JPS5919457B2 - reactor core - Google Patents

reactor core

Info

Publication number
JPS5919457B2
JPS5919457B2 JP16081077A JP16081077A JPS5919457B2 JP S5919457 B2 JPS5919457 B2 JP S5919457B2 JP 16081077 A JP16081077 A JP 16081077A JP 16081077 A JP16081077 A JP 16081077A JP S5919457 B2 JPS5919457 B2 JP S5919457B2
Authority
JP
Japan
Prior art keywords
yoke
core
stacked
stud
steel plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16081077A
Other languages
Japanese (ja)
Other versions
JPS5490564A (en
Inventor
「つとむ」 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP16081077A priority Critical patent/JPS5919457B2/en
Publication of JPS5490564A publication Critical patent/JPS5490564A/en
Publication of JPS5919457B2 publication Critical patent/JPS5919457B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 本発明はリアクトルの鉄心構体に関し、特に鉄心脚中心
孔を貫通するスタッドボルトにより継鉄中央に開口した
スタッド挿通孔を介して締着固定される継鉄鉄心の上記
スタッド挿通孔附近の集中磁束を緩和して局部過熱の発
生を防止するようにしたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a core structure of a reactor, and more particularly to the studs of a yoke core which are fastened and fixed through stud insertion holes opened in the center of the yoke by stud bolts passing through core leg center holes. This is designed to alleviate the concentrated magnetic flux near the insertion hole to prevent local overheating.

近年、長距離超高圧送電網の拡大、都市内高電圧ケーブ
ルの設置などから対地充電容量が増加し、軽負荷時の進
相容量による系統電圧の上昇を調整するため分路リアク
トルが一般に用いられている。
In recent years, ground-to-ground charging capacity has increased due to the expansion of long-distance ultra-high voltage power transmission networks and the installation of high-voltage cables within cities, and shunt reactors are generally used to adjust the rise in grid voltage due to phase advance capacity during light loads. ing.

このうち鉄心入リアクトルにあつては、複数の鉄心ブロ
ックを積み重ねて各相鉄心脚を構成し、その上下に継鉄
を配置して磁気回路が形成される。この際、鉄心ブロッ
クはギャップによる磁束のフリンジシダの影響を小さく
するため、珪素鋼板を放射状に配列させて中心部に鉄心
脚締付用のスタッドボルトを貫通する中心孔を設けた円
環状構造とし、これを積み重ねた各相鉄心脚の上記中心
孔に非磁性体のスタッドボルトを貫通して継鉄と一体に
締着固定する構造が用いられておる。従つて継鉄中央部
には第1図で示すように、短尺の珪素鋼板をスタッドボ
ルトの太さに応じて必要な寸法で積層した区分継鉄4を
挟着させて配列させ、この区分継鉄4により上記各相鉄
心脚1の中心孔と対応して四角形のスタッド挿通孔3を
形成し、このスタッド挿通孔3にスタッドボルトを通し
て各相鉄心脚1を継鉄2と緊締固着するように構成され
る。この際、継鉄2の中央部に配置された区分継鉄4は
スタッド挿通孔3により離間しており、各’相鉄心脚1
の間に配置された区分継鉄4は隣接する相互の鉄心脚1
との間で閉磁路を形成し、磁束数の少ない比較的小容量
のものにあつては一方の鉄心脚1からこの区分継鉄4に
流入した磁束は隣接する他方の鉄心脚1に流れるが、両
端に配置した区分継鉄4は閉磁路が形成されず、端部の
鉄心脚1から流入した磁束はその鉄心脚1の中心孔と対
応して開口したスタッド挿通孔3の附近で隣接する継鉄
積層鋼板中に移行して流入することとなり、通過磁束は
スタッド挿通孔3の附近に集中して流れ、部分的に鉄損
が高くなつて局部過熱を生ずる。
Among these, in the case of a core-containing reactor, a plurality of core blocks are stacked to form each phase core leg, and yokes are placed above and below the legs to form a magnetic circuit. At this time, in order to reduce the effect of fringe fern on the magnetic flux due to the gap, the core block has an annular structure in which silicon steel plates are arranged radially and a center hole is provided in the center for passing the stud bolt for tightening the core legs. A structure is used in which a non-magnetic stud bolt is passed through the center hole of each phase core leg in which these are stacked, and is fastened integrally with the yoke. Therefore, as shown in Fig. 1, in the center of the yoke, a segmented yoke 4 made of short silicon steel plates laminated with the required dimensions according to the thickness of the stud bolt is sandwiched and arranged. A rectangular stud insertion hole 3 is formed with iron 4 in correspondence with the center hole of each phase core leg 1, and a stud bolt is passed through the stud insertion hole 3 to tighten and secure each phase core leg 1 to the yoke 2. configured. At this time, the segmental yoke 4 arranged in the center of the yoke 2 is separated by the stud insertion hole 3, and each phase iron leg 1
The segmental yoke 4 placed between the adjacent mutual iron core legs 1
A closed magnetic path is formed between the two, and in the case of a relatively small-capacity type with a small number of magnetic fluxes, the magnetic flux flowing into this segmental yoke 4 from one core leg 1 flows to the other adjacent core leg 1. The segmental yoke 4 disposed at both ends does not form a closed magnetic path, and the magnetic flux flowing from the core leg 1 at the end is adjacent to the stud insertion hole 3 opened corresponding to the center hole of the core leg 1. The magnetic flux flows into the laminated steel plate of the yoke, and the passing magnetic flux flows in a concentrated manner near the stud insertion hole 3, resulting in locally high iron loss and local overheating.

このため比較的容量の小さいリアクトルではこの集中磁
束による部分過熱を防止するため、継鉄2の両端に上記
端部の区分継鉄4と、この区分継鉄4を挾んでその両側
に配置した継鉄積層鋼板とにまたがつて継鉄2の積み厚
寸法とほゞ等しい長さの短冊状鋼板を積層した小鉄心を
継鉄2の積み厚方向に上記短冊状鋼板を直立して密着さ
せて一体に突設し、この小鉄心により継鉄2の両端に配
置した区分継鉄4に流入した磁束を吸い上げて小鉄心を
介して継鉄2の積層鋼板中へ流入させるようにした構成
のものが提案されておる。然るに、機器容量の増大と共
に、鉄心中を流れる磁束数も大となり、これにともなつ
て鉄心脚相互間に配設された区分継鉄4の磁束数も大き
くなつて隣接する継鉄積層鋼板へも移行し局部過熱を生
ずる。
Therefore, in a reactor with a relatively small capacity, in order to prevent partial overheating due to this concentrated magnetic flux, a segmented yoke 4 at both ends of the yoke 2, and joints placed on both sides of the segmented yoke 4 sandwiching the segmented yoke 4 are installed at both ends of the yoke 2. A small iron core is made by laminating strip-shaped steel plates having a length that is approximately equal to the stacking thickness of the yoke 2, and the strip-shaped steel plates are placed upright and in close contact with each other in the stacking thickness direction of the yoke 2. A structure in which the magnetic flux that has flowed into the segmental yoke 4 placed at both ends of the yoke 2 is sucked up by the small iron core, which is integrally protruded, and is made to flow into the laminated steel plate of the yoke 2 via the small iron core. has been proposed. However, as the equipment capacity increases, the number of magnetic fluxes flowing through the iron core also increases, and along with this, the number of magnetic fluxes in the segmental yoke 4 disposed between the core legs also increases, causing the flow of magnetic flux to the adjacent yoke laminated steel plates. It also migrates and causes local overheating.

又、容量増大による鉄損も増加して鉄心発熱量も大とな
るため第2図で示すように、継鉄2の中央附近、即ち、
区分継鉄4とこれに隣接する継鉄鋼板との間にスペーサ
ー5を介して油導6を形成したり、又は、必要に応じて
継鉄2の鋼板積層中任意の位置に油導vを設けて鉄心の
冷却を行う構造が用いられる。この場合区分継鉄4と継
鉄積層鋼板との間には大きな磁気抵抗を有する空隙が設
けられることとなり、区分継鉄4から移行する磁束は特
にスタツド挿通孔3の附近に集中して局部的に著しく鉄
損が増大し、電気的特性を損うと共に、局部過熱を生じ
て機器に悪影響を与える。本発明は機器容量の増大にと
もなう上記欠点を除去し、鉄心量を増加させることなく
鉄損の軽減をはかると共に、スタツド挿通孔鮒近の局部
過熱を生じないようにして合理的に製作し得るようにし
たものである。
In addition, the iron loss due to the increase in capacity also increases, and the heat generation amount of the iron core also increases, so as shown in Fig. 2,
An oil guide 6 may be formed between the segmental yoke 4 and the adjacent steel plate of the yoke via a spacer 5, or an oil guide v may be formed at any position during the stacking of the steel plates of the yoke 2 as necessary. A structure is used in which the iron core is cooled. In this case, an air gap having a large magnetic resistance is provided between the segmental yoke 4 and the yoke laminated steel plate, and the magnetic flux transferred from the segmental yoke 4 is concentrated particularly in the vicinity of the stud insertion hole 3 and is locally Iron loss increases significantly, impairing electrical characteristics and causing local overheating, which adversely affects equipment. The present invention eliminates the above-mentioned drawbacks associated with an increase in equipment capacity, reduces iron loss without increasing the amount of iron core, and can be manufactured rationally by preventing local overheating near the stud insertion hole. This is how it was done.

以下その実施例を第3図乃至第5図により説明すると、
11は珪素鋼板を放射状に配列させて中心部にはスタツ
ドボルト12を貫通する中心孔13を設けた従来公知の
円環状の鉄心プロツク14を絶縁材等により所定の空隙
15を設けて積み重ねた円柱状の鉄心脚、16は上記鉄
心脚11の上下に配置された継鉄で、その中央部には鉄
心脚11を貫通するスタツドボルト12の太さに応じて
短尺の珪素鋼板を所定の厚さで積層した区分継鉄17を
配列させて各相鉄心脚11の中心孔13と対応してスタ
ツド挿通孔18を開口させ、上記区分継鉄17に接して
その両側にスペーサー19を介して油導20を設けて継
鉄鋼板21,2Vを配置して図示しない締付ボルトによ
り一体に締付けられており、鉄心脚11の中心孔13を
貫通したスタツドボルト12を上記スタツド挿通孔18
に挿通してナツト22,2γにより各相鉄心脚11と十
分な締付圧力で締着固定される。
The embodiment will be explained below with reference to FIGS. 3 to 5.
Reference numeral 11 denotes a circle in which a conventionally known annular iron core block 14 is stacked with a predetermined gap 15 made of an insulating material or the like, in which silicon steel plates are arranged radially and a center hole 13 is provided in the center to allow a stud bolt 12 to pass through. A columnar core leg 16 is a yoke placed above and below the core leg 11, and a short silicon steel plate with a predetermined thickness is installed in the center of the yoke according to the thickness of the stud bolt 12 that passes through the core leg 11. The stacked sectional yokes 17 are arranged, and stud insertion holes 18 are opened corresponding to the center holes 13 of each phase core legs 11, so that the stud yokes 17 are in contact with the sectional yokes 17 and oil is introduced through spacers 19 on both sides thereof. 20 are provided, yoke steel plates 21 and 2V are arranged, and they are tightened together with tightening bolts (not shown).
It is inserted into and fixed to each phase core leg 11 with sufficient tightening pressure using nuts 22 and 2γ.

23は継鉄16の積み厚とほゾ等しい長さの短冊状珪素
鋼板を適当な積み厚寸法で積層した磁束吸い上げ用の補
助継鉄で、上記継鉄16の継鉄鋼板21,2V並びにそ
の中央に油導20を介して挾着された区分継鉄17の鋼
板積層端面上の両端及び各相鉄心脚11の中間部(スタ
ツド挿通孔18間の中間部分)に、継鉄鋼板積層方向に
かけて上記継鉄16の長手方向と直交して各区分継鉄1
7と継鉄鋼板21,2Vの積層端面に短冊状鋼板を直立
させて油導20をまたいで相互の積層端面を一体に密着
して突設せしめて鉄心構体が形成される。
Reference numeral 23 denotes an auxiliary yoke for sucking up magnetic flux, which is made by laminating rectangular silicon steel plates having a length approximately equal to the stacking thickness of the yoke 16 and having an appropriate stacking thickness. At both ends of the steel plate laminated end face of the segmental yoke 17 which is clamped in the center via the oil guide 20 and at the intermediate part of each phase core leg 11 (the intermediate part between the stud insertion holes 18), in the direction of the yoke steel plate lamination. Each section yoke 1 is perpendicular to the longitudinal direction of the yoke 16.
A core structure is formed by standing strip-shaped steel plates upright on the laminated end faces of 7 and yoke steel plates 21 and 2V, and protruding the mutually laminated end faces in close contact with each other across the oil guide 20.

第4図は上記区分継鉄17と油導20を介して隣接する
継鉄鋼板21,2V中の適宜個所に油導20を更に設け
て冷却を行うようにした継鉄16に補助継鉄23を上述
同様に配置した鉄心構体の例を示す。本発明は上述のよ
うな構成をなし、各相鉄心脚11から継鉄16に流入す
る磁束のうち、継鉄16の中央部に挾着された区分継鉄
17に流入する磁束は第3図並びに第4図に矢印で示す
ように、継鉄16の鋼板積層端面に短冊状鋼板を直立し
て装着された補助継鉄23にそれぞれ吸い上げられ、こ
の補助継鉄23中を継鉄16と直交する長手方向に流れ
て油導20を介して隣接する継鉄鋼板21,2V中に流
入することとなる。
FIG. 4 shows a yoke 16 and an auxiliary yoke 23 which are further provided with oil guides 20 at appropriate locations in the adjacent yoke steel plates 21, 2V via the sectional yoke 17 and an oil guide 20 for cooling. An example of a core structure in which the above-described structures are arranged in the same manner as described above is shown. The present invention has the above-described configuration, and of the magnetic flux flowing into the yoke 16 from each phase core leg 11, the magnetic flux flowing into the segmented yoke 17 clamped at the center of the yoke 16 is as shown in FIG. As shown by the arrows in FIG. The oil flows in the longitudinal direction and flows into the adjacent yoke steel plates 21 and 2V via the oil guide 20.

尚、継鉄16に特に油導を設けることなく、区分継鉄1
7と接して継鉄鋼板21,2Vを配置した構成のもので
も、各相鉄心脚11から上記区分継鉄17に流入する磁
束は上述同様それぞれの補助継鉄23を介して継鉄鋼板
21,2Vに流入する。本発明は上述のように、機器容
量の増大にともなつて区分継鉄の両側に磁気抵抗の大き
い油導を設けたものでも、区分継鉄に鉄心脚から流入す
る磁束は継鉄の鋼板積層端面上にその両端並びに各相鉄
心脚の中間位置に配設された補助継鉄中に吸い上げられ
て、この補助継鉄を介して継鉄鋼板中に流入するため大
きな磁気抵抗を有する油導により区分継鉄が隔離されて
おつても、区分継鉄から継鉄鋼板中に移行する磁束の集
中は生せず、スタツド挿通孔附近に通過磁束が集中して
鉄損が増加したり、その部分に局部過熱が生じて機器損
傷をまねくことは全くなく、スタツド挿通孔により通常
磁路が形成されない継鉄中央部分においても補助継鉄に
より区分継鉄は有効に磁気回路を形成し鉄心発熱量を軽
減させることが出来、機器を経済的に製作出来る等、著
しい特徴を有するものである。
It should be noted that the sectional yoke 1 can be used without providing any particular oil guide to the yoke 16.
Even in the structure in which the yoke steel plates 21 and 2V are arranged in contact with the yoke steel plates 21 and 2V, the magnetic flux flowing from each phase core leg 11 to the segmental yoke 17 passes through the respective auxiliary yokes 23 to the yoke steel plates 21 and 2V, as described above. 2V. As described above, the present invention is designed to prevent the magnetic flux flowing into the sectional yoke from the core legs from being caused by the laminated steel plates of the yoke, even when oil conductors with high magnetic resistance are provided on both sides of the sectional yoke as equipment capacity increases. The oil is sucked up into the auxiliary yoke installed on the end face at both ends and in the middle of each phase core leg, and flows into the yoke steel plate via the auxiliary yoke. Even if the segmental yoke is isolated, the concentration of magnetic flux transferring from the segmental yoke to the yoke steel plate will not occur, and the passing magnetic flux will concentrate near the stud insertion hole, increasing iron loss or There is no chance of localized overheating causing equipment damage, and even in the center of the yoke where a magnetic path is normally not formed due to the stud insertion holes, the sectional yoke effectively forms a magnetic circuit with the help of the auxiliary yoke, reducing the amount of heat generated by the core. It has remarkable features, such as being able to reduce the amount of heat generated and making the equipment economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のリアクトルの鉄心を示す上面図、第2図
は油導を設けた従来のリアクトル鉄心の上面図、第3図
乃至第5図は本発明のリアクトルの鉄心を示し、第3図
は区分継鉄を油導を介して挟着した継鉄構成のリアクト
ル鉄心上面図、第4図は継鉄鋼板中に更に油導を設けた
リアクトル鉄心の上面図を示し、第5図は鉄心の一部を
切断して示す要部縦断正面図である。 11:鉄心脚、12:スタツドボルト、16:継鉄、1
7:区分継鉄、18:スタツド挿通孔、20,2(y:
油導、23:補助継鉄。
FIG. 1 is a top view showing the core of a conventional reactor, FIG. 2 is a top view of a conventional reactor core provided with an oil guide, FIGS. 3 to 5 show the core of the reactor of the present invention, and FIG. The figure shows a top view of a reactor core with a yoke configuration in which a segmented yoke is sandwiched via an oil guide, Figure 4 shows a top view of a reactor core with an oil guide further provided in the yoke steel plate, and Figure 5 shows FIG. 2 is a longitudinal sectional front view of a main part showing a part of the iron core cut away. 11: Iron core leg, 12: Stud bolt, 16: Yoke, 1
7: Segmented yoke, 18: Stud insertion hole, 20, 2 (y:
Oil guide, 23: Auxiliary yoke.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄心ブロックを積み重ねて中心部にスタッドボルト
を貫通する中心孔を設けた各相鉄心脚を、継鉄鋼板積層
中央部に短尺の区分継鉄を配列せしめて上記鉄心脚の中
心孔と対応して開口したスタッド挿通孔にスタッドボル
トを挿通して上下継鉄に締着固定し、上記継鉄の両側端
部の積層端面上並びに各相鉄心脚中間位置の継鉄鋼板端
面上には、該継鉄の積み厚寸法とほゞ等しい長さの短冊
状鋼板を積層した補助継鉄を継鉄の鋼板積層方向に該継
鉄と直交して上記短冊状鋼板を直交せしめて相互の積層
端面を一体に密着させて突設したことを特徴とするリア
クトルの鉄心。
1 Core blocks are stacked and each phase core leg is provided with a center hole through which a stud bolt passes through, and a short segmented yoke is arranged in the center of the stacked steel yoke plates to correspond to the center hole of the core leg. Insert stud bolts into the stud insertion holes opened and tighten them to the upper and lower yokes. On the laminated end faces of both ends of the yoke and on the end faces of the yoke steel plate at the intermediate position of each phase core leg, apply the appropriate bolts. An auxiliary yoke made of laminated strip-shaped steel plates with a length that is approximately equal to the stacked thickness of the yoke is orthogonal to the yoke in the steel plate stacking direction of the yoke, and the strip-shaped steel plates are orthogonally crossed so that the mutual stacked end faces A reactor core characterized by a protruding structure that is closely attached to the core.
JP16081077A 1977-12-27 1977-12-27 reactor core Expired JPS5919457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16081077A JPS5919457B2 (en) 1977-12-27 1977-12-27 reactor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16081077A JPS5919457B2 (en) 1977-12-27 1977-12-27 reactor core

Publications (2)

Publication Number Publication Date
JPS5490564A JPS5490564A (en) 1979-07-18
JPS5919457B2 true JPS5919457B2 (en) 1984-05-07

Family

ID=15722908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16081077A Expired JPS5919457B2 (en) 1977-12-27 1977-12-27 reactor core

Country Status (1)

Country Link
JP (1) JPS5919457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4928915B2 (en) * 2006-11-21 2012-05-09 株式会社ケーヒン Pressure vessel joint structure

Also Published As

Publication number Publication date
JPS5490564A (en) 1979-07-18

Similar Documents

Publication Publication Date Title
JPS60769B2 (en) induction electrical equipment
US4032874A (en) Reactor core
US3349357A (en) Transformer core reinforcing plate
US5146198A (en) Segmented core inductor
US2370045A (en) Shielding transformer structures
US3014189A (en) Electrical reactor with magnetic shielding
JPS5919457B2 (en) reactor core
US2458052A (en) Three-phase transformer construction
JP2002299129A (en) Stationary induction electrical apparatus iron core
JPS61224308A (en) Gapped core type reactor
JPS5942962B2 (en) electric induction equipment
US2456941A (en) Transformer structure
JPH02203507A (en) Three-phase shunt reactor core
JPH06302442A (en) Gapped core type reactor
JPH08222454A (en) Iron core with gap for transformer
JP2753122B2 (en) Iron core with gap for transformer
US4390941A (en) Static magnetic frequency multiplies
JPH0414897Y2 (en)
JPS5826504Y2 (en) Reactor core tightening stud bolt
EP3751588A1 (en) Electric transformer
US1648705A (en) Electrical-apparatus core
JPS61224307A (en) Gapped core type reactor
KR0133209Y1 (en) High impedance transformer
JPH03285309A (en) Iron core with gap for transformer
JPH04323811A (en) Gas-insulated reactor with cap core