JPS59196452A - Method of detecting bonding defective part in plaster board - Google Patents

Method of detecting bonding defective part in plaster board

Info

Publication number
JPS59196452A
JPS59196452A JP7013683A JP7013683A JPS59196452A JP S59196452 A JPS59196452 A JP S59196452A JP 7013683 A JP7013683 A JP 7013683A JP 7013683 A JP7013683 A JP 7013683A JP S59196452 A JPS59196452 A JP S59196452A
Authority
JP
Japan
Prior art keywords
temperature
plaster board
board
plaster
running
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013683A
Other languages
Japanese (ja)
Inventor
Takeshi Fujiyama
毅 藤山
Katsuaki Kaneko
金子 勝秋
Shigeo Otozaki
乙崎 重郎
Tatsuya Suzuki
鈴木 達彌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON I T A KK
Onoda Cement Co Ltd
Original Assignee
NIPPON I T A KK
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON I T A KK, Onoda Cement Co Ltd filed Critical NIPPON I T A KK
Priority to JP7013683A priority Critical patent/JPS59196452A/en
Publication of JPS59196452A publication Critical patent/JPS59196452A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws

Abstract

PURPOSE:To nondestructively detect bonding defective part in plaster boards running through a plaster board manufacturing machine by a method wherein temperature distribution on the plaster board surface is measured. CONSTITUTION:The surface temperature of a running plaster board 2 is measured using an infrared radiation thermometer 1 mounted above the shaping line in a manufacturing machine for the plaster board 2. The infrared radiation thermometer has a measurable temperature range of 10 deg.C-50 deg.C with accuracy of about 0.1 deg.C, and it may be arranged to transversely run perpendicular to the direction of running of the plaster board or may be previously fixed over the width of the plaster board 2. The board surface has a tendency to exhibit such widthwise temperature profile in the normal state that the temperature is high at the center and gradually lowered toward both side ends. If the central part includes bonding defect, a temperture distribution characteristic that the temperature is the same or relatively low at the center and raised up and then again lowered toward both side ends is obtained.

Description

【発明の詳細な説明】 本発明は石膏ボード表造機中葡走行する石膏ホードの接
着不良部を非破辰的に検出する方法に関する〇 従来、石膏ボードの装造にあ・いて、厚紙とコアとの接
着が悪化し、両省かしはしは剥離するfA象が牟らrL
る口特に近年、コストダウンの心安からホードコアの軸
歓化を進めたり、丑た原料事情から低品質の石f原料會
使用せざるをえない場合等にこの問題が顕著に現われ又
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for non-destructively detecting defective adhesion of gypsum board running in a gypsum board facing machine. The adhesion between the two ends deteriorates, and both ends peel off.
Particularly in recent years, this problem has become conspicuous when the use of hard cores has been promoted for the sake of cost reduction, or when poor raw material conditions have forced the use of low-quality stone raw materials.

また最近の接着不良の多くは石膏ポート“力5ドライヤ
ーから出た直後は良く接着しているにも拘わらす、経時
吸湿により剥離を生ずるのが特徴的であり、このため1
時間に1回の割合で水没させ放置した後に接着試験を実
施している。
In addition, many of the recent adhesion failures are characterized by the fact that, although the gypsum ports adhere well immediately after coming out of the dryer, they peel off due to moisture absorption over time.
Adhesion tests are conducted after being submerged in water once every hour.

しかし、この方法は判定結果が出るででに石膏ボード成
形後、約2時間を要するため接着不良が発生した場合、
膨大な数の製品ロスが生まれる結果となるO史に100
0〜2000 枚につ@1枚の割合の検査になるため、
検査漏れが避けられない0 以上の事情から石膏ボードの接着度を非破壊検査により
オンラインで、しかも出来るだけ短時間に漏れなく検査
でさる方法の確立が切望されていた0 本発明者等は接着不良ボードの検鏡結果から不良部分の
コア表面に小さな気孔が連続的に整列しているのを観察
し、また不良の著しい石膏ボードの場合、吸湿によって
原紙がコアから膨らむ事実を認めfco是等の結果から
接着不良ボー原紙 ドは何らかの原因により、  /:7ア境界層近傍にコ
ア組織の不均質部分(疎の状M)k有して2す、七のた
めボード成形後の焼石膏の水和状態、これによるボード
表面から外気への熱放散の段階でコア組繊の比較的密な
部分と比較的疎な部分とではボード表面の温度に差異が
生ずることを見出し本発明を完成ハせるに至った0即ち
本発明は石膏ボード製造機の成形ライン上に取付けた赤
外放射温度計により走行する石膏ボード表面の温度を測
定し、得られた温度分布の変化により接着不良部を看取
することを特徴とする◎ 以下に本発明を実施例と共に詳細に説明するG本発明で
用いる赤外放射温度計は測定温度範囲がlO℃〜50℃
精度0.1℃程度のものであればよく、設置箇所は石膏
ホード成形コンベア終端近くの狙切断機の直前位置が適
当である。
However, this method requires about two hours after the plasterboard is formed before the judgment results are available, so if poor adhesion occurs,
100 times in the history of O, which resulted in a huge amount of product loss.
Since the inspection is performed at a rate of 1 sheet per 0 to 2000 sheets,
Due to the above circumstances, there has been a strong desire to establish a method for testing the degree of adhesion of gypsum board online, in as short a time as possible, without omissions. Based on the results of microscopic inspection of defective boards, we observed that small pores were continuously arranged on the core surface of the defective area, and in the case of severely defective gypsum boards, we recognized the fact that the base paper swelled from the core due to moisture absorption, and FCO agreed. From the results, it is found that the board with poor adhesion has an inhomogeneous part (sparse shape M) of the core structure near the boundary layer due to some reason. He completed the present invention by discovering that during the hydration state and the heat dissipation from the board surface to the outside air, a difference occurs in the temperature of the board surface between relatively dense and relatively sparse areas of the core composite fibers. In other words, the present invention measures the temperature of the surface of a running gypsum board using an infrared radiation thermometer installed on the forming line of a gypsum board manufacturing machine, and detects poor adhesion based on changes in the temperature distribution obtained. ◎ The present invention will be explained in detail below along with examples.
It is sufficient to have an accuracy of about 0.1°C, and the suitable installation location is near the end of the gypsum hoard molding conveyor, just in front of the target cutting machine.

温度を針引1」する場合、検出器に入力する赤外線は測
定物からの輻射赤外線、環境からの赤外線、介在物から
の赤外線、背景からの赤外線がある。
When measuring the temperature, the infrared rays input to the detector include radiant infrared rays from the object to be measured, infrared rays from the environment, infrared rays from inclusions, and infrared rays from the background.

このうち測定物からの輻射赤外線は接着良好部でも石膏
ボード表面の温度は僅かな変動を含んでいるが、その他
の赤外線は測定場MKフード等を設けることにより一定
化を図ることができる。但し、測定物からの輻射赤外線
の場合でも石膏ボード表面温度の微少な変動は検出器が
不良部を通過しても同じ様に現われるので使用上実質的
な支障はない□ 尚温度検出器は第2図ビ1(ロ)のように石膏ボードの
進行方向に対して幅方向に直角に走行させてもよ(、ま
た、あるいは予め石膏ボードの幅方向に亙って温度検出
器を固定して設置しておいてもよい。
Of these, the temperature of the surface of the gypsum board includes slight fluctuations in the infrared radiation radiated from the object to be measured even in areas with good adhesion, but other infrared rays can be stabilized by providing a measuring field MK hood or the like. However, even in the case of radiated infrared rays from the object to be measured, minute fluctuations in the surface temperature of the gypsum board will appear in the same way even if the detector passes through a defective part, so there is no practical problem in use. It is also possible to run the gypsum board perpendicular to the width direction with respect to the traveling direction of the gypsum board as shown in Fig. You can leave it in place.

次にボードの幅方向の表面の温度分布は標準状態では中
央部が温度が高く、両端に近づくにつれ除々に降下する
傾向を示す0これに反し、中央部に接着不良部がある場
合は、中央部が同一または低い温度を示し両側にゆくに
つれて高く上昇し、再度降下してゆく温度分布特性を示
す。この時の最低温度と接着部最高温度の差は、最大1
℃に達する場合があるが、狭い接着不良(幅10m以下
の場合)の場合はa4℃位になる。
Next, the temperature distribution on the surface in the width direction of the board shows that under standard conditions, the temperature is high in the center, and the temperature gradually decreases as it approaches both ends.On the contrary, if there is an adhesive failure in the center, It exhibits a temperature distribution characteristic in which the temperature is the same or low in the opposite regions, and as it goes to both sides, it increases higher and then decreases again. At this time, the difference between the minimum temperature and the maximum temperature of the bonded part is at most 1
℃, but in the case of a narrow adhesion failure (width of 10 m or less), the temperature will be about 4℃.

この故に、指示温度は、室温、幅方向の温度分布勾配、
硬化反応による発生熱坩の変化などにより変化するため
、検出法としては、指示温度の絶対値でなく、温度変化
速度(例えばα2秒当りの減速平均値温度α4℃以上)
の太ささて検出限界とする方法が妥当でめるO 石膏ボードの接着不良にはボードドライヤーから出た直
後は完全に接着し工いるが、その後吸湿して部分的に紙
がコアから剥離して膨れる様な著しい接着不良を示す所
謂全党泡入夛接看不良と、外形上接着しているように見
えても接増力が極めて脆弱なため接着不良となるものと
がある〇 通常標準状態のボードでも表面温度は紙ムラや雰囲気の
影響により最大1℃位のノ(ラツキが認められるが、そ
れは、周期性を持った)<ターン上の変化である。これ
に対して、前者の全党泡入り部では同じICの変化でも
急激に状われ、泡入部とその前後とでは明確な差が飴め
られる口よって本発明方法によれは臣気泡入りFcよる
不良部の検出はセンサ一時定数を30m5ec 、ライ
ン速度42−とすると6−以上の巾を持つ泡入不良につ
いて6M−である。
Therefore, the indicated temperature is room temperature, temperature distribution gradient in the width direction,
Since the change is due to changes in the heat melt generated by the curing reaction, the detection method is not the absolute value of the indicated temperature, but the rate of temperature change (for example, the deceleration average temperature α4℃ or more per α2 seconds).
It is reasonable to consider the thickness of the board as the detection limit. There are so-called all-party foam attachment failures, which show significant adhesion failures such as bulges, and cases where adhesion failures occur due to the extremely weak adhesive force even though the adhesive appears to be attached from the outside.〇Normal standard condition Even on this board, the surface temperature is up to about 1°C due to paper unevenness and the influence of the atmosphere (there is some fluctuation, but it is periodic). On the other hand, in the former all-party foam entry section, even the same IC changes rapidly, and there is a clear difference between the foam entry section and the area before and after it. Defective part detection is 6M- for bubbling defects with a width of 6- or more, assuming a sensor temporary constant of 30 m5ec and a line speed of 42-.

一万後者の接着不良部の検出については絶対的な温度差
はそれ程顕著ではないが温度分布のバクーンには明確な
違いが認められるので電算機等を利用し、センサー信号
を高速処理し、ノ(ターン比較による検出を行う1て宵
ゐヒ不いOデータ処理は例えば第3図に示す方法により
行うとよい0第3図において、検出器11により測定さ
れた温度信号は汲換器12を介して演昇部13に送られ
るO演算部13に:mいて時間積算しその平均値を求め
る。次にこの平均値と前回の平均1直との差を求め、そ
の値がある一定値以上か否かにより接着不良を判断する
。例えば、次のように判断される0 7T>、xoとき不良2匹≦αのとき良好・ΔT Δt ここでΔTは前回の平均値から今回の平均値を差引いた
絶対値、Δtは積算時間、αは設定値である・尚、接着
不良が検出された場合は排出指令が製造ラインに送られ
る。
Regarding the detection of the latter defective adhesion, although the absolute temperature difference is not so remarkable, there is a clear difference in temperature distribution, so we use a computer etc. to process the sensor signal at high speed and (Detection by turn comparison is necessary.) Data processing may be performed, for example, by the method shown in FIG. 3. In FIG. The data is sent to the operation unit 13 via the O operation unit 13, which integrates the time and calculates the average value.Next, calculate the difference between this average value and the previous average 1st shift, and if the value exceeds a certain value Defective adhesion is determined based on whether or not the adhesion is defective.For example, it is determined as follows: 0 7T>, xo, and when 2 defective animals ≦α, it is good.ΔT Δt Here, ΔT is the difference between the previous average value and the current average value. The absolute value of the subtraction, Δt is the cumulative time, and α is the set value.If an adhesion failure is detected, a discharge command is sent to the production line.

本発明によれは石膏ボードの接M匹を非破壊横歪により
オレラインで短時間VC漏れなく検査できる。従って石
膏ボードの製造において、製造ロスの発生を大幅に低減
でさる。
According to the present invention, M pieces of gypsum board can be inspected using non-destructive transverse strain in a short period of time without leaking VC. Therefore, production losses can be significantly reduced in the production of gypsum boards.

次に本発明の実施例を示す0 実施例1 石fボード成形ライン9■×3×6尺の基準成形条件で
正常の石膏ホード赴よび金気泡入り石膏ボードを製造し
、ボード成形ライン終端近く、租切断機の直前に設置し
た亦外放射温度計臓小検知温度05℃(at40℃)、
精度1%、測温面let 2.5 mm (at 25
cyn)、応答時間02秒コを用いて表面温度を測定し
た0結果は第1図(イ〕に示すようK、接着良好なボー
ドの温度分布はボードの輻方向端部(約10錦中央奇!
11)と中央部との関係で凸形のバタンを示したが、ボ
ードの中央部分にを気泡のある石膏ボードの場合は第1
図(rylK示すように凹形の温度分布パターンを示し
た〇 実施例2 石膏ボード長側に全気泡を入れ、非接着部分を人為的に
作った後、この石膏ボードの進行方向に対し温度検出器
を幅方向に走査させ、人為的な非接着部分から他の部分
にわたって表面温度を連続的に測定した0測定ボロ果を
第4図(イ)(ロ)に示す。尚温度検出器の取付位置は
石膏ボードっ進行中、ボードの切断位置より約5m手前
に据付けた。丑た温度桧め器の移動範囲は、石膏ボード
り進行方向に直角で、その範囲は石膏ボードの幅より大
さくした。
Next, examples of the present invention will be described.Example 1 A stone f board forming line with standard forming conditions of 9 x 3 x 6 squares was used to produce gypsum board with gold bubbles near the end of the board forming line. , an external radiation thermometer installed just before the cutting machine detected a temperature of 05°C (at 40°C),
Accuracy 1%, temperature measurement surface let 2.5 mm (at 25
cyn), the response time is 02 seconds, and the surface temperature was measured as shown in Figure 1 (a). !
11) and the central part, but in the case of a plasterboard with air bubbles in the central part of the board, the first
〇Example 2 showing a concave temperature distribution pattern as shown in the figure (rylK) After filling all the air bubbles on the long side of the gypsum board and artificially creating a non-bonded part, temperature was detected in the direction of movement of the gypsum board. Figures 4 (a) and (b) show the results of zero measurements obtained by scanning the device in the width direction and continuously measuring the surface temperature from the artificial non-bonded area to other areas. The position was installed approximately 5 m before the cut point of the board while the plasterboard was being cut.The movement range of the gypsum board was perpendicular to the direction of the plasterboard's progress, and the range was larger than the width of the plasterboard. did.

第4図(ロ)の測定クランから明らかなように接治不良
部には明確な温度分布の変化が認めら九たO 化図面の簡単な説明                
 (第1図(4)(ロ)は石膏ボードの温度分布を示す
パターン図でめり、第1図ビ)は接着良好なもの、第1
図(ロ)は接着不良なものでめる0第2図ヒ)(ロ)は
温度検出器の設定位置を示す説明図、第3図は温度検出
信号に基つく判定機構を示すブロック図、第4図目ン(
ロ)は実施例2の説BAIIc係り、第4図ビ)は石膏
ホードの定會位置會示す平面概略図、第4図(ロ)はそ
の検出結果を示す温度変化図である。図中。
As is clear from the measurement curve in Figure 4 (b), a clear change in temperature distribution was observed in the poorly bonded area.
(Figure 1 (4) (b) is a pattern diagram showing the temperature distribution of gypsum board, Figure 1 (b) is a pattern with good adhesion,
Figure (B) indicates a defective bond. Figure 2 (H) and (B) are explanatory diagrams showing the setting positions of the temperature detector. Figure 3 is a block diagram showing the determination mechanism based on the temperature detection signal. Figure 4 (
B) is related to the theory BAIIc of Example 2, FIG. 4B is a schematic plan view showing the fixed position of the gypsum hoard, and FIG. 4B is a temperature change diagram showing the detection results. In the figure.

l一温度検出器 2−石膏ボード 2a−裏側 2b−表側 11−検出器 12−変換器 13−演昇部である◎ 特許出願人 小野田セメント株式会社 日本アイ・ティ・ニス株式会社 代    理    人 弁理士光 石 士 部(他1名) 311l-temperature detector 2-Gypsum board 2a-back side 2b-Front side 11-Detector 12-Converter 13- It’s a performance club◎ patent applicant Onoda Cement Co., Ltd. Japan I.T.Nis Co., Ltd. People Patent Attorney Hikari Ishibe (1 other person) 311

Claims (1)

【特許請求の範囲】[Claims] 石膏ホード製造機の紙形ライン上に取付けた赤外線放射
温度計により走行する石骨ボード表面の温度を測定し、
得られた温度分4bの変化により接着不良を看取するこ
とを特徴とする石膏ホードの接着不良部検出方法@
The temperature of the surface of the running stone board is measured using an infrared radiation thermometer installed on the paper line of the gypsum hoard manufacturing machine.
A method for detecting adhesion defects in gypsum hoard, characterized by detecting adhesion defects based on changes in the obtained temperature component 4b.
JP7013683A 1983-04-22 1983-04-22 Method of detecting bonding defective part in plaster board Pending JPS59196452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013683A JPS59196452A (en) 1983-04-22 1983-04-22 Method of detecting bonding defective part in plaster board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013683A JPS59196452A (en) 1983-04-22 1983-04-22 Method of detecting bonding defective part in plaster board

Publications (1)

Publication Number Publication Date
JPS59196452A true JPS59196452A (en) 1984-11-07

Family

ID=13422847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013683A Pending JPS59196452A (en) 1983-04-22 1983-04-22 Method of detecting bonding defective part in plaster board

Country Status (1)

Country Link
JP (1) JPS59196452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063303A (en) * 1992-06-18 1994-01-11 Yamatake Honeywell Co Ltd Device for inspecting inside of plate-like continuous object
WO2014061308A1 (en) * 2012-10-18 2014-04-24 吉野石膏株式会社 Method for detecting voids in gypsum-based construction board and method for producing gypsum-based construction board
JP2018528881A (en) * 2015-08-10 2018-10-04 ユナイテッド・ステイツ・ジプサム・カンパニー System and method for producing cementitious board with on-line void detection
JP2021059381A (en) * 2019-10-09 2021-04-15 株式会社京都製作所 Determination device, sealing system, estimation model, generation device, determination method, sealing method, and generation method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063303A (en) * 1992-06-18 1994-01-11 Yamatake Honeywell Co Ltd Device for inspecting inside of plate-like continuous object
WO2014061308A1 (en) * 2012-10-18 2014-04-24 吉野石膏株式会社 Method for detecting voids in gypsum-based construction board and method for producing gypsum-based construction board
JPWO2014061308A1 (en) * 2012-10-18 2016-09-05 吉野石膏株式会社 Method for detecting void in gypsum building board and method for producing gypsum building board
US9851318B2 (en) 2012-10-18 2017-12-26 Yoshino Gypsum Co., Ltd. Method of detecting air gap in gypsum-based building board and method of manufacturing gypsum-based building board
JP2018528881A (en) * 2015-08-10 2018-10-04 ユナイテッド・ステイツ・ジプサム・カンパニー System and method for producing cementitious board with on-line void detection
JP2021059381A (en) * 2019-10-09 2021-04-15 株式会社京都製作所 Determination device, sealing system, estimation model, generation device, determination method, sealing method, and generation method
WO2021070444A1 (en) * 2019-10-09 2021-04-15 株式会社京都製作所 Determination device, sealing system, estimation model, generation device, determination method, sealing method, and generation method

Similar Documents

Publication Publication Date Title
CN203881312U (en) Device for automatically detecting thickness of plate
Manson et al. Process simulated laminate (PSL): a methodology to internal stress characterization in advanced composite materials
EP0563297B1 (en) Sensor and method for determining a physical property of a sheet
Turnbull et al. Residual stress in polymers—evaluation of measurement techniques
DE60201206D1 (en) Defect detection method in the plane
JPS58215519A (en) Electroacoustic method for monitoring internal temperature of article in nondestructive manner
JPS59196452A (en) Method of detecting bonding defective part in plaster board
TWI604188B (en) Method for detecting voids of building gypsum board and manufacturing method of building gypsum board
Hong et al. Assessment of void and crack defects in early-age concrete
CN105818385A (en) Multi-functional bottom plate of tabletop type 3D printer
CN205615017U (en) Multi -functional bottom plate of desktop type 3D printer
US11614323B2 (en) Method of predicting gravity-free shape of glass sheet and method of managing quality of glass sheet based on gravity-free shape
JP2004170099A (en) Method and apparatus for inspecting physical property in heterogeneous material
JPH04204114A (en) Distribution-type optical fiber sensor
Lhonneur et al. Experimental Study of Concrete Normal Mode Cohesive behavior at the Centimeter Scale
El Hafiane et al. Calcium aluminate cement tapes–Part II: Physical properties
CN114739826B (en) Analysis method for deformation and damage of bonding surface of concrete repair material
CN114019028B (en) Analysis method for detecting damage of fractured rock material by utilizing ultrasonic waves
Craik The measurement of the material properties of building structures
Thomas et al. INTERLAMINAR SHEAR BEHAVIOR OF UHMWPE TENSYLON® COMPOSITES IN QUASI-STATIC MODE II LOADING
CN117434145A (en) Aluminum honeycomb panel testing method
Helsel NDT to characterize 3D printed concrete interlayer bonds
Tucker et al. Continuous ultrasonic inspection of extruded wood-plastic composites
JPH085340A (en) Thickness measuring instrument
Sreeraj et al. Nondestructive evaluation of additively manufactured parts