JPS59196223A - Method for forming thermoplastic resin film - Google Patents

Method for forming thermoplastic resin film

Info

Publication number
JPS59196223A
JPS59196223A JP58196089A JP19608983A JPS59196223A JP S59196223 A JPS59196223 A JP S59196223A JP 58196089 A JP58196089 A JP 58196089A JP 19608983 A JP19608983 A JP 19608983A JP S59196223 A JPS59196223 A JP S59196223A
Authority
JP
Japan
Prior art keywords
film
cooling roll
thermoplastic resin
cooling
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58196089A
Other languages
Japanese (ja)
Inventor
Masatoshi Kurihara
栗原 正俊
Toshihiro Otaki
大滝 敏博
Susumu Yanaga
弥永 進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP58196089A priority Critical patent/JPS59196223A/en
Publication of JPS59196223A publication Critical patent/JPS59196223A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/917Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means by applying pressurised gas to the surface of the flat article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/916Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9165Electrostatic pinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To form a sheet that is free from bubble traces and is excellent in flatness, by bringing an extruded thermoplastic resin film in firm contact with a cooling roll under pressure by a static electricity application method. CONSTITUTION:A thermoplastic resin is made in the melted state, and is extruded from a mouthpiece 2 having a slit into a film 10. Then it is cooled on a cooling roll 6 to be solidified. During the period from the extrusion to the cooling and solidification, the film is exposed to a pressurized atmosphere in the pressurized chamber 4 that is at or over a gauge pressure of 0.2kg w/cm<2>. The cooling roll 6 is electrically insulated from the earth, the pressurized chamber 4 and the mouthpiece 2, and a high voltage is applied onto the surface of the cooling roll 6 with which the film is brought in firm contact to be cooled. Then the cooled and solidified film is led by nip rolling rubber rolls 9 from the pressurized chamber 4 and is taken out as a film 11.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、熱可塑性樹脂フィルムの成形方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for forming a thermoplastic resin film.

〔従来技術〕[Prior art]

溶融状態の熱可塑性樹脂をスリットを有する口金よシ押
出した後9口金と冷却ロールの間に電圧を印加し該溶融
フィルムを静電的に冷却ロール表面に密着固化せしめる
重合体フィルムの成形方法は、既に、よく知られてbる
。しかしながら、該方法1例えば特公昭50−8743
号に記載された方法では、フィルムの成形速度は9高々
40m/分であった。
A method for forming a polymer film involves extruding a molten thermoplastic resin through a nozzle with slits, applying a voltage between the nozzle and a cooling roll, and electrostatically solidifying the molten film on the surface of the cooling roll. , is already well known. However, method 1, for example, Japanese Patent Publication No. 50-8743
In the method described in No. 9, the forming speed of the film was at most 40 m/min.

この速度を越えると、冷却ロールと溶融フィルムとの間
に気泡をかみ込み、平面性のよいフィルムは得られなか
った。
When this speed was exceeded, air bubbles were trapped between the cooling roll and the molten film, making it impossible to obtain a film with good flatness.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を解消せしめ、気泡かみ込み
による気泡跡のない平面性の優れたフィルムを高速で成
形する方法を提供せんとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a method for forming a film with excellent flatness without any traces of air bubbles due to air bubble entrapment at high speed.

〔発明の構成〕[Structure of the invention]

本発明は、上記目的を達成するために2次の構成、すな
わち、溶融状態の熱可塑性樹脂をスリットを有する口金
よシーフィルム状にして押出した後。
In order to achieve the above object, the present invention has a secondary structure, that is, after extruding a thermoplastic resin in a molten state into a sheet film through a die having slits.

該溶融フィルムを口金と冷却ロールとの間に電圧を印加
する静電印加法によって冷却ロールに密着せしめ、冷却
固化するフィルムの成形方法において、該溶融フィルム
両面の雰囲気をゲージ圧で0.2kgW/cIn”以上
の加圧状MK保つ熱可塑性樹脂フィルムの成形方法を特
徴とするものである。
In a film forming method in which the molten film is brought into close contact with a cooling roll by an electrostatic application method in which a voltage is applied between the die and the cooling roll, and the film is cooled and solidified, the atmosphere on both sides of the molten film is set at a gauge pressure of 0.2 kgW/ The present invention is characterized by a method for forming a thermoplastic resin film that maintains a pressurized MK of at least cIn''.

本発明は、溶融状態の熱可塑性樹脂をスリットを有する
口金よシフイルム状にして押出し、該溶融フィルムを口
金と冷却ロールとの間に電圧を印加する静電印加法によ
って冷却、ロールにそのフィルム状体を密着せしめ、冷
却固化する周知のフィルムの成形方法に適用することが
できる。
The present invention involves extruding a thermoplastic resin in a molten state into a film through a die having slits, cooling the molten film by an electrostatic application method in which a voltage is applied between the die and a cooling roll, and applying the film to the roll. It can be applied to a well-known film forming method in which bodies are brought into close contact and solidified by cooling.

なお、電圧の印加方法としては1口金が接地され、冷却
ロールが大地に対して電気的に絶縁された装置の場合は
、電圧印加用の電源の一方の端子を接地し、他方の端子
を冷却ロールに接続することにより電圧を印加すること
ができ、また、逆に口金が大地に対して電気的に絶縁さ
れ、冷却ロールが接地された装置の場合は、電源の一方
の端子を接地し、他方の端子を口金に接続することによ
シミ圧を印加することができる。ただし、成形装置の接
地線と電源の接地側とした端子は直接接続してもよく、
マた。成形装置、電源共接地側を接地せず大地よシ絶縁
し9両者を接続してもよい。
In addition, in the case of a device in which one cap is grounded and the cooling roll is electrically insulated from the ground, one terminal of the power supply for voltage application is grounded, and the other terminal is cooled. Voltage can be applied by connecting to the roll, and conversely, if the base is electrically insulated from the ground and the cooling roll is grounded, one terminal of the power supply is grounded, Stain pressure can be applied by connecting the other terminal to the cap. However, the ground wire of the molding equipment and the terminal on the ground side of the power supply may be directly connected.
Mata. The molding device and the power source may be connected together by insulating them from the earth without grounding the ground side.

なお、これらの電圧印加方法の中でも、電源の一方の端
子が、大地に対して絶縁され走冷却ロールに接続され、
他方の端子と口金は接地される方法が好ましい。冷却ロ
ールと口金との間に印加する電圧は、交流、直流のいず
れでもよいが、直流が好ましく、また冷却ロールに接続
する端子は圧・負いずれでもよいが、負が好ましい。
Among these voltage application methods, one terminal of the power supply is insulated from the ground and connected to a running cooling roll.
It is preferable that the other terminal and the cap are grounded. The voltage applied between the cooling roll and the cap may be either alternating current or direct current, but direct current is preferable, and the terminal connected to the cooling roll may be either pressure or negative, but negative is preferable.

本発明は9口金と冷却ロール間の溶融押出しされたフィ
ルム(またはシート)、すなわち溶融フィルムの両面の
雰囲気をゲージ圧で0.2 kgw / cm”以上、
好ましくは0.2〜I Dkgw /cn’ 、より好
ましくは05〜5 kgw/cm!−l−蕪の加圧状態
とすることが必要である。この範囲よシ小さい圧力では
In the present invention, the atmosphere on both sides of the melt-extruded film (or sheet) between the nine nozzles and the cooling roll, that is, the molten film, is set to a gauge pressure of 0.2 kgw/cm" or more,
Preferably 0.2 to I Dkgw/cn', more preferably 05 to 5 kgw/cm! -l- It is necessary to pressurize the turnip. At small pressures in this range.

本発明の効果を得ることが難しい。〜ヒ限は特に制限な
いが10 kgw /cm’よシ大きい圧力では口金か
らのフィルム状体の押出しにトラブルを生じたり。
It is difficult to obtain the effects of the present invention. Although there is no particular limit to the pressure, a pressure greater than 10 kgw/cm' may cause trouble in extruding the film-like material from the die.

フィルムを冷却工程よシ取シ出す時にトラブルを生じ易
くなる。
Trouble is likely to occur when taking the film out of the cooling process.

なお、加圧状態は、静圧状態、好ましくは製膜状態にお
いて口金と冷却ロール間の雰囲気の風速が0.5 m 
/秒以下、よシ好ましくは0.1 m 7秒以下の状態
とするのが望ましい(風速は1日本科学工業製の゛′ア
ネモマスター#AM−B 11/Ii −211型風速
計で測定することができる)。また加圧状態は1例えば
フィルムの片面のみからガス流を吹きつける動圧では、
;−〒仮ブタつき静電印加の電流が変動して、気泡をか
み込み易いので方寸しくない、。
Note that the pressurized state is a static pressure state, preferably a film forming state in which the wind speed of the atmosphere between the die and the cooling roll is 0.5 m.
/second or less, preferably 0.1 m 7 seconds or less (wind speed is measured with an Anemo Master #AM-B 11/Ii-211 type anemometer manufactured by Nippon Kagaku Kogyo. be able to). In addition, the pressurized state is 1. For example, in dynamic pressure where a gas flow is blown from only one side of the film,
;-〒The electric current applied to the static electricity with the temporary lid fluctuates and tends to trap air bubbles, so it is not very suitable.

加圧状態に保つkめに用いるガスは、空気、窒素、 炭
mガス、アルゴン、ヘリウム、フレオンガス、SF6.
あるいは、これらの混合ガスが用いられるが9中でも、
空気、窒素、フレメンガス。
Gases used to maintain the pressurized state include air, nitrogen, charcoal gas, argon, helium, Freon gas, SF6.
Alternatively, a mixture of these gases may be used;
Air, nitrogen, Flemen gas.

SF6が方寸しい。さらに好ましいのは、経済性ら出て
、冷却ロールに接触する壕でのフィルム状体全面の周囲
をかこんで加圧室とし、このかこん部と、冷却ロールの
一部あるじは全部を含めることが好ましいが、特に冷却
ロールについては全周表面、好ましくは全部を含む方が
装置が簡単であシ好ましい。この加圧室をつくる部材は
特に限定されないが冷却ロールと電気的に絶縁されてい
るのが望ましい。
SF6 is small. More preferably, from the viewpoint of economy, the entire surface of the film-like material in the trench that contacts the cooling roll is surrounded as a pressurizing chamber, and this trench and a part of the cooling roll are all included. Although this is preferable, especially for the cooling roll, it is preferable to include the entire circumferential surface, preferably the entire circumferential surface, because the apparatus is simpler. Although the members forming this pressurizing chamber are not particularly limited, it is desirable that they be electrically insulated from the cooling roll.

冷却口−ルを大地と電気的に絶縁するには、既に、知ら
れているように、電気絶縁性の高い液体例工ば、パラフ
ィン油、トリクロールエチレン。
In order to electrically insulate the cooling hole from the ground, it is already known to use a highly electrically insulating liquid such as paraffin oil or trichlorethylene.

フレオンなどの単独あるいはそれらを混合したものを冷
却液として用いると共に、冷却ロールの軸受、冷却ロー
ルの駆動軸と駆 動源との結合部、冷却液の供給・排出口の継手などをそ
れぞれ絶縁材9例えば、沸素樹脂1テフロン″(デュポ
ン社製、商標名)または同類物の電気絶縁材料で絶縁す
る方法をとればよい。なお。
In addition to using Freon alone or a mixture thereof as a cooling liquid, the bearings of the cooling roll, the joint between the cooling roll drive shaft and the drive source, the joints of the cooling liquid supply and discharge ports, etc. are each covered with insulating material 9. For example, a method of insulating with an electrically insulating material such as fluororesin 1 Teflon'' (manufactured by DuPont, trade name) or a similar electrical insulating material may be used.

上記方法以外に一般的に用いられる金属性の冷却ロール
表面上に沸素樹脂゛テフロン″なとの絶縁シートを介し
て、金属導電性皮膜を表面にもち9該導電性表面に電源
装置の一方の端子を接続する方法をとることもでき、こ
の方法では、冷却液として9通常用いられている水が使
用できる。しかしながら高速化にともなう冷却効率から
は、前者の方法が好ましい。
In addition to the method described above, a metal conductive film is placed on the surface of a commonly used metal cooling roll through an insulating sheet of fluorocarbon resin (Teflon). It is also possible to connect the terminals of 9, and in this method, water, which is commonly used, can be used as the cooling liquid.However, the former method is preferable in terms of cooling efficiency as the speed increases.

次に本発明のフィ°ルムの製造方法を図面に基づいて説
明する。
Next, the method for manufacturing the film of the present invention will be explained based on the drawings.

第1図は9本発明のフィルム成形方法の一実施態様を示
す装置の概略断面図である。
FIG. 1 is a schematic sectional view of an apparatus showing one embodiment of the film forming method of the present invention.

図において、1は溶融状態の熱可塑性樹脂が供給される
供給管、2は口金、ろは加圧雰囲気、4は加圧室、5は
圧力計、6は冷却ロール、7は加圧気体供給口、8は引
離しローノし9.9はニップ回転ゴムロール、10は溶
融押出しされたフィルム。
In the figure, 1 is a supply pipe through which molten thermoplastic resin is supplied, 2 is a mouthpiece, a filter is a pressurized atmosphere, 4 is a pressurizing chamber, 5 is a pressure gauge, 6 is a cooling roll, and 7 is a pressurized gas supply 8 is a separating roller, 9 is a nip rotating rubber roll, and 10 is a melt-extruded film.

11 は冷却固化したフィルム、12は電源装置である
。図示したように、フィルム10が9口金2より押出さ
れた後9冷却ロール6上で冷却固化するまで加圧雰囲気
乙にさらされ、しかも9口金2に接近し、かつフィルム
10に接触していない冷却ロール乙の表面も加圧雰囲気
乙にさらされている。冷却ロール乙の冷却液には、電気
絶縁性の高ンプを含む熱交換装置に導管で接続される。
11 is a cooled and solidified film, and 12 is a power supply device. As shown in the figure, after the film 10 is extruded from the nozzle 2, it is exposed to a pressurized atmosphere B until it is cooled and solidified on the cooling roll 6, and is not close to the nozzle 2 and is not in contact with the film 10. The surface of the cooling roll B is also exposed to the pressurized atmosphere B. The cooling liquid of the cooling roll B is connected by a conduit to a heat exchange device including an electrically insulating high pump.

この導管は冷却ロール6を大地や上記装置と電気的に絶
縁するために、一部絶縁材料でできている。
This conduit is partially made of an insulating material in order to electrically insulate the cooling roll 6 from the earth and the above-mentioned apparatus.

さらに冷却ロール6は加圧室4や口金2とも電気的に絶
縁されている。電源装置12から一方の端子を冷却ロー
ル駆動軸に接続し、冷却ロール乙の表面を高電圧とする
。他方の端子は接地し、かつ口金2も接地する。電源装
置12は直流高電圧接続するのが好ましい。印加する電
圧は5〜100kV、好ましくは、15〜80 kV、
よシ好ましくは25〜70kVである。印加電圧をこの
範囲て9口金へ微小な異常放電を起こしたシする欠点も
なく、放電による表面欠点等が生じ難い。また冷却ロー
ルと他の部材との絶縁のトラブル等も防止1〜うるので
好ましい。
Furthermore, the cooling roll 6 is electrically insulated from the pressurizing chamber 4 and the base 2 as well. One terminal of the power supply device 12 is connected to the cooling roll drive shaft to apply a high voltage to the surface of the cooling roll B. The other terminal is grounded, and the cap 2 is also grounded. Preferably, the power supply device 12 is connected to a DC high voltage. The applied voltage is 5 to 100 kV, preferably 15 to 80 kV,
It is preferably 25 to 70 kV. When the applied voltage is applied within this range, there is no problem of causing minute abnormal discharges to the cap, and surface defects due to discharges are less likely to occur. Further, troubles such as insulation between the cooling roll and other members can be prevented, which is preferable.

本発明が適用し得る熱可塑性樹脂には、ポリエチレン、
ポリプロピレン、その共重合体、ポリスチレン、ポリ塩
化ビニル、ポリニスプル、ポリアミド樹脂、フッ素樹脂
、ポリスルホン樹脂、ポリフ フエニレンサル文アイド樹脂などがあるが9本発明は特
に、ポリエステルの中でも、ポリエチレンテレフタレー
ト樹脂やそれらの共重合樹脂に適している。
Thermoplastic resins to which the present invention can be applied include polyethylene,
There are polypropylene, copolymers thereof, polystyrene, polyvinyl chloride, polynispur, polyamide resins, fluororesins, polysulfone resins, polyphenylene resins, etc.9 The present invention is particularly applicable to polyesters, such as polyethylene terephthalate resins and Suitable for copolymer resins.

フィルムの厚みは、特に限定しないが、10μ711〜
5匝が方寸しい。フィルムには不活性無機粒子。
The thickness of the film is not particularly limited, but is 10μ711~
5 sam is quite large. Inert inorganic particles in the film.

紫外線吸収剤、染料、顔和、螢光増白剤、帯電防止剤な
どを含んでもよい。
It may also contain ultraviolet absorbers, dyes, facial washers, fluorescent whitening agents, antistatic agents, and the like.

加圧雰囲気の温度は特に限定されるものでは々いが、0
〜650°0.好ましlj:’$o〜150℃の範囲が
望ましい。
The temperature of the pressurized atmosphere is not particularly limited, but
~650°0. Preferable lj: The range of '$o to 150°C is desirable.

また、冷却ロールの表面温度も特に限定されないが、−
20〜150°Cの範囲が好ましい。
In addition, the surface temperature of the cooling roll is not particularly limited, but -
A range of 20 to 150°C is preferred.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば2口金より押出された溶融状態の
フィルムは、冷却ロールに接触するまでの区間で9両面
が平衡状態の加圧雰囲気内を通り。
According to the method of the present invention, a molten film extruded from two nozzles passes through a pressurized atmosphere in which nine surfaces are in an equilibrium state before contacting the cooling roll.

よシ好ましくは次に同じ加圧雰囲気内にある冷却ロール
表面に静電印加で密着されることにより9静電密着力が
著しく向上し、冷却ロールの周速を大きくしても、空気
のかみ込みは、まったくなくそのためフィルム成形の高
速化が達成できる。
Preferably, the surface of the cooling roll in the same pressurized atmosphere is brought into close contact with the surface of the cooling roll by electrostatic application. There is no embedding at all, so high-speed film forming can be achieved.

次に実施例に基づいて1本発明を説明する。Next, one embodiment of the present invention will be explained based on an example.

実施例1〜5 極限粘度が065のポリエチレンテレフタレート樹脂を
押出機で290°Cに溶融し、第1図の装置を用いて、
285°Cに保温した口金から、スリット幅1.0皿、
長さ400圓で押出した。続いて冷却液“フレオン−1
13”(三井フロロケミカル社製)を用いたロール表面
温度が35 ’cの直径800匝の冷却ロールに接触さ
せ、静電印加で密着し、固化したフィルムをニップ回転
ゴムロールを介して引取った。フィルムの厚みは、引取
速度に対して一定とするため、すべてのサンプルが15
0μmになるように押出量を調整した。
Examples 1 to 5 A polyethylene terephthalate resin having an intrinsic viscosity of 065 was melted at 290°C using an extruder, and using the apparatus shown in Figure 1,
From the nozzle kept warm at 285°C, slit width 1.0 plate,
It was extruded to a length of 400 mm. Next, coolant “Freon-1”
13" (manufactured by Mitsui Fluorochemical Co., Ltd.) with a diameter of 800 square meters and a roll surface temperature of 35'c, the film was brought into close contact with the film by electrostatic application, and the solidified film was taken off via a nip rotating rubber roll. The thickness of the film is constant with respect to the drawing speed, so all samples are
The extrusion amount was adjusted so that it became 0 μm.

加圧のためのガスには室温の圧搾空気を用・いたこのと
きの加圧室内の雰囲気温度は、溶融状態のフィルムが冷
却ロールが接触する近傍で8′a〜90°Cであ・つた
Compressed air at room temperature was used as the pressurizing gas, and the atmospheric temperature in the pressurizing chamber at this time was 8'a to 90°C near where the molten film came into contact with the cooling roll. .

かない最高引取速度を求め、かつ溶融フィルムが冷却ロ
ールに接触する直前での微小放電の有無を観察した。
The maximum take-up speed was determined, and the presence or absence of micro-discharge was observed immediately before the molten film contacted the cooling roll.

第1表に示したように、フィルム表面に全く気泡跡がな
く、かつ微小放電もない状態で高速化が達成できた。実
施例3は極く僅かに微小放電が認められた。
As shown in Table 1, high speed was achieved with no traces of bubbles on the film surface and no micro discharges. In Example 3, very slight discharge was observed.

比較例1〜4 雰囲気圧力をゲージ圧で0kgw/♂ (即ち、大気圧
)あるいは0.1kgw/−に加圧した以外は実施例1
〜5と同じ方法でフィルムを製造した。第1表比較例1
〜4に示したように9低い引取速度しか得られなかった
。比較例4のように加圧が不足すると僅かに速度を高く
できても、微小放電が著しく発生し、フィルム表面に放
電による欠点か出た。
Comparative Examples 1 to 4 Example 1 except that the atmospheric pressure was pressurized to 0 kgw/♂ (i.e., atmospheric pressure) or 0.1 kgw/- in terms of gauge pressure.
Films were manufactured in the same manner as in ~5. Table 1 Comparative Example 1
As shown in Figures 4 to 4, only 9 lower take-off speeds were obtained. When the pressure was insufficient as in Comparative Example 4, even if the speed could be increased slightly, minute discharges occurred significantly, and defects due to the discharge appeared on the film surface.

実施例6〜8 上述の実施例および比較例で雰囲気ガスとして空気のか
わシに、窒素を用い、それ以外は同じ方法でフィルムを
製造した。第1表実施例6〜8に示すように微小放電も
ない状態で、高速でフィルムを製造することができた。
Examples 6 to 8 Films were produced in the same manner as in the above-mentioned Examples and Comparative Examples except that nitrogen was used as an atmospheric gas instead of air. As shown in Examples 6 to 8 of Table 1, films could be produced at high speed without any microdischarge.

第1表の微小放電の判定基準を次に示す。The criteria for determining microdischarge in Table 1 are shown below.

O・・・微小放電なし。O: No minute discharge.

Δ・・・少量の微小放電が不連続的に発生。Δ...A small amount of micro discharge occurs discontinuously.

×・・・著しく微小放電が連続的に発生。×: Extremely small discharges occur continuously.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明のフィルムの成形方法の一例を示した
装置の概略断面図である。 1:溶融樹脂供給管  2:口金 3:加圧雰囲気    4:加圧室 5:圧力計      6=冷却ロール7:加圧気体供
給口  8:引離しロール9:ニップ回転ゴムロール 10:溶融フィルム 11:冷却固化したフィルム 12:電源装置 特許出願人 東し株式会社
FIG. 1 is a schematic sectional view of an apparatus showing an example of the film forming method of the present invention. 1: Molten resin supply pipe 2: Mouth 3: Pressurized atmosphere 4: Pressure chamber 5: Pressure gauge 6 = Cooling roll 7: Pressurized gas supply port 8: Separation roll 9: Nip rotating rubber roll 10: Melt film 11: Cooled and solidified film 12: Power supply device patent applicant Toshi Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 溶融状態の熱可塑性樹脂をスリットを有する口金よりフ
ィルム状にして押出した後、該溶融フィルムを口金と冷
却ロールとの間に電圧を印加する静電印加法によって冷
却ロールに密着せしめ、冷却固化するフィルムの成形方
法において、該溶融フィルムの両面の雰囲気をゲージ圧
で0.2 kg w/Cm ’以上の加圧状態に保つこ
とを特徴とする熱可塑性樹脂フィルムの成形方法。
After extruding a molten thermoplastic resin into a film through a slit-shaped die, the molten film is brought into close contact with a cooling roll by an electrostatic application method that applies a voltage between the die and the cooling roll, and is cooled and solidified. A method for forming a thermoplastic resin film, the method comprising maintaining the atmosphere on both sides of the molten film at a pressure of 0.2 kg w/Cm' or more in terms of gauge pressure.
JP58196089A 1983-10-21 1983-10-21 Method for forming thermoplastic resin film Pending JPS59196223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196089A JPS59196223A (en) 1983-10-21 1983-10-21 Method for forming thermoplastic resin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196089A JPS59196223A (en) 1983-10-21 1983-10-21 Method for forming thermoplastic resin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58070009A Division JPS59196221A (en) 1983-04-22 1983-04-22 Method for forming thermoplastic resin film

Publications (1)

Publication Number Publication Date
JPS59196223A true JPS59196223A (en) 1984-11-07

Family

ID=16352023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196089A Pending JPS59196223A (en) 1983-10-21 1983-10-21 Method for forming thermoplastic resin film

Country Status (1)

Country Link
JP (1) JPS59196223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051159A (en) * 1986-05-09 1991-09-24 Toray Industries, Inc. Non-woven fiber sheet and process and apparatus for its production
DE102005020424A1 (en) * 2005-04-29 2006-11-02 Röhm Gmbh Thermoplastic plastic foil production as a liquid crystal screen, comprises placing the plastic in an extrusion equipment containing an extruder for melting the plastic, and transferring the melt web into a chill roll for cooling the melt
US7322814B2 (en) 2003-06-27 2008-01-29 Toshiba Machine Co., Ltd. Film or sheet forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051159A (en) * 1986-05-09 1991-09-24 Toray Industries, Inc. Non-woven fiber sheet and process and apparatus for its production
US7322814B2 (en) 2003-06-27 2008-01-29 Toshiba Machine Co., Ltd. Film or sheet forming apparatus
DE102004030823B4 (en) * 2003-06-27 2017-10-12 Toshiba Machine Co., Ltd. Device for forming films or sheets of material
DE102005020424A1 (en) * 2005-04-29 2006-11-02 Röhm Gmbh Thermoplastic plastic foil production as a liquid crystal screen, comprises placing the plastic in an extrusion equipment containing an extruder for melting the plastic, and transferring the melt web into a chill roll for cooling the melt

Similar Documents

Publication Publication Date Title
JP6149266B2 (en) Microporous membrane wound body and method for producing the same
US4997600A (en) Process for preparation of thermoplastic resin sheets
US4148851A (en) Process for producing thermoplastic polymer sheets
US4594203A (en) Method for producing a thermoplastic polymeric sheet
EP0814917B1 (en) Fluoropolymer composite tube and method of preparation
US3655307A (en) Electrostatic pinning of dielectric film
CN110944821A (en) Cooling roll and method for producing thermoplastic resin sheet using same
JPS59196223A (en) Method for forming thermoplastic resin film
US3660549A (en) Electrostatic pinning of dielectric film
US4166089A (en) Corona free pinning of extruded polymer film
US4310294A (en) Apparatus for corona free pinning of extruded polymer film
AU645900B2 (en) Process for preparing a tubular plastic film
JPS6313815B2 (en)
JPS6138012B2 (en)
JPS59196221A (en) Method for forming thermoplastic resin film
EP0862086A1 (en) Glow discharge treatment of a web substrate surface in a web coating line
EP0008825B1 (en) Production of polyamide material sheet
JPH08207120A (en) Method and apparatus for producing thermoplastic resin sheet
JPS59169815A (en) Manufacture of thermoplastic polymer sheet
JPS6311969B2 (en)
JPS59133018A (en) Method of forming thermoplastic resin film
JP2000071315A (en) Production of polyester sheet
JP2793061B2 (en) Casting method of thermoplastic polymer sheet
JPS62202719A (en) Manufacture of thermoplastic polymer sheet
JPS59215824A (en) Improved t-die film forming apparatus