JPS59194819A - Molding die for crystalline resin pipe - Google Patents

Molding die for crystalline resin pipe

Info

Publication number
JPS59194819A
JPS59194819A JP58067777A JP6777783A JPS59194819A JP S59194819 A JPS59194819 A JP S59194819A JP 58067777 A JP58067777 A JP 58067777A JP 6777783 A JP6777783 A JP 6777783A JP S59194819 A JPS59194819 A JP S59194819A
Authority
JP
Japan
Prior art keywords
die
resin
specific volume
diameter
given
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58067777A
Other languages
Japanese (ja)
Inventor
Takashi Sonomura
隆志 薗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58067777A priority Critical patent/JPS59194819A/en
Publication of JPS59194819A publication Critical patent/JPS59194819A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/30Drawing through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • B29C48/87Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline

Abstract

PURPOSE:To obtain the titled die giving a pipe product improved in dimensional stability and excellent in precision of diameter, thickness, etc., directly after extrusion by specifying the outer diameter of the inner die and the inner diameter of the outer die, of a set of circular dies fixed to an extruder. CONSTITUTION:When the temperature of resin, at the resin inlet, that is extruded in the Q-direction is given by T1, the surface temperature of resin at the outlet is given by T2, the specific volume in a melting phase M of crystalline resin that changes remarkably near the softening or melting temperature T3 is given by V1, the specific volume obtained by extending the specific volume curve of the melting phase M is given by V2, the specific volume in the solid phase at the softening or melting temperature T3 is given by V3, the specific volume of the solid phase S at the surface temperature of resin on the die outlet is given by V4, the inner diameter of an outside die 2 in the inlet section is given by D1 and the outer diameter of the inside die 1 is given by d1, the inner diameter D2 of the outside die 2 and the inner diameter d2 of the inside die 1 are decided by formulas I -III.

Description

【発明の詳細な説明】 本発明は、結晶性樹脂・ぞイブの成形用ダイに関する1
、 一般にノ々イブの押出成形は、ダイ出口を溶融状態で押
出した後、水等で冷却していたが、寸法安定性が悪く製
品の精度が低F L、ていた。そのためダイ内部で、軟
化温度又は溶融温度にまで冷却させる固相押出法による
生産が行われていたが、樹脂が溶融状態から固相状態へ
遭移することによる体積の腫、激な変化が生じ、樹脂が
内ダイを締伺け、摩擦抵抗が急増し押出圧が増加(た。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a die for molding crystalline resin.
Generally, in Nonoib's extrusion molding, after extruding the product in a molten state at the exit of the die, the product was cooled with water, etc., but the dimensional stability was poor and the precision of the product was low. For this reason, production has been carried out by solid-phase extrusion, in which the inside of the die is cooled to a softening or melting temperature, but this causes swelling and drastic changes in volume due to the resin transitioning from a molten state to a solid state. As the resin tightened around the inner die, the frictional resistance rapidly increased and the extrusion pressure increased.

又必然的に固相状態で急激な成形を強いる結果となり、
その為に押出機の耐圧強度を非常に高める必要があり、
生産が困難でコストも大幅に増加した。
In addition, it inevitably results in forced rapid molding in the solid state,
Therefore, it is necessary to greatly increase the pressure resistance of the extruder.
Production was difficult and costs increased significantly.

従来、固相押出法において摩擦抵抗の急増を防止する方
法として、内グイと樹脂間に潤滑油を注入したり、樹脂
に滑剤を混入することにより摩擦係数を小さくしていた
か、或いは樹脂が固化しつつある領域の内ダイに、経験
的に先細りテーパξをつけていた。しかし、前者にはパ
イプ製品の内面に潤滑油が残り、−?ミやほこりが付着
する欠点や、滑剤混入により物性が低下する欠点があり
、後者には経験的テーパを決定するに至る時間的浪費が
激しく、最適テーパの発見が困難であると言う欠点があ
った。従来、結晶性樹脂パイプ成形用ダイにおいて、先
細りの寸法は樹脂に関係なく、約1胴程度の勾配をつけ
ていたが、不適当なものが多く、押出圧の低下を起し十
分な物性が得られないものがあった。又、経験に依る為
/■精度のも0 のは々かった。
Conventionally, methods to prevent a sudden increase in frictional resistance in solid-phase extrusion have been to reduce the coefficient of friction by injecting lubricating oil between the inner guide and the resin, or by mixing a lubricant into the resin, or by preventing the resin from solidifying. Based on experience, a tapered taper ξ was added to the inner die in the area where it was being formed. However, in the former case, lubricating oil remains on the inner surface of the pipe product, and -? There are drawbacks such as dirt and dust adhesion, and physical properties deteriorate due to lubricant contamination, and the latter has the drawback that it is extremely time consuming to determine the empirical taper and it is difficult to find the optimal taper. Ta. Conventionally, in dies for molding crystalline resin pipes, the tapered dimension has been set at a slope of approximately one cylinder, regardless of the resin, but this is often inappropriate and causes a drop in extrusion pressure, resulting in insufficient physical properties. There was something I couldn't get. Also, since it depends on experience/■Accuracy was also very high.

本発明は先細りチー・ぐの勾配を、樹脂の比容積の変化
に着目して開発し7たもので、固相押出の状況変化に巾
広く対応できる成形ダイにすることによって押出直後の
製品の寸法安定性が増し、パイプ製品の直径、厚み等の
精度が向上した。又、樹脂の流れが円滑になり、流れに
対し直角方向における物性、例えば引張強度が、流れ方
向の引張強度の半分以下であったのが、該ダイを用いる
ことにより同等のレベルに寸で向上した。。
The present invention was developed by focusing on the change in the specific volume of the resin by focusing on the gradient of the tapered chi. Dimensional stability has increased, and the accuracy of pipe product diameter, thickness, etc. has improved. In addition, the flow of the resin becomes smoother, and the physical properties in the direction perpendicular to the flow, such as tensile strength, which was less than half of the tensile strength in the flow direction, have been instantly improved to the same level by using this die. did. .

・ξイブの表面および内面の肌もダイとの接触が制御で
きる為良好例なった。
・The skin on the surface and inner surface of ξ Eve is also a good example because the contact with the die can be controlled.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図、第4図において、矢印θで示す押出方向の該ダ
イ人口部における樹脂温度TIs出口部における樹脂表
面温度T2、前述の各比容積■l + V2 +v3お
よびv4、入口部の外ダイの内径D1%内ダイの外径d
1から、出口部の外ダイの内径D2 、内ダイの外径d
2は次式のように決定する。
In FIGS. 1 and 4, the resin temperature TIs at the die port in the extrusion direction indicated by the arrow θ, the resin surface temperature T2 at the outlet, the aforementioned specific volumes ■l + V2 +v3 and v4, and the outer die at the inlet. Inner diameter D1% Outer diameter d of inner die
1, the inner diameter of the outer die at the outlet D2, the outer diameter of the inner die d
2 is determined as shown in the following equation.

2 d2/〈/    ・・・・・・・・・(3)d、  
       D。
2 d2/〈/ ・・・・・・・・・(3) d,
D.

該タ゛イ出口部においてパイプ成形された樹脂の状態は
、表面は固化しているものの、内部は結晶化による発熱
などにより、未だ固化していない為、出口部は言わゆる
半固体・半溶融体状態であり、比容積は第1図のv4か
ら■2の間になると考えられる。よって内ダイの外径は
v4に基〈値より大きく。
At the exit of the tie, the pipe-molded resin is solidified on the surface, but the inside is not yet solidified due to heat generation due to crystallization, so the exit is in a so-called semi-solid/semi-molten state. Therefore, the specific volume is considered to be between v4 and ■2 in FIG. Therefore, the outer diameter of the inner die is larger than the value based on v4.

v2に基く値より小さい。smaller than the value based on v2.

又、外ダイの内径は、主として該ダイにおける樹脂の設
定温度と樹脂の押出速度から算出される冷却速度により
決定される。
Further, the inner diameter of the outer die is mainly determined by the cooling rate calculated from the set temperature of the resin in the die and the extrusion rate of the resin.

冷却速度が一番遅い場合は、ダイ出口部で樹脂は未だ溶
融状態か、それに非常に近い状態であり、出口部の外ダ
イの内径は、入口部のそれに等しい値をとることにより
樹脂とダイ内壁と引っ掛らないようにできる。
When the cooling rate is the slowest, the resin is still in a molten state or very close to it at the die exit, and the inner diameter of the outer die at the exit is equal to that at the inlet, so that the resin and die are You can prevent it from getting caught on the inner wall.

又、冷却速度が一番速い場合は、グイ出口部で樹脂は、
前述の半溶融・半固体の状態であり、その時の樹脂の比
容積は前述のようにv4がら■2の間にあるが、検討の
結果v4からv3の間の比容積より算出[た値の場合に
おいて、樹脂がV!がらv3の状態の時に引っ掛り、押
出圧が急上昇する。
In addition, when the cooling rate is the fastest, the resin at the goo outlet is
It is in the semi-molten/semi-solid state mentioned above, and the specific volume of the resin at that time is between v4 and ■2 as mentioned above, but as a result of examination, the value calculated from the specific volume between v4 and v3 is In the case, the resin is V! When it is in the v3 state, it gets stuck and the extrusion pressure increases rapidly.

又、外ダイの内径は、押出圧上昇の原因のひとつと考え
られている、樹脂とダイ壁面との間の粘着抵抗の低減を
計る為■2から■]の間の比容積より算出した値の場合
も良好な結果を得た。
In addition, the inner diameter of the outer die is a value calculated from the specific volume between ■2 and ■] in order to reduce the adhesive resistance between the resin and the die wall, which is considered to be one of the causes of increased extrusion pressure. Good results were also obtained in the case of

又、該ダイ入口部における樹脂温度がTlより高い場合
においても、計算上■1を用いる。
Further, even when the resin temperature at the die inlet is higher than Tl, formula (1) is used for calculation.

つ1す、vlより大きい比容積の状態で侵入した時に、
ウェルド現象の解消・機械的物性の向上の点からも■1
に基き計算したほうがよいと考えられる。
1. When entering with a specific volume larger than vl,
Also from the point of view of eliminating welding phenomenon and improving mechanical properties ■1
It may be better to calculate based on

以上のように、本発明のダイは第4図に示す通り、入口
部から出口部にかけて連続的に縮小されており、内グイ
と外ダイの間のパイプ状の空隙は出口部にいくにつれ大
きくなっていることを特徴とするものである。
As described above, as shown in Fig. 4, the die of the present invention is continuously reduced in size from the inlet to the outlet, and the pipe-shaped gap between the inner die and the outer die becomes larger toward the outlet. It is characterized by the fact that

本発明適用−oJ能な、軟化温度又は溶融温度T3近傍
において比容積が急激に変化する結晶性樹脂、例えば、
+5リエチレン、ポリプロピレン、fリアセタール、ナ
イロン等の内、代表的結晶性樹脂について、前述の3式
により例示すれば次の通りである。
Application of the present invention - A crystalline resin whose specific volume rapidly changes near the softening temperature or melting temperature T3, for example,
Typical crystalline resins among +5 polyethylene, polypropylene, f-lyacetal, nylon, etc. are exemplified by the above three formulas as follows.

ポリニー1−レン ポリエチレンの実施例とj7て、第2図のヨウナ比容積
変化を示すものを使用する。
As an example of polynylene 1-lene polyethylene, the one showing the specific volume change shown in FIG. 2 is used.

該環状ダイの入口部における樹脂温度を140℃その時
の比容積を1,253 Cm3/f、外ダイの内径を1
001m、内ダイの外径を90篩とし、出口部の樹脂表
面温度を80℃、その時の比容積を1,078cm3/
デとすると、外ダイの内径は98.8關〜100.0叫
、内ダイの外径は87.411111〜88.9閣であ
る。
The resin temperature at the inlet of the annular die is 140°C, the specific volume is 1,253 Cm3/f, and the inner diameter of the outer die is 1.
001m, the outer diameter of the inner die is 90 sieve, the resin surface temperature at the outlet is 80℃, and the specific volume at that time is 1,078cm3/
In the case of "D", the inner diameter of the outer die is 98.8 mm to 100.0 mm, and the outer diameter of the inner die is 87.411111 mm to 88.9 mm.

内ダイの外径が87.4 rtm以下の場合、摩擦抵抗
がほとんどなく、押出圧が急激に低下しウェルドマーク
が生じ、混p六れない為物性も低下する。又、88.9
a以上の場合、押出圧が急激に上昇し生産を停止する必
要が生じる。
When the outer diameter of the inner die is 87.4 rtm or less, there is almost no frictional resistance, the extrusion pressure decreases rapidly, weld marks are generated, and the physical properties are also deteriorated due to lack of mixing. Also, 88.9
If it is more than a, the extrusion pressure will rise rapidly and it will be necessary to stop production.

又、87.4+mm〜88.91mの場合、樹脂の流れ
が円滑になり、残留応力も小さくなるので、流れに対し
直角方向の引張強度は流れ方向のそれに対し、従来50
%〜70%程度であったのが85%〜90%にまで向上
した。
In addition, in the case of 87.4+mm to 88.91m, the flow of the resin becomes smooth and the residual stress is small, so the tensile strength in the direction perpendicular to the flow is 50 mm compared to that in the flow direction.
% to 70% has improved to 85% to 90%.

又、目標とする製品の寸法に対し、誤差1%以内の精度
で生産でき、従来・ぐイブの表面は、サメ肌、ウロコ状
と言われるものや、流れ方向に波打っているものがあっ
たが、該範囲のチー・ぐダイを用いることにより、表面
肌も市販に耐えうるものが生産できた。
In addition, it is possible to produce products with an accuracy of less than 1% for the target product dimensions, and the surface of conventional guibs has been known to be shark-skinned, scaly, or wavy in the direction of flow. However, by using Chi Gudai in this range, it was possible to produce a product with a surface skin that could be sold commercially.

;Jセリプロピレン ポリゾロビレ/の実施例と1−て、第3図のような比容
積変化を示すものを使用する。
; Example 1 of J Seripropylene Polyzorobire/A material exhibiting a specific volume change as shown in FIG. 3 was used.

該環状ダイの人口部における樹脂温度を170℃その時
の比容積を1.272 cm3/ ff 、  外ダイ
の内径を100論、内ダイの外径を90咽とし、出口部
の樹脂表面温度を80℃、その時の比容積を1,148
cm3/y−とすると、外ダイの内径は97,8 rt
an 〜100.0市、内ダイの外径は87.fan〜
8B、0ranでおる。
The resin temperature at the artificial part of the annular die is 170°C, the specific volume is 1.272 cm3/ff, the inner diameter of the outer die is 100°, the outer diameter of the inner die is 90°, and the resin surface temperature at the outlet is 80°. ℃, the specific volume at that time is 1,148
cm3/y-, the inner diameter of the outer die is 97.8 rt
an ~100.0 city, the outer diameter of the inner die is 87. fan~
8B, 0ran.

上記範囲の先細りダイを用いると、流れに対し直角方向
の引張強度は流れ方向のそれに対し、従来60%程度で
あったのに対し、75%〜85%にまで向上し、ポリエ
チレン同様、誤差1%以内の精度の生産が可能になり、
・ξイブ表面肌も良好になった。
When a tapered die in the above range is used, the tensile strength in the direction perpendicular to the flow is improved from 60% of that in the flow direction to 75% to 85%, and as with polyethylene, the error is 1 It becomes possible to produce with an accuracy within %,
・ξ Eve's surface skin also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、結晶性樹脂固相・溶融相比容積一温度線図で
ある。 ■、〜■4  ・・・・・・各比容積 T1  ・・・・・・・・・・・・ダイ入口での樹脂温
度T2  ・・・・・・・・・・・・ダイ出口でのツク
イブ表面温度T3  ・・・・・・・・・・・・軟化温
度又は溶融温度第2図はポリエチレンの、又、第3図は
ポリプロピレンの固相・溶融相比容積一温度線図をそれ
ぞれを示す。第4図は本発明成形ダイの例を示す側断面
図である。 l・・・・・・・・・・・・内ダイ 2・・・・・・・・・・・・外ダイ 3・・・・・・・・・・・・ノ々ンドヒーター特許出願
人  旭化成工業株式会社 第1図 温度(0C) 第2図 −4004080120160200 温度(0C) 第3図 −4004080120160200 温度(0C) 第4図
FIG. 1 is a crystalline resin solid phase/molten phase specific volume-temperature diagram. ■、~■4 ...... Each specific volume T1 ...... Resin temperature at die inlet T2 ......... Resin temperature at die exit Tsukubu surface temperature T3 ・・・・・・・・・・・・Softening temperature or melting temperature Figure 2 shows the solid phase/molten phase specific volume-temperature diagram of polyethylene, and Figure 3 shows the solid phase/molten phase specific volume-temperature diagram of polypropylene. show. FIG. 4 is a side sectional view showing an example of the molding die of the present invention. l・・・・・・・・・・・・Inner die 2・・・・・・・・・Outer die 3・・・・・・・・・・・・Nonondo heater patent applicant Asahi Kasei Corporation Figure 1 Temperature (0C) Figure 2 - 4004080120160200 Temperature (0C) Figure 3 - 4004080120160200 Temperature (0C) Figure 4

Claims (1)

【特許請求の範囲】 押出機に固定された環状ダイを用いて、ダイ出口におけ
る樹脂の表面温度が、該樹脂の軟化温度又は溶融温度以
下で、ノξイゾを連続的に成形する方法において、該環
状ダイの内ダイの外径および外ダイの内径が、以下の(
1) 、 (2)および(3)の3式により決定される
ことを特徴とする結晶性樹脂パイプの成形用ダイ (1)該環状ダイの樹脂人口部の内ダイの外径と樹脂出
口部の内ダイの外径の比は、式(1)の範囲にある (2)該環状ダイの樹脂入口部の外ダイの内径と樹脂出
口部の外ダイの内径の比は、式(2)の範囲にある (3)該環状ダイの樹脂入口部の内ダイの外径と樹脂出
口部の内ダイの外径の比と、樹脂入口部の外ダイの内径
と樹脂出口部の外ダイの内径の比は式(3)の関係にあ
る d2//dI  く   /i、  ・曲軸・・(3)
出し、樹脂入口部の外ダイの内径および内ダイの外径を
Dlおよびdlとし、樹脂出口部の外ダイの内径および
内ダイの外径をD2およびd2とし、第1図に示す通り
、軟化温度又は溶融温度近傍において、比容積が著しく
変化する結晶性樹脂とし、vlは軟化温度又は溶融温度
における溶融相Mの比容積、v2は溶融相Mの比!積曲
線をダイ出口での表面温度にまで延長した比容積、v3
は軟化温度又は溶融温度T3における固相Sでの比容積
、V4Fiダイ出口における樹脂表面温度における固相
Sでの比容積とする。
[Claims] A method for continuously molding a resin using an annular die fixed to an extruder, such that the surface temperature of the resin at the die exit is below the softening temperature or melting temperature of the resin, The outer diameter of the inner die and the inner diameter of the outer die of the annular die are as follows (
1) A die for molding a crystalline resin pipe characterized by being determined by the three equations (2) and (3). The ratio of the outer diameter of the inner die of the annular die is within the range of formula (1). (2) The ratio of the inner diameter of the outer die at the resin inlet part of the annular die to the inner diameter of the outer die at the resin outlet part is given by formula (2). (3) The ratio of the outer diameter of the inner die at the resin inlet of the annular die to the outer diameter of the inner die at the resin outlet, and the ratio of the inner diameter of the outer die at the resin inlet to the outer diameter at the resin outlet. The ratio of the inner diameter is d2//dI /i, which is in the relationship shown in equation (3). - Curved axis... (3)
The inner diameter of the outer die and the outer diameter of the inner die at the resin inlet are Dl and dl, and the inner diameter of the outer die and the outer diameter of the inner die at the resin outlet are D2 and d2. A crystalline resin whose specific volume changes significantly at or near the melting temperature, where vl is the specific volume of the molten phase M at the softening temperature or melting temperature, and v2 is the ratio of the molten phase M! The specific volume of the product curve extended to the surface temperature at the die exit, v3
is the specific volume in the solid phase S at the softening temperature or melting temperature T3, and is the specific volume in the solid phase S at the resin surface temperature at the exit of the V4Fi die.
JP58067777A 1983-04-19 1983-04-19 Molding die for crystalline resin pipe Pending JPS59194819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58067777A JPS59194819A (en) 1983-04-19 1983-04-19 Molding die for crystalline resin pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58067777A JPS59194819A (en) 1983-04-19 1983-04-19 Molding die for crystalline resin pipe

Publications (1)

Publication Number Publication Date
JPS59194819A true JPS59194819A (en) 1984-11-05

Family

ID=13354718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58067777A Pending JPS59194819A (en) 1983-04-19 1983-04-19 Molding die for crystalline resin pipe

Country Status (1)

Country Link
JP (1) JPS59194819A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990293A (en) * 1987-11-09 1991-02-05 Regents Of The University Of Minnesota Process of and apparatus for extruding a reactive polymer mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990293A (en) * 1987-11-09 1991-02-05 Regents Of The University Of Minnesota Process of and apparatus for extruding a reactive polymer mixture

Similar Documents

Publication Publication Date Title
US4938908A (en) Flexible tube of thermoplastic resin having poor melt flowability and production method and apparatus thereof
JPS60229726A (en) Die for extrusion of sheet
JPS59194819A (en) Molding die for crystalline resin pipe
US6638462B2 (en) Hybrid disk-cone extrusion die assembly
FI77406B (en) MUNSTYCKE FOER STRAENGSPRUTNINGSANORDNING.
US3446884A (en) Extrusion process and apparatus for producing a thermoplastic pipe having a glossy surface
US6638461B2 (en) Hybrid disk-cone extrusion die module
CA2056131A1 (en) Extrusion Method and Extruder Used for Obtaining Phenolic Resin Pipe
JPS6141730B2 (en)
CN211441058U (en) Enlarged double-wall corrugated pipe extrusion die
GB1330768A (en) Extrusion head for making tubular plastics film
JPS6135928A (en) Manufacture of thermoplastic resin pipe
JP4276043B2 (en) Multi-layer thermoplastic resin pipe and manufacturing method thereof
US6638463B2 (en) Hybrid disk-cone extrusion die module having a spillover surface surrounded by a planar seal surface
US3407440A (en) Apparatus for producing corrugated structures
JPH0218023A (en) Extruding method of thermoplastic resin
US6638464B2 (en) Hybrid disk-cone extrusion die module having a spillover surface surrounding a planar seal surface
CN220052814U (en) Spiral body structure of pipe extrusion die
JPS62170319A (en) Extruder die for thermoplastic melt
JP3529396B2 (en) Method for manufacturing fluororesin tube
CN218803892U (en) Double-wall corrugated pipe extrusion die
CN212737022U (en) Novel tubular product production injection molding aircraft nose mould structure
JP4728784B2 (en) Corrugated hard synthetic resin tube and manufacturing method thereof
JPS5812728A (en) Molding method for deformed pipe
JP2534875B2 (en) Method for manufacturing tube for blood circuit