光角・受光角が広いエレメントと狭いエレメントとの組
合せとし、他方のエレメントに対応する発光源もしくは
受光センサを順次駆動する手段を設け、一方のエレメン
トの内部離測定を低い精度で行うときは投光角・受光角
が広いエレメントに対応する発光源もしくは受光センサ
を、また距離測定を高い精度で行うときは投光角・受光
角が狭いエレメントに対応する発光源もしくは受光セン
サをそれぞれ駆動する手段を設けることにより、最終的
に合わせられる距離の付近に近づくまでは前記他方のエ
レメントに対応する発光源もしくは受光センサを順次1
駆動するとともに前記一方のエレメントの内投光角・受
光角の狭いエレメントに対応する発光源もしくは受光セ
ンサを駆動してラフな距離測定を行ない、最終的(こ合
イつせられる距離の付近では前記他方のエレメントに対
応する発光源もしくは受光センサを順次、駆動するとと
もlこ前記一方のエレメントの内投光角・受光角の広い
 ゛□エレメントに対応する発光源もしくは受光センサ
を駆動して所望の高い精度での距離測定を行なえるよう
にしている。
Structure> In order to achieve such an object, the present invention includes a plurality of light emitting sources, a plurality of light emitting elements arranged in parallel with each other, and light from the light emitting sources. In order to receive the reflected light from the object to be measured when the light is emitted onto the object to be measured via the light emitting element, a plurality of light receiving elements arranged in parallel to the light emitting element and each light receiving element are arranged in parallel to each other. A plurality of light-receiving sensors are provided corresponding to the elements individually, and at least one of the light-emitting and light-receiving elements is a combination of an element with a wide light-emitting angle and a narrow element with a narrow light-emitting angle and an element with a narrow light-emitting angle. A means for sequentially driving the corresponding light emitting sources or light receiving sensors is provided, and when measuring the internal distance of one element with low accuracy, drive the light emitting source or light receiving sensor corresponding to the element with a wide light emitting angle and light receiving angle. When performing measurements with high precision, by providing means for driving the light emitting sources or light receiving sensors corresponding to the elements with narrow emission angles and narrow reception angles, it is possible to The light emitting sources or light receiving sensors corresponding to the elements are sequentially set to 1.
At the same time, the light emitting source or light receiving sensor corresponding to the element with narrow internal light emitting angle and light receiving angle of one of the elements is driven to roughly measure the distance, and the final (near the distance to be combined) is When the light emitting sources or light receiving sensors corresponding to the other element are sequentially driven, the light emitting sources or light receiving sensors corresponding to the elements are driven to achieve the desired effect. This makes it possible to measure distances with high accuracy.

〈実施例〉 第1図は本発明の実施例の全体の構成図である。<Example> FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

この実施例の距離センサ1は、複数のラングや発光ダイ
オードなどの発光源21.22.・・・を有する発光部
2とフォトダイオード、フォトトランジスタなどの受光
素子を備えた受光センサ31,32を有する受光部3と
を備える。この距離センサ1けまた、各発光源21.2
2.・・に個別的に対応して設けられた複数の好ましく
は石英系の光ファイバーからなる投光エレメント41.
42.・・・を有する投光エレメント部4と、これら投
光ニレメンl−4?、42.・−・に並置σれ、がっ、
各受光センサ31.32に個別的に対応して設けられた
好ましくは石英系の光ファイバーからなる小σい受光角
2θの第1受光エレメント51及び広い受光角2θ′の
好ましくは樹脂系の光ファイバーからなる第2受光エレ
メント52を有する受光エレメント部5とを備える。な
お、第1.第2受光エレメ7)−51,521j次表に
示すコア径、ファイパイ盪開口数および受光角を有する
ものが好ましい。
The distance sensor 1 of this embodiment includes a plurality of light emitting sources 21, 22, such as rungs and light emitting diodes. ... and a light receiving section 3 having light receiving sensors 31 and 32 including light receiving elements such as photodiodes and phototransistors. This distance sensor 1 digit, each light source 21.2
2. . . . A plurality of light emitting elements 41, preferably made of quartz-based optical fibers, provided individually corresponding to the light emitting elements 41.
42. The light emitting element section 4 having ... and these light emitting elements l-4? , 42.・−・ juxtaposed σre, gah,
A first light-receiving element 51 with a small acceptance angle 2θ, preferably made of a quartz-based optical fiber, and a preferably resin-based optical fiber with a wide acceptance angle 2θ′ provided individually corresponding to each light-receiving sensor 31, 32. The light-receiving element portion 5 includes a second light-receiving element 52. In addition, 1. The second light receiving element 7)-51,521j preferably has a core diameter, numerical aperture, and light receiving angle shown in the following table.

〈表〉 この距離センサは更に発光部2の各受光源21゜22、
・・・を順次、駆動する手段6と、受光部3の出力信号
に基づいてこの距離りを演算処理する手段9を備える。
<Table> This distance sensor further includes each light receiving source 21, 22 of the light emitting unit 2,
. . , and means 9 for calculating the distance based on the output signal of the light receiving section 3.

前記駆動手段6は発光信号s1,32.・・・を順次出
力する発光信号発信器61と、この発光信号s、、s2
.・・・に応答動作する切換スイッチ62とを有してい
る。この切換スイッチ62は、発光源21.22.・・
・に個別的に対応する複数1固の接点cl、c2.・・
・と、発光信号81,52.・・・が伝わるたびごとに
個別接点CI、C2,との切換位置が切換わる可動接点
COとを備える。また、前記演算手段9は、第1受光セ
ンサ31の出力を増幅して波形整形する第1増幅器91
1と、発光信号発信器61からの発光信号昏こよりカウ
ント動作状態にセットはれる第1カウンタ921と、第
2受光センサ32の出力を増幅して波形整形する第2増
幅器912と、発光信号発信器61からの発光信号によ
りカウント動作状態(こセットてれる第2カウンタ92
2と、前記両カウンタ921゜922のカウント出力に
基づき距離りを演算処理する演算処理部93とを有する
The driving means 6 receives light emission signals s1, 32 . A light emission signal transmitter 61 that sequentially outputs the light emission signals s, , s2.
.. It has a changeover switch 62 that operates in response to... This changeover switch 62 is connected to the light emitting sources 21, 22, .・・・
・A plurality of single contact points cl, c2.・・・
. . and the light emission signals 81, 52 . . . . is provided with a movable contact CO whose switching position is switched between individual contacts CI, C2, and each time the signal is transmitted. Further, the calculation means 9 includes a first amplifier 91 that amplifies the output of the first light receiving sensor 31 and shapes the waveform.
1, a first counter 921 that is set to a counting operation state based on the light emission signal from the light emission signal transmitter 61, a second amplifier 912 that amplifies the output of the second light receiving sensor 32 and shapes the waveform, and a light emission signal transmitter. The second counter 92 is in a counting operation state (set by the light emitting signal from the counter 61).
2, and an arithmetic processing section 93 that calculates the distance based on the count outputs of both the counters 921 and 922.

次にこの距離センサ1によりこの距離センサ1を設置し
た地点と被測定物7との間の距離を測定する場合の各部
の動作1こついて説明する。今、被測定物7と距離セン
サ1とが距離りを置いて対置されていると仮定する。、
駆動手段6により発光部2の各発光源21.22.・・
・が順次1駆動され、これにより投光エレメント部4の
各投光エレメント41.42.・・から光が被測定物7
fこ投光される。
Next, the operation of each part when the distance sensor 1 measures the distance between the point where the distance sensor 1 is installed and the object 7 to be measured will be explained. Now, it is assumed that the object to be measured 7 and the distance sensor 1 are placed opposite each other with a distance between them. ,
The driving means 6 drives each light emitting source 21, 22, .・・・
41, 42, . ...The light from the object to be measured 7
f light is projected.

被測定物7で反射された反射光のうち、第1.第2の受
光エレメント51.52がそれぞれ有する受光角2θ、
20′および被測定物7と投光、受光エレメント部4,
5との距離りによって、定まる特定の投光エレメント4
1.42.・・から投光きれたその反射光のみが第1.
第2の受光エレメント51.52に捕捉される。たとえ
は、第1の受光エレメント51の場合、その受光角2θ
は小きいので、投光エレメント部4からの光のうち、符
号で81〜84までの反射光が順次受光される。
Of the reflected lights reflected by the object to be measured 7, the first. The light-receiving angle 2θ that each of the second light-receiving elements 51 and 52 has,
20' and the object to be measured 7 and the light emitting and light receiving element section 4,
A specific light emitting element 4 determined by the distance from 5.
1.42. Only the reflected light that has been completely emitted from ... is the first one.
It is captured by the second light receiving element 51,52. For example, in the case of the first light receiving element 51, its light receiving angle 2θ
is small, so of the light from the light projecting element section 4, the reflected lights 81 to 84 are sequentially received.

また、第2受光エレメント52の場合、その受光角2θ
′は大きいので、符号で81〜84〜8mまでの反射光
が第2の受光エレメント52に順次受光される。今、第
1受光エレメント51で受光した場合の符号81〜84
の反射光は受光センサ31に伝送層れ、ここで順次電気
信号S7+ 、 S′2 、 S’a 、 S′4に変
換σれ増幅器911を介してカウンタ921に送出σれ
る。つまり、この場合は被測定物7と受光エレメント部
5との距離りに対応したパルス数を有するデジタル信号
、この例ではS’+〜S’4 の4パルスの信号が送出
される。一方、第2受光エレメント52で受光するとす
れば符号81〜8mの反射光が受光センサ32に伝送σ
れ、ここで順次電気信号S′l 、S’2 、・、 S
+nに変換され、増幅器912を介してカウンタ921
に送出σれる。この場合は距離りが同じであってもS’
+〜S’4〜5 n〕の11個ののそれぞれが発光信号
発信器61により駆動式れるのと同期してカウント動作
可能状態にセントきれる。したがって、一方のカウンタ
921を使う場合は第1受光エレメント51に接続した
受光センサ31から順次出力でれる電気信号S1〜S4
のノヨルス数つまり4パルスがカウンタ921で計測き
れる。この計測値はカウンタ921から演算処理部93
に人力はれ、ここで得られたカウント数の値に基づいて
距離りを算出する。また、他方のカウンタ922を使う
場合には、第2受光エレメント52に接続した受光セン
サ32から順次出力σれる電気信号SI%S4〜Sm 
 のパルス数つまりm個のパルスがカウンタ922で計
測てれる。この計測値はこのカウンタ922から演算処
理部93に入力はれこの演算処理部93で得られたカウ
ント数の値に基づいて距離りを算出する。このよう(こ
、受光角20′の大きな第2受光エレメント52で受光
する場合(こけ小さな距離の差d1  があっても、大
きなパルス数の差として、カウンタ922で計測される
ので距離分解能が高い。また、受光角2θの小さな第1
受光エレメント51で受光する場合をこけ、比較的大き
な距離の差d2  がないと・:パルス数の差としてカ
ウンタ921で計測σれないので距離分解能は低い。従
って、第1受光エレメント51が接続きれている第1カ
ウンタ921の出力に基づけはラフな距離測定を行え、
第2受光エレメント52が接続されている第2カウンタ
922の出力に基づけば高い精度の距離測定を行える。
In addition, in the case of the second light receiving element 52, its light receiving angle 2θ
' is large, so the reflected light from 81 to 84 to 8m is sequentially received by the second light receiving element 52. Now, codes 81 to 84 when light is received by the first light receiving element 51
The reflected light is transmitted to the light receiving sensor 31 through the transmission layer, where it is sequentially converted into electric signals S7+, S'2, S'a, and S'4, and sent out to the counter 921 via the σ amplifier 911. That is, in this case, a digital signal having the number of pulses corresponding to the distance between the object to be measured 7 and the light receiving element portion 5, in this example, a signal of four pulses S'+ to S'4 is sent out. On the other hand, if the second light-receiving element 52 receives the light, the reflected light with the signs 81 to 8m is transmitted to the light-receiving sensor 32 σ
Here, the electric signals S'l, S'2, . . .
+n, and is converted to counter 921 via amplifier 912.
It is sent to σ. In this case, even if the distance is the same, S'
+~S'4~5n] are activated by the light emitting signal transmitter 61, and in synchronization with each other, the counting operation becomes possible. Therefore, when using one of the counters 921, the electrical signals S1 to S4 are sequentially output from the light receiving sensor 31 connected to the first light receiving element 51.
The counter 921 can measure the number of pulses, that is, 4 pulses. This measured value is sent from the counter 921 to the arithmetic processing unit 93.
Then, the distance is calculated based on the count value obtained here. In addition, when using the other counter 922, the electric signals SI%S4 to Sm sequentially output from the light receiving sensor 32 connected to the second light receiving element 52
The counter 922 measures the number of pulses, that is, m pulses. This measured value is inputted from the counter 922 to the arithmetic processing section 93, which calculates the distance based on the count value obtained by the arithmetic processing section 93. In this case, when light is received by the second light-receiving element 52 with a large light-receiving angle 20', even if there is a small distance difference d1, it is measured by the counter 922 as a large difference in the number of pulses, so the distance resolution is high. .In addition, the first one with a small acceptance angle 2θ
Unless the light is received by the light-receiving element 51, and there is no relatively large distance difference d2, the distance resolution is low because the counter 921 cannot measure σ as a difference in the number of pulses. Therefore, a rough distance measurement can be performed based on the output of the first counter 921 when the first light receiving element 51 is fully connected.
Based on the output of the second counter 922 to which the second light receiving element 52 is connected, highly accurate distance measurement can be performed.

例として、投光エレメント41,42.・・・の数n=
205石英ファイバーのコア径5.Oμm1ファイバー
径125μm1樹脂ファイバーのコア径400μm1フ
アイバー径500μm とすると、石英〕アイバーの受
光ファイバーの出力カウントからの測定距離範囲は約7
〜1.4 mrnで分解能は307μmとなり、樹脂フ
ァイバーの受光ファイ・く−の出力カウントからの測定
距離範囲は約31〜007喘までで、分解能は160μ
mとなる。
As an example, the light projecting elements 41, 42 . The number n=
205 quartz fiber core diameter5. Assuming that 1 fiber diameter is 125 μm, 1 resin fiber core diameter is 400 μm, and 1 fiber diameter is 500 μm, the measurement distance range from the output count of the receiving fiber of the quartz eyebar is approximately 7
~1.4 mrn, the resolution is 307 μm, and the measurement distance range from the output count of the resin fiber receiving fiber is approximately 31 to 007 mrn, and the resolution is 160 μm.
m.

よってこのセンサーの全体のダイナミックレンジは7〜
0.07 mmで分解能は3定以上では、307μmで
、3酎以下では160μmに自動的(こ変わった。
Therefore, the overall dynamic range of this sensor is 7~
At 0.07 mm, the resolution is 307 μm when the resolution is 3 or more, and automatically changes to 160 μm when the resolution is 3 or less.

第2図は本発明の他の実施例の要部の構成を示す図であ
る。この実施例では、小σい投光角2θの投光エレメン
ト41.43.・・・と広い投光角20′の投光ニレメ
ン)42.44.・ とを交互番こ並置した投光エレメ
ント部4を備える。他の構成は上記実施例と同様である
。従って、この場合、投光角の狭い投光ニレメン)41
,43.・・と受光角2αの狭い受光エレメント51を
用いて低い精度の距離測定を、投光角2θ′の広い投光
エレメント42.44.・・・と受光角2α′の狭い受
光エレメント51との組合せ、または投光角2θの狭い
投光エレメント41.j3.・・・と受光角2α′の広
い受光エレメント52との組合せによる中程度の精度の
距離測定を、投光角20′の広い投光エレメント42 
、44 、・・・と受光角2α′の広い受光エレメント
52とを用いて高い精度の距離((1定をそれぞれ行え
る。
FIG. 2 is a diagram showing the configuration of essential parts of another embodiment of the present invention. In this embodiment, the light projecting elements 41, 43 . ...and a wide light projection angle of 20') 42.44. - It is equipped with a light projecting element section 4 in which and are arranged in parallel. The other configurations are the same as those of the above embodiment. Therefore, in this case, the projection angle is narrow (Niremen) 41
,43. ... and the light receiving element 51 with a narrow light receiving angle 2α can be used to measure the distance with low accuracy, while the light projecting element 42, 44 . ... and a narrow light receiving element 51 with a light receiving angle 2α', or a combination of a light projecting element 41 . . . with a narrow light projecting angle 2θ. j3. ... and the light receiving element 52 with a wide light receiving angle 2α' can be used to measure distance with medium accuracy.
, 44, .

第3図は本発明の更に他の実施例の要部の構成を示す。FIG. 3 shows the configuration of a main part of still another embodiment of the present invention.

この場合は、受光角2αの狭い受光エレメント51と受
光角2α′の広い受光ニレメン1−52゜53、・・・
とで受光エレメント部5が構成σれる。
In this case, the light-receiving element 51 has a narrow light-receiving angle 2α and the light-receiving element 51 has a wide light-receiving angle 2α'.
The light-receiving element portion 5 has a configuration σ.

他の構成は第1図に示した実施例のものと同様である。The rest of the structure is similar to that of the embodiment shown in FIG.

この場合をこけ、広い受光角2α′の受光エレメント5
2,53.・・・の内から1つ・を選択的に1駆動する
ことにより、高い精度で距離測定を行える範囲を変更で
きる。
To avoid this case, the light receiving element 5 with a wide light receiving angle 2α'
2,53. By selectively driving one of the following, the range in which distance measurement can be performed with high accuracy can be changed.

なお、光の可逆性に基づき、上記各実施例の投光側と受
光側とを逆にして構成してもよい。
Note that, based on the reversibility of light, the light emitting side and the light receiving side of each of the above embodiments may be reversed.

く効 果>                  。Effect>               .

以上のように、本発明によれば1台の距離センサで最終
的に合わせられる距離の付近に近づくまでけ投光角・受
光角の狭い投光または受光エレメントを用いて低い精度
の距離測定が行なえ、最終的に合わせられる距離の付近
では、投光角・受光角の広い投光・受光エレメントを用
いて所望の高い精度での距離測定を行なうことができ、
もって距離測定のコストを安価にできる。
As described above, according to the present invention, it is possible to measure distances with low accuracy by using a light emitting or light receiving element with narrow light emitting and receiving angles until the distance approaches the final distance that can be adjusted using one distance sensor. In the vicinity of the final distance, distance measurement can be performed with the desired high accuracy using light emitting and light receiving elements with wide light emitting and receiving angles.
As a result, the cost of distance measurement can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の全体の構成を示す図、第2
図は他の実施例の要部の構成を示す図、第3図はもう一
つJ弛の実施例の要部の構成を示す図である。 1・・・距離センサ、2・・・発光部、3・・・受光部
、4投光工レメント部、5山受光工レメント部、6・・
・駆動手段、7・・・被測定物、9・・・演算手段、2
1〜2n・・・発光源、31.32・・・受光センサ、
41゜42 ・投光エレメント、51.52・・・受光
エレメント。 出 願 人   ダイキン工業株式会社代理人 弁理士
岡田和秀 =52乏
FIG. 1 is a diagram showing the overall configuration of an embodiment of the present invention, and FIG.
This figure shows the structure of the main part of another embodiment, and FIG. 3 is a diagram showing the structure of the main part of another embodiment. DESCRIPTION OF SYMBOLS 1... Distance sensor, 2... Light emitting part, 3... Light receiving part, 4 Light emitter element part, 5 Light receiver element part, 6...
・Drive means, 7...Measurement object, 9...Calculation means, 2
1 to 2n... Light emitting source, 31.32... Light receiving sensor,
41゜42 ・Light emitter element, 51.52... Light receiver element. Applicant Daikin Industries, Ltd. Agent Patent Attorney Kazuhide Okada = 52 years old

Claims (1)

【特許請求の範囲】[Claims] il+  複数の発光源21.22.・・・と、各発光
源21.22.・・・に個別的に対応して配置てれた複
数の投光ニレメン1−41.42.・・、発光源21.
22.・・・からの光が投光エレメント41゜42、・
を介して被測定物7に投光されたときの該投光の被測定
物7での反射光8i82゜・を受光するために前記投光
エレメント41゜42、・・・に並置された複数の受光
エレメント51゜52と、各受光エレメント51.52
に個別的に対応して設けられた複数の受光センサ31゜
32、・・・とを備え、前記投光・受光ニレ71ント4
1.42,51.52の少なくとも一方のニレメン)5
1.52を投光角・受光角が広いエレメント52と狭い
エレメント51との組合せとし、他方のエレメント41
.42.・・・に対応する発光源21,22.・・・も
しくは受光センサ31.32.・・・にば、これらを順
次駆動する手段6を設け、一方のニレメン)51.52
の内、距離測定を低い精度で行うときは投光角・受光角
が広いエレメント52に対応する発光源もしくは受光セ
ンサ32.33.・・・を、また距離測定を高い精度で
行うときは投光角・受光角が狭いエレメント51に対応
する発光源もしくは受光センサ31をそれぞれ駆動する
手段9を設けてなる距離センサ。
il+ Multiple light emitting sources 21.22. ...and each light emitting source 21.22. A plurality of light emitting elements 1-41, 42. ..., light source 21.
22. The light from... is the light emitting element 41°42,...
A plurality of light projecting elements 41, 42, . light receiving elements 51°52, and each light receiving element 51.52
A plurality of light receiving sensors 31, 32, .
At least one of 1.42, 51.52) 5
1.52 is a combination of an element 52 with a wide light emitting angle and a light receiving angle and an element 51 with a narrow light receiving angle, and the other element 41
.. 42. The light emitting sources 21, 22 . ...or light receiving sensor 31.32. . . ., a means 6 for sequentially driving these is provided, and one of the
Among them, when measuring distance with low accuracy, a light emitting source or a light receiving sensor 32, 33. corresponding to the element 52 with a wide light emitting angle and light receiving angle is used. ..., and when distance measurement is to be performed with high accuracy, a distance sensor is provided with means 9 for respectively driving a light emitting source or a light receiving sensor 31 corresponding to an element 51 with a narrow light projection angle and light receiving angle.
JP58071932A 1983-04-23 1983-04-23 Distance sensor Pending JPS59196487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071932A JPS59196487A (en) 1983-04-23 1983-04-23 Distance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071932A JPS59196487A (en) 1983-04-23 1983-04-23 Distance sensor

Publications (1)

Publication Number Publication Date
JPS59196487A true JPS59196487A (en) 1984-11-07

Family

ID=13474782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071932A Pending JPS59196487A (en) 1983-04-23 1983-04-23 Distance sensor

Country Status (1)

Country Link
JP (1) JPS59196487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421646B2 (en) 2014-06-30 2019-09-24 Konecranes Global Corporation Load transport by means of load handling equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421646B2 (en) 2014-06-30 2019-09-24 Konecranes Global Corporation Load transport by means of load handling equipment

Similar Documents

Publication Publication Date Title
US4158509A (en) Instrument for measuring lengths
CN100547354C (en) The absolute type circle capacitor grid transducer measurement mechanism that is used for Absolute position measurement
CA1208380A (en) Field instrumentation system
CN108362206B (en) Non-contact displacement sensor based on capacitive grating
JP3086608B2 (en) Measuring system
JPH08178700A (en) Incremental encoder
JPS59196487A (en) Distance sensor
JPS59190680A (en) Distance sensor
JPH068724B2 (en) Optical detector
JPS6036911A (en) Optical measuring device
JPS6375683A (en) Apparatus for measuring error of electronic watthour meter
JPH0282109A (en) Optical sensor and measuring instrument using same
SU1767327A1 (en) Optical displacement transducer
RU2020408C1 (en) Device for measurement of shaft turning angle
JPS59190608A (en) Slant angle sensor
RU2087915C1 (en) Device for measuring entity rotation parameters
RU1805292C (en) Linear displacement metering device
SU1101743A1 (en) Device for determination of speed non-uniformity in the limits of one shaft turn
SU1651098A1 (en) Glass tube diameter measuring device
JP2901747B2 (en) Distance measuring device
RU1779919C (en) Method and apparatus for measuring distances to object
SU1599653A1 (en) Photoelectric geodesic stadia rod
SU1493868A1 (en) Device for setting reference light plane
SU1372619A1 (en) Device for measuring shaft rotation angle
JPH05126570A (en) Optical displacement measuring method and optical displacement gauge using it