JPS59195108A - Method and device for inspecting gouge on gear - Google Patents

Method and device for inspecting gouge on gear

Info

Publication number
JPS59195108A
JPS59195108A JP58069826A JP6982683A JPS59195108A JP S59195108 A JPS59195108 A JP S59195108A JP 58069826 A JP58069826 A JP 58069826A JP 6982683 A JP6982683 A JP 6982683A JP S59195108 A JPS59195108 A JP S59195108A
Authority
JP
Japan
Prior art keywords
gear
signal
gouge
dent
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58069826A
Other languages
Japanese (ja)
Other versions
JPH0244371B2 (en
Inventor
Osamu Maehara
修 前原
Hiroyuki Yagi
八木 博行
Susumu Takeda
進 武田
Iwao Kanemoto
金本 巌
Seiichi Matsuda
誠一 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Ono Sokki Co Ltd
Original Assignee
Mazda Motor Corp
Ono Sokki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Ono Sokki Co Ltd filed Critical Mazda Motor Corp
Priority to JP58069826A priority Critical patent/JPS59195108A/en
Publication of JPS59195108A publication Critical patent/JPS59195108A/en
Publication of JPH0244371B2 publication Critical patent/JPH0244371B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To discriminate the presence or absence of any gouge on each gear from the magnitude in the dded output by intermeshing all multishaft intermeshing gear trains, rotating the same, detecting oscillation signals, extracting gouge signals and adding the gouge signals in synchronization respectively with the reference signals for the respective shafts. CONSTITUTION:The oscillation signal A for the entire part is inputted to a gouge signal extracting part 50, which outputs a gouge signal E. The signal E is inputted to each of adders 61-63. On the other hand, reference signals B-D are inputted respectively separately to the adders 61-63, by which all the gouge signals are subjected to addition in synchronization with the respectively separate reference signals. The added output from the adder to which the reference point signal of the gouged gear is applied has an extremly large increase rate than the added outputs from the other adders. If, therefore, the added output in a specified time is compared with a prescribed level value and whether the value exceeds the same or not is identified, the presence or absence of the gouge is known. If the generating source for the reference point signal applied to the adder exceeding the level value is investigated, it is knwon that the gear attached to such shaft is the gouged gear.

Description

【発明の詳細な説明】 本光明は、多軸噛合歯車系を構成する各歯車について直
接打痕の有無を検査する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for directly inspecting each gear of a multi-shaft meshing gear system for the presence or absence of dents.

多軸噛合歯車系は2例えは、車輛の変速機等の動力伝達
要素に広く利用されるが、その歯車製作過程で、偶発的
な原因により歯面が加工機と衝突したり、歯車どうしが
衝突して歯面に打#、(凹凸)を生ずることが多い。
Multi-shaft meshing gear systems are widely used in power transmission elements such as vehicle transmissions, but during the gear manufacturing process, the tooth surfaces may collide with the processing machine due to accidental reasons, or the gears may overlap. Collisions often result in bumps (irregularities) on the tooth surface.

この打痕は、数μm程度の微小なものであってもそれが
噛合画面にあると、大きな騒音の発生原因となる。した
がって2例えば、自動車の歯車系については、打痕付歯
車を除くために。
Even if these dents are as small as a few micrometers, if they are present on the meshing surface, they will cause a large amount of noise. Therefore, 2. For example, in the gear system of an automobile, in order to exclude gears with dents.

1吏用する歯車すべてを対象としてその打痕の廟無の検
査が行われる。
All gears used in the first gear are inspected for dents.

さて、打痕の検査法としては、先ず光学的拡大手段を利
用する目視検査が簡単であるが、検査効率が悪く、シか
も、打痕の見落しも生じ易い。そこで、騒音自体を評価
する方法が考えられるのであり、マスター歯車と被検査
歯車とを噛合せて回転させ、そのときの発生音を熟練し
た検査者が感応評価するものである。しかし。
Now, as a method for inspecting dents, first of all, visual inspection using optical magnification means is simple, but the inspection efficiency is poor and dents are easily overlooked. Therefore, a method of evaluating the noise itself has been proposed, in which a master gear and a gear to be inspected are meshed and rotated, and a skilled inspector intuitively evaluates the sound generated at that time. but.

この検査結果は検査者の熟練度に左右される点に問題が
ある。これを改善する方法として発生音をマイクロホン
により電気信号に変換して取り出し、その信号の全帯域
のパワー、あるいはその信号を周波数分析して抽出した
特定周波数成分のパワーを評価することが試みられてい
るが1周囲には同種の雑音成分があり、それに打痕に起
因する発生音が埋もれて十分な抽出が行イつれないこと
が多く、必ずしも、熟練検査者と比べて判定精度は向上
するとは限らない。
This test result is problematic in that it depends on the skill level of the tester. As a way to improve this, attempts have been made to convert the generated sound into an electrical signal using a microphone, extract it, and evaluate the power of the entire band of the signal, or the power of a specific frequency component extracted by frequency analysis of the signal. However, there are noise components of the same type in the surrounding area, and the sound generated by the dents is often buried in these noise components, making it difficult to extract the sound sufficiently, and the accuracy of judgment is not necessarily improved compared to that of experienced inspectors. do not have.

ところで、被検査歯車の歯面上の打痕がマスター歯車の
歯面と接触する瞬間は、衝撃的な噛合状態となり、これ
に伴い、その噛合歯車系には振動が発生する。この状態
を検討するのに。
By the way, at the moment when the dents on the tooth surface of the gear to be inspected come into contact with the tooth surface of the master gear, a shocking meshing state occurs, and as a result, vibrations are generated in the meshing gear system. To consider this condition.

打痕がない場合には、駆動源の振動、軸受による振動等
が合成された定常的な振動が発生しているが、打痕があ
ると、両車系の固有振動数に相当する高い振動数および
大きな振幅の振動が発生する。そして2両者が一つの振
動に合成されて全体の振動となるが、その中で打痕によ
る信号は明らかに区別される。
If there are no dents, steady vibration is occurring, which is a combination of drive source vibration, bearing vibration, etc.; however, if there are dents, high vibrations equivalent to the natural frequency of both vehicle systems are occurring. vibrations of large numbers and large amplitudes occur. The two are then combined into a single vibration to form the overall vibration, but within that vibration, the signal from the dent is clearly distinguishable.

このことに着目して本出願人の一人は、先に。Focusing on this, one of the applicants first proposed the following.

被検査歯車を無傷のマスター歯車の歯面内に噛合せて回
転させ、この間その振動信号を検出してその中から打痕
に起因する信号成分を抽出し。
The gear to be inspected is meshed with the tooth surface of an intact master gear and rotated, and during this time the vibration signal is detected and the signal component caused by the dents is extracted from it.

その大きさを比較して打痕の有無を判定する検査方法を
提案した(特願昭57−157783 )。第1図は、
その打痕信号抽出部であり、振動検出器7を被検査歯車
の支持軸を支承する軸受部に取付け、先ずそれの検出出
力を増幅器51に送り。
We proposed an inspection method for determining the presence or absence of dents by comparing their sizes (Japanese Patent Application No. 157,783/1983). Figure 1 shows
The vibration detector 7, which is the dent signal extraction part, is attached to the bearing part that supports the support shaft of the gear to be inspected, and first, its detection output is sent to the amplifier 51.

適宜の倍率で増幅させた後、フィルタ回路52に送って
予め実験的に求めである打痕に起因する周波数成分を含
む比較的高周波数の成分の分離を行う。尚、ここで、あ
る程度打痕が大きければ、この分離された高周波成分の
みから打痕の有無の判定が可能となるが、微小な打痕の
場合には他の周波数成分きの見分けが困難なことが多い
。そこで2次には、前記フィルタ回路52の出力を整流
回路53に送り、その全波整流信号を形成し、続いて、
それをローパスフィルタ等よりなる包絡線検波回路54
に送り、全波整流信号の包絡線信号に整形を行わせてい
る。こうすると、前記のフィルタ回路52の出力中、定
常的な振動成分は全波整流によりほぼ平滑化され、続い
てその包絡線整形によりほぼ水平線(直流成分)(!:
なる結果、打痕に起因した突発的な周波数成分が明イ順
に抽出されることになる。第2図は、その抽出した信号
成分の波形例であり、前述の騒音評価法では判定困難な
打痕に対し、その振動信号(イ)を検出し、前記処理よ
り明確な打痕信号(ロ)を抽出させた1例である。
After being amplified by an appropriate magnification, the signal is sent to a filter circuit 52 to separate relatively high frequency components including frequency components caused by dents, which have been determined experimentally in advance. Note that if the dent is large enough, it is possible to determine the presence or absence of the dent from only this separated high-frequency component, but in the case of a minute dent, it is difficult to distinguish between other frequency components. There are many things. Therefore, in the secondary stage, the output of the filter circuit 52 is sent to the rectifier circuit 53 to form a full-wave rectified signal, and then,
An envelope detection circuit 54 consisting of a low-pass filter etc.
The envelope signal of the full-wave rectified signal is then reshaped. In this way, in the output of the filter circuit 52, the steady vibration component is almost smoothed by full-wave rectification, and then by the envelope shaping, it becomes almost a horizontal line (DC component) (!:
As a result, sudden frequency components caused by the dents are extracted in order of priority. Figure 2 shows an example of the waveform of the extracted signal component.The vibration signal (A) is detected for a dent that is difficult to identify using the noise evaluation method described above, and the dent signal (RO) is clearer than the above processing. ) is extracted.

さころで、前記検査方法は、被検査歯車をマスター歯車
に噛合せて打痕を検査するものであり、多軸噛合歯車系
の各歯車すべてを検査するには、その歯車数個分の検査
回数が必要となる。
In the above inspection method, the gear to be inspected is meshed with the master gear and dents are inspected, and in order to inspect all the gears in a multi-shaft meshing gear system, it is necessary to inspect several gears. The number of times is required.

その検査回数を少なくするには2被検査歯車どうしを直
接噛合せて検査すればよいが、この場合には、噛合う被
検査歯車のいずれに打痕があっても、打痕信号が抽出さ
れることになり、打痕信号を得てもどの被検査歯車に打
痕があるかの判別を行うことが必璧である。また、マス
ター歯車と比べて、被検査歯車の加工精度は一般に低い
ために、被検査歯車どうしの噛合状態では2種々の振動
が発生し、打痕信号の抽出に際してS/N比が低下する
ことも避けられない。
In order to reduce the number of inspections, it is possible to perform the inspection by directly meshing the two gears to be inspected, but in this case, even if there is a dent in either of the gears to be inspected that mesh, the dent signal will be extracted. Therefore, even if a dent signal is obtained, it is essential to determine which gear to be inspected has a dent. In addition, since the machining accuracy of the gear to be inspected is generally lower than that of the master gear, two types of vibrations occur when the gears to be inspected mesh with each other, resulting in a decrease in the S/N ratio when extracting the dent signal. is also unavoidable.

しかも多軸噛合歯車系9例えはA−0の3軸の各歯車a
〜Cの噛合試験を考えると、歯車aとす、bとCの少な
くとも2回の検査が必要であり、さらに、この2回の検
“査でともに打痕が検出されれば、aとCとの検査が必
要となり、結局、検査回数はマスター歯車を用いた検査
と変りがなくなる。
Moreover, the multi-shaft meshing gear system 9 example is each gear a on the three axes of A-0.
Considering the meshing test for ~C, it is necessary to inspect gears a, b and C at least twice, and if dents are detected in both of these two inspections, then gears a and C must be inspected at least twice. In the end, the number of inspections is the same as the inspection using the master gear.

さて、前記各問題点の解決を検討するのに。Now, let's consider solutions to each of the above problems.

打痕信号は、打痕付の歯が噛合う際に生じるのであり、
これは、結局、打痕信号がその歯車の1回転ことに特定
の回転角位置で発生しているわけであり、それを利用し
、一定周期の打痕信号の発生かあれば、打痕性の歯車の
判別が行えることになる。
The dent signal is generated when teeth with dents mesh together.
After all, the dent signal is generated at a specific rotational angle position for one rotation of the gear, and by using this, if the dent signal is generated at a constant period, it is possible to determine the dent quality. This means that the gears can be identified.

本発明は、上記検討の結果に基づき、多軸噛合歯車系の
各歯車に対する打痕検査を少ない検査回数で、しかも高
い検査精度で行う方法とその装置を提供することを目的
としたものであり。
Based on the results of the above studies, the present invention aims to provide a method and apparatus for performing dent inspection on each gear of a multi-shaft meshing gear system with a small number of inspections and with high inspection accuracy. .

先ず、方法の発明について説明する。First, the invention of the method will be explained.

歯数の異なる駆動歯車、少なくとも1つの中間歯車およ
び被駆動歯車の各被検査歯車により回転伝達を行い、各
歯車の回転軸の1つから全体の振動信号を検出し、その
中からすべての打痕による信号成分を抽出し、別に各歯
車の基準点信号を検出し、前記打痕による信号成分を各
基準信号別にそれと同期させて加算し、打痕付歯車別に
打痕による信号が累積されて振幅の大きなものとなり、
その結果打痕付歯車の存在が明らかにされるようにした
ものである。
Rotation is transmitted by each gear to be inspected: a driving gear with a different number of teeth, at least one intermediate gear, and a driven gear, and the overall vibration signal is detected from one of the rotating shafts of each gear, and all vibration signals are detected from among the vibration signals. The signal component caused by the dents is extracted, the reference point signal of each gear is separately detected, and the signal component due to the dents is added in synchronization with each reference signal separately, and the signal due to the dents is accumulated for each gear with dents. The amplitude becomes large,
As a result, the presence of the gear with dents is made clear.

尚、上記における「同期させて加算」とは。Furthermore, what is meant by "synchronized addition" mentioned above?

基準点信号の発生位置を起点とし、被検査歯車が同じ角
度回転したときの信号成分を順次加算することである。
The method is to start from the generation position of the reference point signal and sequentially add signal components when the gear to be inspected rotates by the same angle.

したがって、定速回転状態では、基準点信号の発生時期
を起点として所定時間経過時点の信号成分を順次加算し
たのと同じ結果になる。
Therefore, in a constant speed rotation state, the result is the same as that of sequentially adding signal components at the time when a predetermined period of time has elapsed using the generation time of the reference point signal as a starting point.

さらに2本発明の詳細な説明すると、駆動源と結合され
た回転軸に被検査歯車を固着してそれを駆動歯車とし、
その駆動歯車と別の被検査歯車を噛合せ、それを中間歯
車とし、その中間歯車とさらに別の被検査歯車を噛合せ
てそれを被1駆動歯車とし、これらは通常の如く歯数が
異なるものである。駆動源を駆動させることにより駆動
歯車、中間歯車、被駆動歯車が回転伝達状態となる。
Two more detailed explanations of the present invention include fixing a gear to be inspected to a rotating shaft connected to a drive source and using it as a drive gear;
The drive gear is meshed with another gear to be inspected to make it an intermediate gear, and the intermediate gear is further meshed with another gear to be inspected to make it the first drive gear, and these have different numbers of teeth as usual. It is something. By driving the drive source, the driving gear, intermediate gear, and driven gear enter a rotation transmission state.

この回転伝達の間、各歯車の歯面が互に噛合する際に振
動が発生する。回転中打痕性の歯面が噛合相手の歯面と
換触する際には、佃J撃的な1彼合状態となるため、こ
の歯東列の固有振動数に相当する比較的高い周波数の振
動成分が発生し、これは定常的な振動に対して周波数お
よび振幅、の異ったものとなる。
During this rotation transmission, vibration is generated when the tooth surfaces of each gear mesh with each other. During rotation, when the tooth surface with a striking effect comes into contact with the tooth surface of the mating partner, it will be in a state of one-sided contact, which is similar to a striking state, so a relatively high frequency corresponding to the natural frequency of this tooth row will be generated. A vibration component is generated, which has a different frequency and amplitude from the steady vibration.

この打痕に起因した振動成分および定常振動は、全体の
振動としてその噛合歯車を介してその歯車の回転軸に伝
わり、さらにその軸受部等に伝わる。
The vibration component and steady vibration caused by the dents are transmitted as overall vibrations to the rotating shaft of the gear via the meshing gear, and further transmitted to the bearing portion and the like.

そこで2次に、前記中間歯車の軸受部等のように振動の
伝達があり、かつ常時静止状態の要素に振動検出器を取
り付け、そこに伝達される振動を電気的な振動信号に変
換して取出ぐ。これにより打痕に起因した振動に相当す
る信号成分を含む全体の振動信号が取出される。
Therefore, the second step is to attach a vibration detector to an element that transmits vibrations and is always in a stationary state, such as the bearing of the intermediate gear, and convert the vibration transmitted thereto into an electrical vibration signal. Take it out. As a result, the entire vibration signal including the signal component corresponding to the vibration caused by the dent is extracted.

この間、同時に各歯車のそれぞれにおいて。During this time, on each of the gears at the same time.

回転部分上の任意の基準点を選定し、そこに付けられた
マークとそれに対向させられた静止状態のマーク検出器
とによりマークの通過するごとに信号を発生させる。こ
れにより各歯車の基準点がそれぞれの所定位置を通過す
るととの基準点信号が取出される。この基準点信号は各
歯車の回転速p4(こ応じたものとなり、各歯車の回転
速度が異なるため基準点信号の発生時期は互に異ったも
のとなる。
An arbitrary reference point on the rotating part is selected, and a mark attached thereto and a stationary mark detector placed opposite the reference point generate a signal each time the mark passes. As a result, a reference point signal indicating that the reference point of each gear passes through each predetermined position is extracted. This reference point signal corresponds to the rotational speed p4 of each gear, and since the rotational speed of each gear is different, the generation timing of the reference point signal is different from each other.

前記の振動信号から前記と同様にして打痕による信号成
分の抽出を行う。抽出さilた打痕による振動信号は@
歯車に存在する打痕に応じてその全てが時間とともに突
起状の信号として発生している。打痕がいずれかの歯車
に一個のみの場合は、それに応じた信号が発生すること
になり、これは一定の間隔で発生しているか、この信号
の発生のみによってはどの1館車に打痕が存在している
かは不明である。また、打痕が複数個ある場合は、打痕
による信号が複数のクループになった状態であり、各ク
ループは打痕を有する歯車の回転の周期と同じ周期で発
生していることになる。しかし、各グループの信号が合
成された信号から直ちにグループ別の信号の周期を判別
することはできない。
A signal component due to a dent is extracted from the vibration signal in the same manner as described above. The vibration signal from the extracted dent is @
All of them are generated as protruding signals over time, depending on the dents that exist on the gear. If there is only one dent on any of the gears, a corresponding signal will be generated, and this will occur at regular intervals, or depending on the occurrence of this signal, which one of the gears will have the dent. It is unknown whether it exists. Further, if there are multiple dents, the signal due to the dents is a plurality of croup, and each croup is generated at the same cycle as the rotation period of the gear having the dents. However, it is not possible to immediately determine the period of each group's signals from a signal obtained by combining the signals of each group.

そこで、打痕による信号かいずれの歯車の回転周期と合
致しているかを判別するために、各歯車の基準点信号と
の同期の有無を調べる。
Therefore, in order to determine which gear's rotation period matches the signal caused by the dent, the presence or absence of synchronization with the reference point signal of each gear is checked.

すなわち、各歯車に加算器を付属させ、全部の信号成分
を各加算器に導入し、各加算器には各歯車の基準点信号
を同期加算指令として印加し、各加算器において同期し
た信号のみを加算する。
In other words, an adder is attached to each gear, all signal components are introduced into each adder, the reference point signal of each gear is applied to each adder as a synchronous addition command, and only the synchronized signals are input to each adder. Add.

第3図において、Aは全体の振動信号であり。In FIG. 3, A is the overall vibration signal.

B、O,Dは各歯車の基準点信号であり、全体の振動信
号Aは打痕信号抽出部50(第1図において既述の回路
)に入力されて打痕信号Eを出力し、打痕信号Eは加算
器61〜63の各々に入力されている。一方、基準点信
号B、O,Dは各別に加算器61〜63に入力されてい
る。各加算器61〜63では全ての打痕信号に対して各
別の基準点信号に同期して加算が行われる。
B, O, and D are reference point signals for each gear, and the overall vibration signal A is input to the dent signal extraction section 50 (the circuit already described in FIG. 1), which outputs the dent signal E, and The trace signal E is input to each of adders 61-63. On the other hand, the reference point signals B, O, and D are input to adders 61 to 63 separately. Each of the adders 61 to 63 adds all the dent signals in synchronization with the respective reference point signals.

すなわち、各歯車の1回転ごとに、その各基があると、
その基準点信号が同期加算指令として印加される加算器
では、その歯車の1回転ことに同じ回転角位置の信号成
分の累積が行われる。
In other words, for each rotation of each gear, each group is
In the adder to which the reference point signal is applied as a synchronous addition command, signal components at the same rotational angular position are accumulated for one rotation of the gear.

例えば、aの歯車に打痕があった場合は、その打痕信号
が累積される。この打痕信号はbの歯車の加算器に対し
ても入力されるが、歯車すの基準点信号とは非同期であ
り、歯車すの加算器では累積されない。この関係はいず
れの歯車に打痕があっても同じことであり、打痕付歯車
の加算器では累積されるが、他の加算器では累積が行わ
れない。
For example, if there is a dent on gear a, the dent signal is accumulated. This dent signal is also input to the adder of the gear b, but it is asynchronous with the reference point signal of the gear and is not accumulated in the adder of the gear. This relationship is the same no matter which gear has dents, and the adder for the gear with dents accumulates, but the other adders do not.

したがって、打痕付歯車の基準点信号の印加される加算
器の加算出力はそれによる他の加算器の加算出力に比べ
て増加率が極めて犬となり。
Therefore, the addition output of the adder to which the reference point signal of the dented gear is applied has an extremely low increase rate compared to the addition output of other adders.

ある一定時間又は回転回数における加算出力を所定のレ
ベル値と比較し、それを越えるか否かをみれば打痕の有
無がわかり、さらに、そのレベル値を越えた加算器に印
加されている基準点信号の発生源をみれば、その軸に取
付けられた歯車が打痕付の歯車であることが判明する。
By comparing the addition output for a certain period of time or number of rotations with a predetermined level value and seeing whether it exceeds it, you can tell whether there is a dent or not. Looking at the source of the point signal reveals that the gear attached to the shaft is a gear with dents.

次に、前記方法の実施装置の発明を以下説明する。この
発明は全体の振動信号および各歯車からの基準信号を正
確に得るようにしたものであり2機台上に駆動歯車、少
なくとも一つの中間歯車および被躯動歯車が回転軸によ
り噛合状態に支持され、いずれか一つの回転軸の支承部
に振動検出器を取付け、各回転軸上にはマークを付し、
それに対向して機台上にマーク検出器が配置されたもの
であり、振動検出器より全体の振動信号を取出し、マー
ク検出器より各々の基準点信号を取出すようにしたもの
である。
Next, the invention of an apparatus for implementing the method will be described below. This invention is designed to accurately obtain the overall vibration signal and the reference signal from each gear, and a driving gear, at least one intermediate gear, and a driven gear are supported in mesh by a rotating shaft on two machines. A vibration detector is attached to the support of one of the rotating shafts, and a mark is placed on each rotating shaft.
A mark detector is placed on the machine stand facing it, and the overall vibration signal is taken out from the vibration detector, and each reference point signal is taken out from the mark detector.

本発明の実施例を第4図について説明する。An embodiment of the invention will be described with reference to FIG.

この実施例は多数の被検査歯車を検査するのに歯車を回
転軸に着脱自在にし、さらに中間歯車を他の歯車に対し
て摺動自在にしたものである。さらに説明すると2着脱
自在の手段としては回転軸上に歯車を直接固定すること
なく他の手段を介して着脱を容易にし、また中間歯車が
他の歯車に対して広幅であり、その全幅について打痕を
検査するようにしたものである。
In this embodiment, in order to inspect a large number of gears to be inspected, the gears are made detachable from the rotating shaft, and the intermediate gears are made slidable relative to other gears. To further explain, the two removable means are such that the gear is not directly fixed on the rotating shaft but can be easily attached and detached through other means, and the intermediate gear is wider than the other gears, so that the gear can be easily attached and detached over its entire width. It was designed to inspect the marks.

第4図において機台40の定盤41上に左から右に順次
配列されているのは駆動軸系10.中間軸系20.負荷
軸系30である。駆動軸系10においては、HjiX動
軸11が軸受13により回転自在に支承され、その一端
は駆動そ一夕12の回転軸と結合され、他端には歯車a
が着脱自在に取付けられる。
In FIG. 4, drive shaft systems 10. Intermediate shaft system 20. This is a load shaft system 30. In the drive shaft system 10, a HjiX drive shaft 11 is rotatably supported by a bearing 13, one end of which is connected to the rotating shaft of the drive shaft 12, and a gear a is connected to the other end.
is removably attached.

図には示されていないが駆動軸11の端部は小径の軸と
なっている。駆動軸11の延長線上には内径孔が小径軸
よりさらに小径のすり割付テーパ円筒体からなるチャッ
ク部を端部にもっ回動軸14力相己置され、その回動軸
14を支承する軸受15は定盤4】に軸方向に穿たれた
摺動溝42に遊合され、その軸受工5は送りねじ機構1
6の先端との保合により軸方向に移動自在にされている
。そして、駆動軸11に被検査歯車aを着装する際には
Although not shown in the figure, the end of the drive shaft 11 is a shaft with a small diameter. A rotating shaft 14 is placed on the extension of the drive shaft 11, and a rotating shaft 14 is placed on the end thereof with a chuck portion made of a tapered cylindrical body with an inner diameter smaller in diameter than the small diameter shaft, and a bearing supports the rotating shaft 14. 15 is loosely engaged with a sliding groove 42 bored in the axial direction in the surface plate 4, and its bearing 5 is connected to the feed screw mechanism 1.
It is made movable in the axial direction by engagement with the tip of 6. Then, when attaching the gear to be inspected a to the drive shaft 11.

先ず、歯車、aを小径軸部上に合せ、続いて送りねじ機
構16によりチャック部を小径軸部側に送り、その内孔
に小径部を順次挿入させる。これによりチャック部の円
筒外周は外方に押し開かれて歯車aの中心孔内周面に押
付けられ、歯車aは固定され、チャック部の内孔は小径
軸部と強力な接触状態となる。歯車aを外す際には。
First, the gear a is placed on the small diameter shaft portion, and then the chuck portion is sent to the small diameter shaft portion side by the feed screw mechanism 16, and the small diameter portions are successively inserted into the inner hole. As a result, the cylindrical outer periphery of the chuck part is pushed outward and pressed against the inner peripheral surface of the center hole of the gear a, the gear a is fixed, and the inner hole of the chuck part is brought into strong contact with the small diameter shaft part. When removing gear a.

送りねじ機構16を前記と逆方向に送り、チャック部を
後退させて歯車aの取外しを行うことになる。次に、そ
の駆動系10の右側の中間軸系20は、駆動軸系10と
平行に穿設された摺動溝43に遊合された摺動台座−4
4上に設けられ、その台座44上において、中間軸21
が軸受23により回転自在に支承され、その突出端に前
記被検査歯車aと噛合させるべき被検査歯車すが位置し
、その歯車すを挾んで反対側の台座44上には、前記駆
動軸系10と同様に摺動溝45が穿たれ、そこに軸受2
5が遊合され、軸受25には先端にチャック部を有する
回動軸24が支承されて送りねじ機構26の先端との保
合により軸方向に移動自在であり。
The feed screw mechanism 16 is sent in the opposite direction to the above, the chuck part is moved backward, and the gear a is removed. Next, the intermediate shaft system 20 on the right side of the drive shaft system 10 is connected to a sliding pedestal-4 which is loosely engaged with a sliding groove 43 bored parallel to the drive shaft system 10.
4, and on the pedestal 44, the intermediate shaft 21
is rotatably supported by a bearing 23, and a gear to be inspected to be meshed with the gear to be inspected a is located at the protruding end thereof, and the drive shaft system is mounted on a pedestal 44 on the opposite side of the gear. 10, a sliding groove 45 is bored, and the bearing 2 is inserted therein.
A rotating shaft 24 having a chuck portion at its tip is supported by the bearing 25, and is movable in the axial direction by engagement with the tip of the feed screw mechanism 26.

前記と同様にして歯車すは中間軸21に固定される。ま
た、その台座44自体も、その一端が摺動溝43内に設
けたカム機構22に当接され、他端部が摺動溝43内に
設けた圧縮バネ27に当接させられており、カム機構2
2の所定角度の揺動に伴って台座44およびその上の中
間軸糸20は軸方向に往復させられる。その中間軸系2
0のさらに右側の負荷軸系30は、負荷軸31が軸受3
3により回転自在に支承され、その一端が負荷装置32
と結合され、他端に前記被検査歯車すと噛合させるべき
被検査歯車Cが位置し、その歯車Cを挾んで反対側の定
盤41に軸方向に摺動溝46が穿たれ。
The gear wheel is fixed to the intermediate shaft 21 in the same manner as described above. Further, the pedestal 44 itself has one end in contact with the cam mechanism 22 provided in the sliding groove 43 and the other end in contact with a compression spring 27 provided in the sliding groove 43. Cam mechanism 2
The pedestal 44 and the intermediate shaft thread 20 thereon are reciprocated in the axial direction as the pedestal 44 and the intermediate shaft thread 20 thereon are oscillated by a predetermined angle. The intermediate shaft system 2
In the load shaft system 30 further to the right of 0, the load shaft 31 is connected to the bearing 3.
3, one end of which is rotatably supported by a load device 32.
A gear C to be inspected to be meshed with the gear C to be inspected is located at the other end, and a sliding groove 46 is bored in the axial direction in the surface plate 41 on the opposite side, sandwiching the gear C.

その中に先端にチャック部をもつ回動軸34の軸受35
が遊合さイt、その軸受15が送りねじ機構36により
軸方向に移動自在にさせられているものであり、負荷軸
31上に配置された歯車Cは、前記と同様にしてチャッ
ク部により負荷軸31に固定される。
Bearing 35 of rotating shaft 34 which has a chuck part at the tip thereof
The bearing 15 is freely movable in the axial direction by the feed screw mechanism 36, and the gear C disposed on the load shaft 31 is moved by the chuck part in the same manner as described above. It is fixed to the load shaft 31.

次に、前記駆動軸11.中間軸21.負荷軸31の周面
の1ケ所にはそれぞれマークとして反射片4.5.6が
付着され、その各反射片と対向する状態に定盤41上に
はマーク検出器1,2.3(但し、2は定盤41に遊合
された台座44上に固設)が配置されている。また、前
記中間軸21の軸受23の外周面には振動検出器7が固
設され。
Next, the drive shaft 11. Intermediate shaft 21. Reflective pieces 4.5.6 are attached as marks to one place on the circumferential surface of the load shaft 31, and mark detectors 1, 2.3 (but , 2 are fixedly mounted on a pedestal 44 loosely coupled to the surface plate 41). Further, a vibration detector 7 is fixedly installed on the outer peripheral surface of the bearing 23 of the intermediate shaft 21.

マーク検出器1〜3は、それぞれの固設位置を谷対応す
る反射片4〜6が通過するごとに基準点信号B、O,D
(第3図)を発生し、振動検出器7は軸受23に伝達さ
れる噛合振動、軸受振動等の振動に対応した振動信号A
(第3図)を発生する。
Mark detectors 1 to 3 receive reference point signals B, O, and D each time reflective pieces 4 to 6 corresponding to valleys pass through their respective fixed positions.
(Fig. 3), and the vibration detector 7 generates a vibration signal A corresponding to vibrations such as meshing vibrations and bearing vibrations transmitted to the bearing 23.
(Figure 3) is generated.

以上において、打痕の検査作業は、以下のように行われ
る。
In the above, the inspection work for dents is performed as follows.

先ず、前記駆動軸11.中間軸21.負荷軸31に被検
査歯車a、b、cを位置させ、その反対側から各対向す
る回動軸14.24.34のチャック部を歯車の中心孔
に挿入させ、歯車a、b、cをそれぞれ駆動軸11.中
間軸21.負荷軸31により回転が伝達されるようにす
る。
First, the drive shaft 11. Intermediate shaft 21. Position the gears a, b, and c to be inspected on the load shaft 31, and insert the chuck portions of the opposing rotating shafts 14, 24, and 34 into the center holes of the gears from the opposite side. Each drive shaft 11. Intermediate shaft 21. Rotation is transmitted by the load shaft 31.

続いて、駆動モータ12を回転させ、さらに負荷装置3
2の発生負荷を所定の大きさに設定する。
Subsequently, the drive motor 12 is rotated, and the load device 3 is further rotated.
The generated load of step 2 is set to a predetermined size.

これにより歯車a、それと噛合う歯車す、それと噛合う
歯車Cが回転状態になる。そして、歯車Cが負荷を受け
る結果、それと噛合う歯車す。
As a result, the gear A, the gear S that meshes with it, and the gear C that meshes with it become in a rotating state. As a result of the gear C receiving a load, the gear C meshes with it.

aも負荷を受けつつ回転するζdこなる。このときカム
機構22を検査の前半では第3図の実線に示す位置に回
動停止させ、後半では二点鎖線で示す位置に回動停止さ
せ、これに伴って台座44が軸方向に往復動し、それと
一体の中間軸21゜歯車すが往復動し、歯車a、cに対
して歯車すの歯幅全部の噛合位置が行われる。
ζd also rotates while receiving a load. At this time, in the first half of the inspection, the cam mechanism 22 is rotated and stopped at the position shown by the solid line in FIG. 3, and in the second half, it is stopped at the position shown by the two-dot chain line. However, the intermediate shaft 21° gear wheel integral therewith reciprocates, and the meshing position of the entire tooth width of the gear wheel is established with respect to the gears a and c.

この間、歯車a、b、cの噛合振動、各軸受13、15
.23.25.33.35の振動、駆動モータ12の振
動、カム機構22の振動等種々の発生振動のうち、中間
軸21の軸受23に伝達された振動を振動検出器7が電
気信号Aに変換し、同時に、マーク検出器1,2,3は
、駆動軸11.中間軸21゜負荷軸31の1回転ごとに
反射片4,5.6との対向により基準点信号B、 C,
Dが出力される。
During this time, the meshing vibration of gears a, b, and c, and the bearings 13 and 15
.. The vibration detector 7 converts the vibration transmitted to the bearing 23 of the intermediate shaft 21 into an electrical signal A among various generated vibrations such as the vibration of the drive motor 12, the vibration of the cam mechanism 22, etc. At the same time, the mark detectors 1, 2, 3 are connected to the drive shaft 11. Every rotation of the intermediate shaft 21° load shaft 31, the reference point signals B, C, are generated by opposing the reflecting pieces 4, 5.6
D is output.

そして、各信号A、B、0.Dは前記第3図の回路によ
り電気的に処理される。
Then, each signal A, B, 0 . D is electrically processed by the circuit shown in FIG.

尚、上記説明においては、振動信号を中間軸の軸受から
取り出す場合を例示したが、他の軸−の軸受やあるいは
、軸に振動検出用に内輪が回転し、外輪が静止可能な振
動取出環を設けてそれから振動信号を取出してもよく、
さらに、振動検出器は各軸に対してそれぞれ設けてもよ
い。
In the above explanation, the vibration signal is taken out from the bearing of the intermediate shaft, but it is also possible to use a bearing of another shaft, or a vibration extraction ring in which the inner ring rotates and the outer ring remains stationary for vibration detection. may be provided and the vibration signal may be extracted from it,
Furthermore, a vibration detector may be provided for each axis.

また、被検査歯車の軸への着脱としては、センタースプ
ライン、キーコレットチャック等公知の着脱手段があり
、また、被検査歯車がすでに軸に取付けられていたり、
一体化されているものでは、駆動軸等にその歯車取付軸
自体を着脱させることになる。
In addition, for attaching and detaching the gear to be inspected to and from the shaft, there are known attachment and detachment means such as center splines and key collet chucks.
If the gear is integrated, the gear mounting shaft itself must be attached to and detached from the drive shaft or the like.

また、中間軸系10の往復動手段としてはカム機構によ
らす、往復シリンダ機構、ねじ送り機構等がある。
Further, as the reciprocating means for the intermediate shaft system 10, there are a cam mechanism, a reciprocating cylinder mechanism, a screw feeding mechanism, and the like.

また、加算部の同期加算につき詳述していないが、従来
公知の基準点信号と同期して一定微少時間ごとに打痕信
号を加算させるか、さらに。
Further, although the synchronous addition of the adding section is not described in detail, it is possible to add the dent signal at regular minute intervals in synchronization with a conventionally known reference point signal.

前記のもののいずれか1つの軸にロータリエンコーダを
設け、そのパルスにより打痕信号をA/D変換させ、デ
ィジタル的に加算させるが。
A rotary encoder is provided on one of the axes of the above, and the dent signals are A/D converted by the pulses thereof and added digitally.

アナログ、ディジタルいずれでもよい。It can be either analog or digital.

以上のとおりであり2本発明は、多軸噛合歯車系の噛合
歯車列をすべて噛合せて回転させ。
As described above, the present invention rotates all meshing gear trains of a multi-shaft meshing gear system in mesh with each other.

この間、振動信号を検出してそこから打痕信号を抽出し
、さらに、その打痕信号を各軸の基準点信号とそれぞれ
同期させて加署り、その加算出力の大小に基ついて各歯
車ごとの打痕の有無を判別するので、1回の検査におい
て、同時に歯車列のすべての歯車の検査を高い精度で行
うことができ2判別は打痕信号の加算によって行、われ
るので1判別が自動的に行われ、さらに検査効率が極め
て向上する。
During this time, the vibration signal is detected and a dent signal is extracted from it, and the dent signal is synchronized with the reference point signal of each axis and processed, and based on the magnitude of the added output, each gear is Since the presence or absence of dents is determined, all gears in the gear train can be inspected simultaneously with high accuracy in one inspection.Since the 2nd determination is performed by adding the dent signals, the 1st determination is automatic. Furthermore, the inspection efficiency is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、既に提某した打痕信号抽出部のフロック線図
、第2図は振動検出器から取出された振動信号とそれか
ら抽出された打痕信号を示す波形図、第3図は検出信号
処理部のブロック線図、第4図は本発明の実施例を示す
平面図である。 10:駆動軸系、20.中間軸系、30:負荷軸系。 40:機台、50:打痕信号抽出部、60.加算部。 1〜3:マーク検出器、4〜6:マーク、7:振動検出
器、11:駆動軸、21:中間軸、31:負荷軸 =に1 図 千2図 +4図 才3図
Figure 1 is a flock diagram of the previously proposed dent signal extraction section, Figure 2 is a waveform diagram showing the vibration signal extracted from the vibration detector and the dent signal extracted from it, and Figure 3 is the detection A block diagram of the signal processing section, FIG. 4 is a plan view showing an embodiment of the present invention. 10: Drive shaft system, 20. Intermediate shaft system, 30: Load shaft system. 40: machine base, 50: dent signal extraction section, 60. Addition section. 1 to 3: Mark detector, 4 to 6: Mark, 7: Vibration detector, 11: Drive shaft, 21: Intermediate shaft, 31: Load axis = 1 Figure 1, 2 Figures + 4 Figures, 3 Figures

Claims (1)

【特許請求の範囲】 ■ 駆動圃車、少なくとも一つの中間歯車および抜駆d
J歯車により回転伝達を行い、谷歯車の回転ll11の
一つからの全体の振動信号を検出し、その中から打痕に
よる信号成分を抽出し。 別に各両車の基準点信号を検出し、前記信号成分を各基
準点信号と同期させて加算し、その加算値の大小により
各歯車の打痕の有無を判定するようにしたところの歯車
打痕の検査方法。 2 機台上に駆動歯車、少なくとも一つの中間歯車およ
び被駆動歯車が各々の回転軸により11i4合状態に支
持され、任意の回転軸の固定支承部に撮動検出器を取付
け、各回転軸上にマークを付し、各マークに対向して後
台上にマ一り検出器を設値したところの歯車打痕の検査
装置。
[Claims] ■ A drive farm wheel, at least one intermediate gear, and an extractor d
Rotation is transmitted by the J gear, the entire vibration signal from one of the rotations 111 of the valley gear is detected, and the signal component due to the dent is extracted from it. Separately, the reference point signal of each vehicle is detected, the signal component is added in synchronization with each reference point signal, and the presence or absence of a dent on each gear is determined based on the magnitude of the added value. How to inspect marks. 2. A driving gear, at least one intermediate gear, and a driven gear are supported by their respective rotating shafts in a 11i4 state on the machine base, and an imaging detector is attached to the fixed support of any rotating shaft, A gear dent inspection device with marks attached to it and a mark detector set on the rear stand opposite each mark.
JP58069826A 1983-04-20 1983-04-20 Method and device for inspecting gouge on gear Granted JPS59195108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58069826A JPS59195108A (en) 1983-04-20 1983-04-20 Method and device for inspecting gouge on gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58069826A JPS59195108A (en) 1983-04-20 1983-04-20 Method and device for inspecting gouge on gear

Publications (2)

Publication Number Publication Date
JPS59195108A true JPS59195108A (en) 1984-11-06
JPH0244371B2 JPH0244371B2 (en) 1990-10-03

Family

ID=13413946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58069826A Granted JPS59195108A (en) 1983-04-20 1983-04-20 Method and device for inspecting gouge on gear

Country Status (1)

Country Link
JP (1) JPS59195108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852586A (en) * 2009-03-30 2010-10-06 加特可株式会社 The impression detection method of the indentation detecting device of gear and gear

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852586A (en) * 2009-03-30 2010-10-06 加特可株式会社 The impression detection method of the indentation detecting device of gear and gear
JP2010236929A (en) * 2009-03-30 2010-10-21 Jatco Ltd Nick detection device of gear, and nick detection method of gear

Also Published As

Publication number Publication date
JPH0244371B2 (en) 1990-10-03

Similar Documents

Publication Publication Date Title
US4931949A (en) Method and apparatus for detecting gear defects
JP7101952B2 (en) Multi-tasking machine with failure prediction function
JPH02298825A (en) Inspecting device of abnormality for rotary machine
DE102007031742B4 (en) Device and method for noise testing of radial bearings
Gu et al. Detection of faults in gearboxes using acoustic emission signal
EP2730898B1 (en) Bearing, housing including a set of bearings, associated method and computer program
JPS59174732A (en) Apparatus for judging abnormality of gear unit
CN101354312A (en) Bearing failure diagnosis system
JPS58500605A (en) Method and device for monitoring tool status of a machine tool that performs periodic machining
JP4071363B2 (en) Method for monitoring vehicles with acceleration sensors, in particular helicopter transmission assemblies
RU94018522A (en) Toothed gear precise working method and lathe
JPS59195108A (en) Method and device for inspecting gouge on gear
CN111435104B (en) Inspection apparatus
CN112284720B (en) Acoustic test-based fault diagnosis method for central transmission bevel gear of aircraft engine
CN105651512A (en) Bump detection method of main speed-reducing gear of automobile driving axle
Freitas et al. Comparison of vibration and acoustic measurements for detection of bearing defects
FR2768509A1 (en) METHOD FOR DETERMINING ROTOR VIBRATIONS OF ROTATING MACHINE, EQUIPMENT FOR ROTATING MACHINE AND EQUIPPED ROTATING MACHINE
CN206683524U (en) A kind of front end wheel train co-plane cubing
CN210180680U (en) Bearing on-line test parameter acquisition device
JP2013160749A (en) Facility diagnostic method and facility diagnostic device of rotary machine
Hariharan et al. Investigations of Antifriction bearing defects using Vibration Signatures
RU56612U1 (en) VIBRODIAGNOSTIC STAND FOR WHEEL PAIRS OF PASSENGER CARS WITH REDUCERS IN THE MIDDLE PART (SVRP-02)
JPH091430A (en) Method and apparatus for detecting damage of assembled part
JP2000171351A (en) Acoustic inspecting device for rolling bearing
SU1726204A2 (en) Diagnosis technique of state of metal-cutting machines