JPS59195549A - Manufacture of base material for optical transmission - Google Patents

Manufacture of base material for optical transmission

Info

Publication number
JPS59195549A
JPS59195549A JP18483783A JP18483783A JPS59195549A JP S59195549 A JPS59195549 A JP S59195549A JP 18483783 A JP18483783 A JP 18483783A JP 18483783 A JP18483783 A JP 18483783A JP S59195549 A JPS59195549 A JP S59195549A
Authority
JP
Japan
Prior art keywords
silica
doped
refractive index
quartz glass
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18483783A
Other languages
Japanese (ja)
Inventor
Yasuo Kuroda
黒田 康雄
Kuniaki Wakabayashi
若林 邦昭
Takeshi Kimura
猛 木村
Teruzo Ito
伊藤 輝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP18483783A priority Critical patent/JPS59195549A/en
Publication of JPS59195549A publication Critical patent/JPS59195549A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To manufacture a base material for optical transmission under-going little change in the refractive index due to its heat history by a CVD method by using a silica layer doped with a specified compound so as to make the refractive index lower than that of quartz glass as a clad. CONSTITUTION:A fluorine compound which is liq. or gas at room temp., contains boron, and does not contain hydrogen, e.g., boron trifluoride is used as a compound for doping. A mixture of silicon tetrachloride with said fluorine compound by <= about 40mol% of the amount of the silicon tetrachloride is fed to a reaction tube made of quartz glass using oxygen as a carrier, and it is indirectly heated to about 1,000-1,600 deg.C from the outside of the reaction tube to deposit a silica layer doped with said fluorine compound. The doped silica layer has a lower refractive index. A gaseous mixture of silicon tetrafluoride with oxygen is then fed to deposit a silica layer, and after raising the heating temp., the reaction tube is made solid by collapsing the hollow part of the pipe to manufacture a base material for optical transmission consisting of a doped silica clad and a silica core.

Description

【発明の詳細な説明】 本発明はfA履歴による屈折率変化のきわめて少ないド
ープされたシリカ層をクラッドとする光伝送用素材の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical transmission material having a doped silica layer as a cladding, which exhibits extremely little change in refractive index due to fA history.

現在光伝送用材料としては材料自体の吸収や散乱による
損失、すなわち光透過損失が少ないことから、主に高純
度の石英ガラスが選ばれている。
Currently, high-purity quartz glass is mainly selected as a material for optical transmission because it has low loss due to absorption and scattering of the material itself, that is, light transmission loss.

ガラスを光伝送用材料として用いるためには、光伝送用
材料の構成巣位であるガラス(RMl 18而の中心部
(コア)の屈折率を周辺部(クラッド)のそれに比べて
高くすることが必要で、この構造によってコア忙閉じ込
められた光かクラッドとの界面において全反射または屈
折を繰り返しながらガラス4維の他に沿って進む性質を
利用するものである。このようなイ薄造の光伝送用材料
を作る方法としては、ロッドインチューブ法と化学気イ
iff反応(CvD)方法が知られている。
In order to use glass as an optical transmission material, it is necessary to make the refractive index of the central part (core) of the glass (RM118), which is the constituent part of the optical transmission material, higher than that of the peripheral part (cladding). This structure takes advantage of the property that the light trapped in the core travels along the other glass fibers while repeating total reflection or refraction at the interface with the cladding. As methods for producing transmission materials, the rod-in-tube method and the chemical vapor IF reaction (CvD) method are known.

ロッドインチューブ法はコアに直@度石英ガラスを用い
る4合にはクラッドに部品名バイコールガラスとして知
られている高ケイ、11/ガラスの管を用いて、コアを
クラッドに仲人し浴着して光伝送用素材を碍でいる。こ
の場会、高ケイ戚ガラスは製法上気泡を含んでχす、コ
アとクラッドとの界面における散乱が大きくかつ屈折率
差も小さく、選択性がない。
The rod-in-tube method uses straight quartz glass for the core, and a high-K, 11/1 glass tube known as Vycor glass for the cladding. We are developing materials for optical transmission. In this case, high-Si glass contains bubbles due to the manufacturing process, and scattering at the interface between the core and the cladding is large and the difference in refractive index is small, so there is no selectivity.

CVD法によって光伝送路を製造するには、反応生成物
の付着基体となる反応・a内で、主剤のシリカを形成す
る原料の揮発性ケイ素化合物もしくは前記化合物と石英
ガラスの屈折率を変化させるための添加、qすとを反応
させてドープされたシリカを該反応管壁に吐出させ、さ
ら忙その上にシリカだけま之は屈折率を高めるための蚕
JxJ刑を加えたシリカを析出させ所要pJさに成長さ
せた後、中空部をつぶして光伝送用素材となし、欠いで
1蛛引ざ工程を咥でガラス繊維とする。
In order to manufacture an optical transmission path by the CVD method, the refractive index of the volatile silicon compound or the compound and quartz glass, which are the raw materials that form the main ingredient silica, is changed in reaction a, which is the substrate to which the reaction product is attached. The doped silica is discharged onto the wall of the reaction tube by reacting the doped silica, and on top of that, silica added with silica to increase the refractive index is precipitated. After growing to the required pJ, the hollow part is crushed to obtain a material for optical transmission, and the glass fiber is made into a glass fiber by a cutting process.

このよった、クラッドに石英ガラスを用いる場合はコア
のA[lI折4を高める添加剤として燐、ケルマニウム
、チタン、アルミニウム等が一般に用いられる。この@
会でもクラッドの屈折率を石英ガラスよりも低くできれ
ば、−口数を大き(することができる。
When quartz glass is used for the cladding, phosphorus, kermanium, titanium, aluminum, etc. are generally used as additives to increase the A[lI] ratio of the core. this@
If the refractive index of the cladding can be made lower than that of silica glass, the number of holes can be increased.

光が辿るのはコアであるので、コアは最もjJ4失o>
 11いガラスであることが望ましく、それには高設置
l〕建石英ガラスを1吏用するのがよい。
Since it is the core that the light follows, the core is the most jJ4 lost o>
It is preferable to use glass that is 11 mm thick, and it is best to use high-rise quartz glass.

CVD法で石英ガラスより低い屈折・私のドープされた
石英ガラスを潜るにU酸化ホウ素を添加する方法が知ら
れているが、この酸化ホウ素ヲドープされた石英ガラス
は線引きの際のクエンチ−9による熱履歴により屈折率
が髪化する欠点かある。
A method is known in which U boron oxide is added to doped quartz glass using the CVD method to achieve a lower refraction than quartz glass, but this quartz glass doped with boron oxide is The drawback is that the refractive index changes due to heat history.

本発明者らは上記の離液方法の欠点を解決し、熱履Jm
にt定な低屈折率のドープされたシリカノーをクラッド
とする光伝送用素材の製造方法を提供すべく検討しfc
績泌、外部加熱(間接加熱ンによる酸化によってシリカ
を生成する四塩化ケイ素へのドーパントとして適当なフ
ッ素化合a7を見出し、本発明に刺通した。すなわち、
本発明の要旨とするところQま、Bぞ含みかつ/に素を
含まない室温において液体または気体のフッ素比合吻7
a′s;Is茄した四塩化ケイ虞の外部加順による酸化
によって、ドープされたシリカを石英ガラスまたは高ケ
イ峨ガラスの管内壁もしくは石英ガラス俸の外開面に析
出せしめ、この析出したドーグされ之シリカ層をクラッ
ドとすることft特徴とする光伝送用素材の製造方法、
にある。
The present inventors solved the drawbacks of the above-mentioned syneresis method and
In order to provide a method for producing a material for optical transmission using a doped silica nozzle with a low refractive index constant at fc as a cladding,
We discovered a fluorine compound a7 suitable as a dopant for silicon tetrachloride, which produces silica through oxidation by external heating (indirect heating), and incorporated it into the present invention.
The gist of the present invention is that the fluorine ratio of a liquid or gas containing Q and B and/or nitrogen at room temperature is 7.
Doped silica is precipitated on the inner wall of a silica glass or high silica glass tube or on the outer open surface of a silica glass bale by oxidation of boiled silicon tetrachloride, and the precipitated silica is A method for manufacturing an optical transmission material characterized by using a silica layer as a cladding,
It is in.

本発明方法において、四塩化ケイ素に添加されるBを合
むフッJ1ヒ沖物としては取扱いの便利さから室温で液
体または気体であり、かつ水素?含まない化i:t′#
Jであることが必要である。また、西瓜化ケイ素に対す
る該フッ素化合物の混合比率はモル比で0〜40%の範
囲であり、これらを越える混合比率範囲ではドープされ
たシリカの吐出速度が低下し不適当である。また、上記
フッぷ化合物を添加した四塩化ケイ素を石英ガラス管ま
たは高ケイ酸ガラス庁に導入し酸化反応を行なわせる場
合には水分の混入をさけるために、それら石英ガラス管
または高ケイ酸ガラスwwi水素灸、高周波炉などを用
いて外部加端)(間接加熱)する。
In the method of the present invention, the B added to silicon tetrachloride is a liquid or gas at room temperature for convenience of handling, and it is hydrogen? Not including i:t'#
It is necessary to be J. Further, the mixing ratio of the fluorine compound to the silicon watermelon is in the range of 0 to 40% in terms of molar ratio, and if the mixing ratio exceeds this range, the discharge rate of the doped silica decreases, which is inappropriate. In addition, when silicon tetrachloride to which the above-mentioned Hupp compound has been added is introduced into a quartz glass tube or high silicate glass tube to carry out an oxidation reaction, in order to avoid contamination with moisture, the quartz glass tube or high silicate glass tube must be External heating (indirect heating) using hydrogen moxibustion, high frequency furnace, etc.

加熱温度は1,000°C〜l、 600°Cの範囲が
猿ましい。
The heating temperature ranges from 1,000°C to 600°C.

仄に、本発明方法の1 flJについて述べる。First, 1 flJ of the method of the present invention will be briefly described.

四塩化ケイ累を恒温槽で一定温度となし、この四」1化
ケイ素にキャリアガスとしての〆”ilAガスと上記フ
ッ素化合物の所定量な混曾器で混合し石英ガラスの反応
管に導入する。この反応管は気相反応速度を早めるため
に、酸水素炎、1%周波炉などにより外部よ#7加熱さ
れる。さらに、この反応dは以上のように得られる反応
管内偵への反応生成物の析出にともない該析出ノーの均
質性m+寺のために、適宜回転4−1i溝により定速回
転させるのか好ましい。クラッドとして所要厚さを析出
させた後、上記フッ素化合物の供給を停止し、四塩化ケ
イ素σ)みヲ、・尋人して上記クラッド上に高純i¥石
英ガラスを析出させてコアとする。このように、反応析
出を行なった後、加7箔温度を上昇させ中空部をつぶし
、次いで線引き工程を経て光伝送用素材とする。コアと
しては高純度石英ガラス棒な上記析出したクラッドの中
に挿入し4看させて形成させることもでざる。また、既
述の連転光伝送用素材セしての開口数を太き(とりたい
場合は、コアとじ−C、コアの屈折率な高める燐、ゲル
マニウム。
The silicon tetrachloride is kept at a constant temperature in a constant temperature bath, and the silicon tetrachloride is mixed with ilA gas as a carrier gas and a predetermined amount of the above fluorine compound in a mixer and introduced into a quartz glass reaction tube. This reaction tube is externally heated with an oxyhydrogen flame, a 1% frequency furnace, etc. in order to accelerate the gas phase reaction rate.Furthermore, this reaction d is the reaction inside the reaction tube obtained as described above. As the product is precipitated, it is preferable to rotate at a constant speed using a rotating 4-1i groove as appropriate in order to ensure uniformity of the precipitation.After depositing the required thickness as a cladding, the supply of the fluorine compound is stopped. Then, high-purity quartz glass is deposited on the cladding using silicon tetrachloride σ) as a core.After performing the reaction precipitation in this way, the temperature of the foil is increased. The hollow part is crushed, and then a wire drawing process is performed to obtain a material for optical transmission.The core may be a high-purity quartz glass rod inserted into the precipitated cladding and left to form. If you want to increase the numerical aperture of the above-mentioned continuous light transmission material, use phosphorus or germanium to increase the refractive index of the core.

チタン、アルミニウム等の元素を奈加した石英ガラス俸
を用い、該コアを土hピ析出したクラッドの中に1人し
4看させて形成させることができるのはもちろんである
It goes without saying that the core can be formed by one person using a silica glass pellet containing elements such as titanium and aluminum in a cladding made of clay.

41:発明は以上のごと(、熱履歴による屈折率変化の
きわめて少I【いドープされたシリカ、層をクラッドと
する光伝送用素材の製造方法を提供するもので、その工
液的価1直は高い〇 次に、本発明を実/Jゐ例によってさらに具体的に説明
するが、木発HAはその四重を越えない限り以下の実砲
例に!長足されるものではない。
41: The invention is as described above (to provide a method for manufacturing an optical transmission material having a cladding layer made of doped silica with very little change in refractive index due to thermal history, and its industrial liquid value is 1. Next, the present invention will be explained in more detail with reference to real/J examples, but the wood fired HA cannot be extended to the following actual gun examples unless the number of times exceeds four.

実施例 旋盤にセットし毎分60回転させた石英ガラス管(内径
12朋)に、虐′素ガスで改変8係に希釈しfc四省化
ケイ素と四塩化ケイ素に対するモル比34慢の三フッ化
ホウ素とよりなる混合ガスを毎分l−e供給した。酸水
素バーナーを該石英ガラス管に、宿って該混合ガスの流
れの方向に1分間8cmの速度で移動させながら該石英
ガラス・aを1.35000に加熱し、クラッドとなる
ドープされたシリカを析出させた。この酸水素バーナー
の移動による加熱を20回繰り返した後、三7ツ化ホウ
素の供給を止め四塩化ケイ素と酸素の混合ガスのみを該
石英ガラス管に通し、前述と同・1求に酸水素バーナー
の移動を40回繰り返した後、加熱温度を上げて、該含
の中空部をつぶして光伝送用素材を得た。
EXAMPLE In a quartz glass tube (inner diameter 12 mm) set on a lathe and rotated at 60 rpm, trifluoride diluted with nitrogen gas to a concentration of 8 parts and having a molar ratio of 34 molar ratios to silicon tetrachloride and silicon tetrachloride was added. A mixed gas consisting of boron oxide was supplied at a rate of le per minute. An oxyhydrogen burner is placed in the quartz glass tube and moved at a speed of 8 cm for 1 minute in the direction of the flow of the mixed gas, heating the quartz glass to 1.35000 to remove doped silica that will become the cladding. It was precipitated. After repeating this heating by moving the oxyhydrogen burner 20 times, the supply of boron trisulfide was stopped and only the mixed gas of silicon tetrachloride and oxygen was passed through the quartz glass tube. After repeating the movement of the burner 40 times, the heating temperature was raised and the hollow part of the container was crushed to obtain a light transmission material.

コア径は4.3 rrxie  ドープされたクラッド
の厚さは0.7絹であった。イオンマイクロ分析により
クラッドにフッ素1O13部、ホウ累2チが検出された
The core diameter was 4.3 rrxie and the thickness of the doped cladding was 0.7 silk. Ion microanalysis detected 10 and 13 parts of fluorine and 2 parts of borosilicate in the cladding.

また、このドープされ友クラッドの屈折率は1.453
5.  コアのそれは1.4583であった。この素材
1,850°C5毎分40mで線引きして優たファイバ
ーにおけるドーグされたクラッドの屈折率ri 1.4
532であって、縁引き前後における屈折4変励は櫃め
で少なかった。
Also, the refractive index of this doped companion cladding is 1.453
5. That of the core was 1.4583. This material was drawn at 1,850°C5 at 40 m/min to give a refractive index of the dogged cladding in an excellent fiber, ri 1.4.
532, and the refractive 4-modulation before and after edging was smaller in the case.

実施例2 旋盤にセットし毎分60回転させた石英ガラス’t? 
(円径12mrx)に四塩化ケイa100cc/分、酸
;g500cc/分の混合ガスを供給し7rから、酸水
素バーナーを該石英ガラス管に市って、該混合ガスの汐
ICれの方向に1分間10cWLの速度で移動しつつ、
該石英ガラスUを1.600’CK加熱し、BとFをド
ープしたシリカ層を該石英ガラス管の内壁に生ilさせ
7′crh酸水索バーナーによる加熱ゾーンの移動を5
0回(り返した後、加熱ならびに上記混合ガスの供給を
止めてコアとなるべき高純度石英ガラス岸(径61)を
該石英ガラスjに挿入し。
Example 2 Quartz glass set on a lathe and rotated at 60 revolutions per minute.
(Circle diameter: 12 mrx) was supplied with a mixed gas of 100 cc/min of silicon tetrachloride and 500 cc/min of acid, and from 7r, an oxyhydrogen burner was placed on the quartz glass tube, and the mixed gas was moved in the direction of the IC. While moving at a speed of 10 cWL for 1 minute,
The quartz glass U was heated to 1.600°C, a silica layer doped with B and F was formed on the inner wall of the quartz glass tube, and the heating zone was moved by a 7'crh acid water cable burner for 5 minutes.
After repeating the process 0 times, the heating and the supply of the above-mentioned mixed gas were stopped, and a high-purity quartz glass plate (diameter 61) to serve as the core was inserted into the quartz glass j.

酸水素バーナーにより該石英ガラス管を加熱、コラプシ
ングして該高A11J(石英ガラス俸と一体化し成仏1
ム川免、(オフa−得た。コア径は6,8も ドープさ
れたクラッドの厚さu 1.3 潴であった。この三フ
ッ化ホウ、名をドープしてンでるクラッドのjlfl折
ぶは1、4495であり、コアのそれは1.4 s 8
3であった。この素材を2,030°C,40m1分で
線引きして潜たファイバーのクラッド層の屈折率は1.
4495であって、軸引き前後での屈折率の・史1Ii
bは始められず、なお九偵失は4 ciB/Kmな寿た
The quartz glass tube is heated with an oxyhydrogen burner and collapsed to form the high A11J (integrated with the quartz glass tube).
Mukawamen, (off a-obtained. The core diameter was 6.8 and the thickness of the doped cladding was U 1.3.) The fold is 1,4495, and that of the core is 1.4 s 8
It was 3. The refractive index of the cladding layer of the fiber drawn by drawing this material at 2,030°C and 40 ml for 1 minute is 1.
4495, history of refractive index before and after axial drawing 1Ii
I couldn't start B, and I lost 4 ciB/Km.

叉、コ(’) 774バーf 1.000’CKmMs
fa、u上帝しンζか、クラッドJ−のノIfl折率は
1.4503であって、1子!4機歴による変動は雨め
て小さく、χ深土無視できることがわかった。なお、三
フッ化ホウ素をドープしたシリカの成分分析ン行うため
、−ノリ塩化ケイ素100cc/分、三フッ化ホウ、X
35 cc4准JA500cc/分の混合ガスを1.6
00°CIC加熱した石英ガラス′d内に通4して生成
させたシリカを化学分析し/′c博果、重量でB3.3
チ、Fl、4憾を含むことがわかった。
叉、ko(') 774 bar f 1.000'CKmMs
fa, u upper emperor Shin ζ, clad J-'s no Ifl refractive index is 1.4503, and it is 1 child! It was found that the fluctuations due to the four aircraft history are relatively small and can be ignored. In addition, in order to perform a component analysis of silica doped with boron trifluoride, -nori silicon chloride 100 cc/min, boron trifluoride,
35 cc4 Semi-JA500cc/min mixed gas 1.6
Chemical analysis of the silica produced by passing it through quartz glass heated at 00° CIC yielded B3.3 by weight.
It was found that it included Chi, Fl, and 4 regrets.

比較例 上iC夾砲圀2における混合ガス中、Iぷ近串イ次沫用
のドープ刑として三フッ化ホウ素の代りに塩化ホウ1馨
用いたこと以外は、夷i例2と同様の保作を行ってit
伝送用素]オ及びファイバーを得た。
Comparative Example The same protection as in Example 2 was used except that 1 ton of boron chloride was used instead of boron trifluoride as a doping agent for the I-Pump in the mixed gas in the iC cannon area 2. make it
A transmission element] and a fiber were obtained.

尋られ/′c元伝送伝送用素材グアイバーのクラッド者
の屈折率は夫々1.4545及び1.4510であって
、緑引き工程での屈折率の変動が認められ、元ファイバ
ーとして直妥を開口紋が光伝送用索材設置J、Iiで子
側される0、11からファイバでは0.15に増大する
ことかわかる。
The refractive index of the cladding material of Guaivar, which is the original transmission material, is 1.4545 and 1.4510, respectively, and fluctuations in the refractive index during the greening process are observed, making it difficult to use the original fiber as a direct fiber. It can be seen that the pattern increases from 0 and 11 on the optical transmission cable installations J and Ii to 0.15 on the fiber.

このファイバーを実施す12と同も* i、 oooo
Cに加、・、′%後、徐冷しt所、クランドI―の屈折
率は1、4544に増!ルし%1jiJ口a!″lto
、xt′vc低下し友。
The same as 12 that implements this fiber *i, oooo
After adding .,'% to C, the refractive index of Cland I- increased to 1,4544 after slow cooling! %1jiJ口a! ″lto
, xt'vc lowered friend.

この様に、Bのみをドープしたクラッド層を持つファイ
バーでは熱榎l房の影響が4しく、実用1好1シ(l≧
いことがわかる。
In this way, in the case of a fiber with a cladding layer doped only with B, the influence of heat flux is 4, and in practical use 1 (1 ≧
I understand that.

特許出頓人 三菱金属株式会社 代理人 L3  川 義 直Patent developer Mitsubishi Metals Co., Ltd. Agent L3 Nao Kawa

Claims (1)

【特許請求の範囲】[Claims] (υ Bを含みかつ水素を含まない室温において液体ま
たは気体のフッ素化合物を添nした四塩化ケイ素の外部
加熱による酸化によって、ドープされたシリカ?石英ガ
ラスまたは高ケイ順ガラスの・gV3壁もしくは石英ガ
ラス俸の外側面に析出せしめ、この析出したドープされ
たシリカ層をクラッドとすることを特徴とする光伝送用
素材の製造方法。
(silica doped by oxidation by external heating of silicon tetrachloride doped with a liquid or gaseous fluorine compound at room temperature containing υ B and free of hydrogen)?GV3 wall or quartz of quartz glass or high silica glass A method for producing a material for optical transmission, characterized by depositing it on the outer surface of a glass barrel, and using the deposited doped silica layer as a cladding.
JP18483783A 1983-10-03 1983-10-03 Manufacture of base material for optical transmission Pending JPS59195549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18483783A JPS59195549A (en) 1983-10-03 1983-10-03 Manufacture of base material for optical transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18483783A JPS59195549A (en) 1983-10-03 1983-10-03 Manufacture of base material for optical transmission

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51133031A Division JPS581051B2 (en) 1976-11-05 1976-11-05 Manufacturing method for optical transmission materials

Publications (1)

Publication Number Publication Date
JPS59195549A true JPS59195549A (en) 1984-11-06

Family

ID=16160172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18483783A Pending JPS59195549A (en) 1983-10-03 1983-10-03 Manufacture of base material for optical transmission

Country Status (1)

Country Link
JP (1) JPS59195549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022760A1 (en) * 2001-09-13 2003-03-20 Draka Fibre Technology B.V. A method for manufacturing a bar-shaped preform as well as a method for manufacturing optical fibres from such a bar-shaped preform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022760A1 (en) * 2001-09-13 2003-03-20 Draka Fibre Technology B.V. A method for manufacturing a bar-shaped preform as well as a method for manufacturing optical fibres from such a bar-shaped preform
US7092611B2 (en) 2001-09-13 2006-08-15 Draka Fibre Technology B.V. Method for manufacturing a bar-shaped preform as well as a method for manufacturing optical fibres from such a bar-shaped preform

Similar Documents

Publication Publication Date Title
US4341441A (en) Method of making solid preforms and optical fibers drawn therefrom
US4529427A (en) Method for making low-loss optical waveguides on an industrial scale
US3971645A (en) Method of making compound-glass optical waveguides fabricated by a metal evaporation technique
US4264347A (en) Method of fabricating optical fiber preforms
US3982916A (en) Method for forming optical fiber preform
JP4870573B2 (en) Alkali-doped optical fiber, preform thereof and method for producing the same
SE439480B (en) PROCEDURE FOR THE PREPARATION OF A RODFORM GLASS FOR OPTICAL FIBERS
Blankenship et al. The outside vapor deposition method of fabricating optical waveguide fibers
EP0616605A1 (en) Sol-gel process for forming a germania-doped silica glass rod.
CN1011138B (en) Glass body formed from vapour-derived gel and process for producing same
JPS6021929B2 (en) Method for manufacturing optical glass structures
GB2062610A (en) Single mode optical fibres
US4518407A (en) Optical fibre preform manufacture
CN107162401A (en) A kind of method for preparing ultralow attenuating fiber
JPS59195549A (en) Manufacture of base material for optical transmission
GB1559978A (en) Chemical vapour deposition processes
Morse et al. Aerosol doping technique for MCVD and OVD
US4116653A (en) Optical fiber manufacture
JPH0247421B2 (en) DOOPUSHORIHIKARIFUAIBA
JPS6036343A (en) Production of glass material for optical transmission
USH1754H (en) Optical glass fibers, apparatus and preparation using reactive vapor transport and deposition
EP0135126B1 (en) Preparation of glass for optical fibers
JPS581051B2 (en) Manufacturing method for optical transmission materials
US5641333A (en) Increasing the retention of Ge02 during production of glass articles
JPH0526734B2 (en)