JPS59194460A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59194460A
JPS59194460A JP58068716A JP6871683A JPS59194460A JP S59194460 A JPS59194460 A JP S59194460A JP 58068716 A JP58068716 A JP 58068716A JP 6871683 A JP6871683 A JP 6871683A JP S59194460 A JPS59194460 A JP S59194460A
Authority
JP
Japan
Prior art keywords
electrode
semiconductor element
semiconductor
elements
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58068716A
Other languages
Japanese (ja)
Inventor
Kenzo Hatada
畑田 賢造
Shuji Kondo
修司 近藤
Hiroshi Takahashi
弘 高橋
Minoru Hirai
平井 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58068716A priority Critical patent/JPS59194460A/en
Publication of JPS59194460A publication Critical patent/JPS59194460A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To mount a plurality of semiconductor elements formed with electrode terminals at the end faces in a high density by laminating the elements, and forming connecting wirings between the terminals at the end face regions of the elements, thereby increasing the mounting elements per unit volume. CONSTITUTION:Electrode terminals 30 are formed of low melting point metal on the end faces of a plurality of semiconductor elements 30, which are superposed to each other to form a circuit block 32. The entire shape of the superposed elements 30 is formed in a rectangular prism, and a plurality of electrode terminals 31 are formed on the same surfaces of the four end faces of the elements 30. A connector for connecting between the electrode terminals 31 of a plurality of semiconductor elements is formed with an electrode region 34 at the positions corresponding to the terminals 31 formed at the four end faces of the elements 30, for example, on a flexible film 33.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路の実装、特に立体的な実装形態
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to packaging of semiconductor integrated circuits, particularly to three-dimensional packaging.

従来例の構成とその問題点 半導体集積回路の高密度実装に関しては、従来から平面
的にその実装密度を上げる方法がとられて来たが、それ
も限度があるため、近年三次元実装への展開が考えられ
るようになって来た。以下、従来例を第1図及び第2図
に沿って説明する。
Conventional configurations and their problems Regarding high-density packaging of semiconductor integrated circuits, conventional methods have been used to increase the packaging density in a two-dimensional manner, but this also has its limitations, so in recent years three-dimensional packaging has been adopted. It is now possible to consider expansion. A conventional example will be explained below with reference to FIGS. 1 and 2.

第1図において、1は基板、2は導体配線、3゜3′は
半導体素子、4は上下の導体配線を接続するための第1
のスタッド、5は熱可塑性樹脂、6は第1の蒸着導体配
線、7は第2のスタッド、8は半導体素子、9は第2の
熱可塑性樹脂、1oは第2の蒸着導体配線である。第1
図の構造について説明するため、以下にその製造法を記
す。!ず、アルミナ等の絶縁基板1上に厚膜法で導体配
線2を形成する。次に所定の位置に半導体素子3,3′
及び第1のスタッド4を接着固定する。スタッド4は上
下の導体配線を接続するためのもので、金属や低抵抗の
半導体を用いる。ついで上面よ多熱可塑性樹脂シート5
を加熱圧接した後スタンド上及び半導体素子の電極上に
コンタクトホールを形成する。最後にCr−OH等を蒸
着し、導体配線6を形成して第1層の実装が終了する。
In Figure 1, 1 is a substrate, 2 is a conductor wiring, 3゜3' is a semiconductor element, and 4 is a first wire for connecting the upper and lower conductor wirings.
, 5 is a thermoplastic resin, 6 is a first vapor-deposited conductor wiring, 7 is a second stud, 8 is a semiconductor element, 9 is a second thermoplastic resin, and 1o is a second vapor-deposited conductor wiring. 1st
In order to explain the structure shown in the figure, the manufacturing method thereof will be described below. ! First, conductor wiring 2 is formed on an insulating substrate 1 made of alumina or the like by a thick film method. Next, place the semiconductor elements 3, 3' in a predetermined position.
and the first stud 4 is adhesively fixed. The stud 4 is for connecting the upper and lower conductor wiring, and is made of metal or a low-resistance semiconductor. Next, apply the polythermoplastic resin sheet 5 to the top surface.
After welding them under heat and pressure, contact holes are formed on the stand and on the electrodes of the semiconductor element. Finally, Cr--OH or the like is deposited to form conductive wiring 6, and the mounting of the first layer is completed.

さらに、この上に第1層と同じ工程を繰り返して第2層
が、さらに同様にして第3層、第4層を形成する。
Furthermore, a second layer is formed by repeating the same process as that for the first layer, and a third layer and a fourth layer are further formed thereon in the same manner.

次に、第2の従来例を第2図に沿って説明する。Next, a second conventional example will be explained with reference to FIG.

第2図において、11は基板、12は第1の枠体、13
は半導体素子、14は第1の絶縁シート、15は第1の
蒸着導体配線、16は接着剤、17は第2の枠体、18
は半導体素子、19は第2の絶縁シート、2oは第2の
蒸着導体配線である。第2図の構造について説明するた
めに、以下にその製造法を記す。まず、薄板の所定部に
半導体素子挿入用の穴が設けられた枠体12を準備する
。その枠体12の一主面に貫通孔を有する絶縁シート1
4が接着され、さらに前記貫通孔に半導体素子の電極を
一致させて絶縁シート14に接着する。ついで、蒸着導
体配線15を形成して第一の実装構造体ができる。同様
の工程で作られた第二の実装構造体を前記第一の実装構
造体に重さねて接着する。
In FIG. 2, 11 is a substrate, 12 is a first frame, 13
14 is a semiconductor element, 14 is a first insulating sheet, 15 is a first vapor-deposited conductor wiring, 16 is an adhesive, 17 is a second frame, 18
1 is a semiconductor element, 19 is a second insulating sheet, and 2o is a second vapor-deposited conductor wiring. In order to explain the structure shown in FIG. 2, a manufacturing method thereof will be described below. First, a frame 12 having a thin plate with a hole for inserting a semiconductor element in a predetermined portion is prepared. Insulating sheet 1 having a through hole on one main surface of its frame 12
4 is adhered to the insulating sheet 14, and then the electrodes of the semiconductor element are aligned with the through holes and then adhered to the insulating sheet 14. Next, vapor-deposited conductor wiring 15 is formed to obtain a first mounting structure. A second mounting structure made in a similar process is superposed and bonded to the first mounting structure.

このようにして得られた構造体において蒸着導体配線同
志を何らかの方法で接続しようとするものである。
In the structure thus obtained, the vapor-deposited conductor wirings are connected to each other by some method.

以上の2例はいずれも半導体素子を搭載した基板を重さ
ねるか、もしくは同様の構造にしたものである。特に第
1の従来例では次々に半導体素子の単位で重さねて行く
ことになるが、半導体素子の状態では充分なる動作テス
トができないため、総合歩留りは極めて低いものとなる
。例えば、半導体素子歩留シが95L%のものを10素
子この方法で搭載した時、最終歩留シは60%になり実
用的とは言えない。
In both of the above two examples, substrates on which semiconductor elements are mounted are stacked one on top of the other, or have a similar structure. In particular, in the first conventional example, semiconductor elements are stacked one after another, but since sufficient operation tests cannot be performed in the state of the semiconductor elements, the overall yield is extremely low. For example, when 10 semiconductor devices with a semiconductor element yield of 95L% are mounted using this method, the final yield will be 60%, which is not practical.

一方、第2の例は第1の構造体として検査できるが、第
1の構造体を作るに際して第1の従来例と同じ問題が残
る上、第1.第2の構造体を接続する方策がない。いず
れも半導体素子は単体で扱われるため実装の高密度化の
点から言えば、不充分な技術であり、今後の本格的な三
次元実装のためには半導体素子状態で積み重さねて行く
方策が必要とされる。
On the other hand, although the second example can be inspected as the first structure, the same problems as the first conventional example remain when making the first structure, and the first. There is no way to connect the second structure. In both cases, semiconductor elements are handled individually, so from the point of view of high-density mounting, this technology is insufficient, and for full-scale three-dimensional mounting in the future, semiconductor elements will have to be stacked together in the form of a single stack. Measures are needed.

発明の目的 本発明はかかる従来の問題に鑑み、単一の半導体素子の
レベルで充分機能検査することが可能であシ、かつ半導
体素子そのものを立体的に積層した従来に例のない構造
体を提供することを目的とする。
Purpose of the Invention In view of the above-mentioned conventional problems, the present invention provides a structure that can perform sufficient functional testing at the level of a single semiconductor element and is unprecedented in the past in which the semiconductor elements themselves are stacked three-dimensionally. The purpose is to provide.

発明の構成 本発明は端面方向に電極端子が形成された半導体素子を
複数個積層し、前記電極端子間を接続することにより従
来得られなかった三次元高密度実装を可能とするもので
ある。
Structure of the Invention The present invention enables three-dimensional high-density packaging, which has not been possible in the past, by stacking a plurality of semiconductor elements each having electrode terminals formed in the direction of the end face and connecting the electrode terminals.

実施例の説明 以下に本発明の構造体に関する実施例、端面方向に電極
端子が形成された半導体素子の構成例、積層された構造
体の電極相互接続の構成例、及び代表的な製造法の一例
を述べる。
DESCRIPTION OF EMBODIMENTS Examples related to the structure of the present invention, a configuration example of a semiconductor element in which electrode terminals are formed in the direction of the end face, a configuration example of electrode interconnection of a stacked structure, and a typical manufacturing method are described below. Let me give an example.

第3図、第4図で本発明による構造体の実施例を説明す
る。複数の半導体素子30の端面に低融点金属で電極端
子31が設けられ、前記半導体素子30は互いに重さね
合わされ1個の回路ブロック32を形成している。前記
半導体素子3oの重さね合わされる数は、6〜100枚
程度(第3図では5枚)であって重さね合わせ後の全体
の厚み、および重量を軽減させるだめに各々の半導体素
子の厚さは100μm前後に研磨される。重さね合わさ
れた半導体素子30の全体の形状は丁度キャラメル状の
四角形をしており、半導体素子3oの西端面の同一面上
に各々の電極端子31が複数個形成されている。前記複
数の半導体素子の電極端子31間をつなぐ接続体は例え
ばフレキシブルフィルム33上に半導体素子30の四端
面に形成された各々の電極端子31と対応する位置に電
極領域34が形成されている。前記電極領域34はフレ
キシブルフィルム33上の金属膜を蝕刻して形成された
パターンより成シ、電極領域34間を相互に電気的に配
線接続した構造となっている。更に、前記電極領域34
は前記フレキシブルフィルム33を貫通し、スルーホー
ルでもって形成してもよい。この場合前記スルーホール
は前記各々の半導体素子の電極端子31が位置するか、
もしくは嵌合するよう形成する。
An embodiment of the structure according to the present invention will be explained with reference to FIGS. 3 and 4. FIG. Electrode terminals 31 are provided on the end faces of the plurality of semiconductor elements 30 using a low melting point metal, and the semiconductor elements 30 are stacked on top of each other to form one circuit block 32. The number of the semiconductor elements 3o to be stacked together is about 6 to 100 (5 in FIG. 3), and in order to reduce the overall thickness and weight after stacking, each semiconductor element is is polished to a thickness of around 100 μm. The overall shape of the stacked semiconductor elements 30 is a caramel-like rectangle, and a plurality of electrode terminals 31 are formed on the same west end face of the semiconductor element 3o. The connecting body connecting the electrode terminals 31 of the plurality of semiconductor elements includes, for example, an electrode region 34 formed on a flexible film 33 at a position corresponding to each electrode terminal 31 formed on the four end faces of the semiconductor element 30. The electrode regions 34 are formed from a pattern formed by etching a metal film on the flexible film 33, and have a structure in which the electrode regions 34 are electrically connected to each other by wiring. Furthermore, the electrode area 34
may be formed as a through hole that penetrates the flexible film 33. In this case, the electrode terminals 31 of each of the semiconductor elements are located in the through holes, or
Or formed to fit.

フンキンプルフィルム33の全体形状は第4図に示す形
状−で、前記重さね合せた半導体素子30全体ヲ包含シ
、カつ、フレキシブルフィルム33上に設けた電極領域
34と合致するものである。
The overall shape of the flexible film 33 is the shape shown in FIG. 4, which encompasses the entire stacked semiconductor element 30 and matches the electrode area 34 provided on the flexible film 33. be.

外部基板と接続するためのコート端子35は半導体素子
30の電極端子が形成されていない面、即ち、半導体素
子の主面又は裏面に対する面より導出される。この場合
は導出すべき部分に電極となる突起もしくはピン状端子
35を設けて相手の外部基板との接続を容易ならしめる
もので良い。更に又重さね合わせた半導体素子間の接続
をするだめの部材としてとれまで、フレキシブルフィル
ムの例で述べてきたが、特にこれにこだわるものではな
い。例えば、厚い配線基板もしくはセラミック基板に、
前記した重さね合わせた半導体素子の電極端子と対応す
る電極領域と相互配線を施ぜば良い。前記フレキシブル
フィルム33で半導体素子を包含し電極同志を接続した
後、第4図に示す枠体36に挿入し機械的保護を行なわ
しめる構成でもよい。
The coat terminal 35 for connection to an external substrate is led out from the surface of the semiconductor element 30 on which no electrode terminal is formed, that is, the surface opposite to the main surface or back surface of the semiconductor element. In this case, a protrusion or pin-shaped terminal 35 serving as an electrode may be provided on the portion to be led out to facilitate connection with a mating external board. Furthermore, although the flexible film has been described as a member for connecting between stacked semiconductor elements, the present invention is not limited to this. For example, on thick wiring boards or ceramic boards,
Interwiring may be performed with the electrode regions corresponding to the electrode terminals of the stacked semiconductor elements described above. It may also be configured such that after the semiconductor element is covered with the flexible film 33 and the electrodes are connected to each other, the flexible film 33 is inserted into a frame 36 shown in FIG. 4 for mechanical protection.

次に本発明の構造体に使用する半導体素子の構成例につ
いて述べる。
Next, a configuration example of a semiconductor element used in the structure of the present invention will be described.

〈半導体素子 例1〉 第5図に示した実施例は、耐熱性樹脂60上に電極端子
61が形成され、その電極端子の突出した一端に半導体
素子62の突起電極63を接合するTape Auto
mated Bonding (以下TABと称す)を
使用したものである。通常TAB方式ではボンディング
後、半導体素子62あるいは耐熱性樹脂60より電極端
子61がつき出だ状態に切断し、外部基板に接合される
が、本例では半導体素子62の周辺に耐熱性樹脂部を残
しかつ耐熱性樹脂部60で切断することにより電極端子
61の切断部が端面に出て、なおかつ重さね合わせたと
き電極端子の短絡が耐熱性樹脂60により防止できるも
のである。第6図は第5図の半導体素子を平面的に見た
ものである。第5図と同一箇所には同一番号を付した。
<Semiconductor element example 1> In the embodiment shown in FIG. 5, an electrode terminal 61 is formed on a heat-resistant resin 60, and a protruding electrode 63 of a semiconductor element 62 is bonded to one protruding end of the electrode terminal.
This uses mated bonding (hereinafter referred to as TAB). Normally, in the TAB method, after bonding, the electrode terminals 61 are cut from the semiconductor element 62 or the heat-resistant resin 60 and bonded to an external board, but in this example, the heat-resistant resin part is placed around the semiconductor element 62. By leaving the electrode terminals 61 and cutting them at the heat-resistant resin portion 60, the cut portions of the electrode terminals 61 appear on the end face, and furthermore, the heat-resistant resin 60 can prevent the electrode terminals from shorting when stacked together. FIG. 6 is a plan view of the semiconductor device shown in FIG. 5. The same parts as in Figure 5 are given the same numbers.

以下筒11図1で同様に同一番号を付した。The same numbers are given to the cylinders 11 and 11 in FIG.

く半導体素子 例2) 第7図の例は電極端子61から延在した電極端子61A
が耐熱性樹脂6oに設けられたスルーホール導体により
形成される構成である。スルーホール部を切断すること
によシ第7図の構造が得られる。
Example 2) The example in FIG. 7 shows an electrode terminal 61A extending from an electrode terminal 61.
The structure is formed by through-hole conductors provided in the heat-resistant resin 6o. By cutting the through-hole portion, the structure shown in FIG. 7 is obtained.

〈半導体床7 例3〉 第8図に示した実施例もTAB方式を用いたものである
が、電極端子61が耐熱性樹脂60の側面にまで折り曲
げられた構造である。電極端子61Bの長さは端面に少
し曲がり込んだ程度で充分である。
<Semiconductor floor 7 Example 3> The example shown in FIG. 8 also uses the TAB method, but has a structure in which the electrode terminal 61 is bent to the side surface of the heat-resistant resin 60. It is sufficient that the length of the electrode terminal 61B is such that the end surface is slightly bent.

〈半導体素子 例4〉 第9図に示しだ例は、半導体素子62の側面に電極端子
61が曲げられているが、半導体素子の側面は絶縁性樹
脂64で保護されており、電極端子61と半導体素子6
2の短絡を防止している。
<Semiconductor element example 4> In the example shown in FIG. Semiconductor element 6
2 short circuit is prevented.

この場合、金属1層のフィルムキャリヤを用いた   
 ゛TABTAB方式できる。
In this case, a film carrier of one layer of metal was used.
゛TABTAB method can be used.

〈半導体素子 例6〉 第10図の例は第9図と同じ構造となっているが、この
場合は電極端子61が半導体素子62の側面に接着剤6
6で絶縁を兼ねて接着されている。
<Semiconductor device example 6> The example in FIG. 10 has the same structure as in FIG.
6 is bonded to serve as insulation.

本例では半導体素子の側面を予かしめ絶縁処理すること
なく、電極端子61と半導体素子62の短絡を防止する
ことができる。
In this example, a short circuit between the electrode terminal 61 and the semiconductor element 62 can be prevented without pre-caulking and insulating the side surface of the semiconductor element.

く半導体素子 例6〉 第11図の例は半導体素子62の電極63からの電極端
子61が金属箔(例えばム/ 、 Ou 、 Au)’
1層からなるテープキャリヤを用いた場合である。
Semiconductor Element Example 6 In the example of FIG. 11, the electrode terminal 61 from the electrode 63 of the semiconductor element 62 is made of metal foil (for example, Mu/, Ou, Au).
This is the case when a tape carrier consisting of one layer is used.

この例では、外部への接続用に電極端子の一部が厚くな
っておシ、この部分は接着剤65で半導体素子の側面に
接着される。電極端子の厚さは、半導体素子に接合する
領域で数10μm、その他の部分は100μm〜数10
0μm程度が良い。
In this example, a portion of the electrode terminal is thickened for connection to the outside, and this portion is bonded to the side surface of the semiconductor element with adhesive 65. The thickness of the electrode terminal is several tens of micrometers in the region bonded to the semiconductor element, and 100 micrometers to several tens of micrometers in other parts.
Approximately 0 μm is good.

次に半導体素子の積層、電極相互接続の例について述べ
る。
Next, an example of stacking semiconductor elements and interconnecting electrodes will be described.

〈積層構造 例1〉 第12図、第13図は前述した〈半導体素子例1〜6〉
即ち、端面方向に電極端子93を形成した半導体素子9
1を複数個積層した構造を示す断面略図である。即ち、
その端面方向に電極端子93を有する半導体素子91は
基板96上にスペーサー94を介して絶縁性樹脂材料°
95により接着・積層される。最後に蓋体97が接着さ
れて第14図の形となるが、全体として立方体形状にな
る。
<Laminated structure example 1> Figures 12 and 13 are the above-mentioned <semiconductor element examples 1 to 6>
That is, the semiconductor element 9 has electrode terminals 93 formed in the end face direction.
1 is a schematic cross-sectional view showing a structure in which a plurality of 1 are stacked. That is,
A semiconductor element 91 having electrode terminals 93 in the direction of its end face is mounted on a substrate 96 using an insulating resin material via a spacer 94.
95 for adhesion and lamination. Finally, the lid 97 is glued on to form the shape shown in FIG. 14, and the overall shape is cubic.

また、その時、立方体に積層された構造体の形状は第1
4図に側面図を示す如く、絶縁性樹脂材料95及び耐熱
性樹脂92に囲まれて、電極端子93の端断面部が整列
配置した状態で露出した構造が得られる。
Also, at that time, the shape of the cubic stacked structure is the first one.
As shown in the side view in FIG. 4, a structure is obtained in which the end cross-sections of the electrode terminals 93 are exposed in an aligned manner, surrounded by the insulating resin material 95 and the heat-resistant resin 92.

次に、電極端子端部の処理の例について第15図、第1
6図に沿って説明する。
Next, an example of the treatment of the electrode terminal end is shown in FIGS. 15 and 1.
This will be explained along with Figure 6.

第14図の如く、四囲の各辺に電極端子93の端断面が
露出している半導体素子積層ブロックを、溶融半田槽に
短時間浸漬することに依り、電極材93の端断面部位に
は半田金属が結着する。即ち第16図に示す如く厚さ数
10μm〜数100μmの所謂半田バンプ98が、すべ
ての電極端子93部分に形成された半導体素子積層ブロ
ックができる。
As shown in FIG. 14, by immersing a semiconductor element stack block in which the end cross sections of the electrode terminals 93 are exposed on each side in a molten solder bath for a short time, the end cross sections of the electrode materials 93 are soldered. Metals bond together. That is, as shown in FIG. 16, a semiconductor element stacked block is produced in which so-called solder bumps 98 having a thickness of several tens of micrometers to several hundreds of micrometers are formed on all electrode terminals 93.

また他の構造として、上述のバンプ電極がメッキ法によ
シ形成された構造のものでもよい。即ち半導体素子積層
ブロックの電極端子93露出部位に対し、電気伝導度の
秀れた金属材料を選択的にメッキ処理を施こすことによ
り、前述の場合と同様に、同部位にはメッキによるバン
プ電極98が構成され、第15図の如くその周辺部に電
極バンプを有する半導体積層ブロックが構成される。
Further, as another structure, the bump electrode described above may be formed by a plating method. That is, by selectively plating the exposed portions of the electrode terminals 93 of the semiconductor element stack block with a metal material having excellent electrical conductivity, bump electrodes are formed in the same portions by plating, as in the case described above. 98 is constructed, and a semiconductor laminated block having electrode bumps at its periphery as shown in FIG. 15 is constructed.

また、第14図の如く積層された構造体の樹脂部をエツ
チング(例えば酸素プラズマエツチング)し、端部の樹
脂部を選択的に数10μm〜数100μm削りとること
によシ、第16図の如く電極端子を突出させることがで
きる。
In addition, by etching the resin part of the laminated structure as shown in Fig. 14 (for example, oxygen plasma etching) and selectively cutting off the resin part at the end by several tens of micrometers to several hundred micrometers, the structure shown in Fig. 16 can be etched. The electrode terminal can be made to protrude as shown in FIG.

次に電極相互接続の例について述べる。Next, an example of electrode interconnection will be described.

く電極相互接続 例1〉 本例は第17図の如く、半導体素子積層ブロックの四囲
の各辺、即ち電極端子93の端断面が露呈している各面
に対し、電気伝導度の良い金属材料を蒸着或はメッキ処
理等により、数μm〜数10μmの厚みで形成し、しか
る後ホトプロセスに依シ、積層形成した半導体素子群の
電極端子93間 −を相互に結合する配線ノ(ターン9
9を形成した構造のものである。
Electrode Interconnection Example 1 As shown in FIG. is formed to a thickness of several micrometers to several tens of micrometers by vapor deposition or plating, and then by photoprocessing, wiring (turns 9
It has a structure in which 9 is formed.

く電極相互接続 例2〉 本例は積層した半導体素子群それぞれの端断面が露呈し
ている電極端子93に対し、電極端子93相互間を電気
的に接続する場合に、第18図の如くワイヤーボンデン
グ法に依り、電極端子93間をAu或はAl細線100
に依シ結線したものである。
Electrode Interconnection Example 2 This example uses a wire as shown in FIG. Using a bonding method, a thin Au or Al wire 100 is connected between the electrode terminals 93.
The wires are connected depending on the

また相互に結線した電極或は単独の電極と外部枠体の電
極(図示せず)との結合は、同図の如く半導体素子の積
層ブロック形成時に電極端子専用層101を同時に積層
し、同専用層が形成する電極金属の端断面部位102を
用いて接続する。
In addition, the connection between mutually connected electrodes or a single electrode and an electrode (not shown) on the external frame is achieved by laminating a layer 101 exclusively for electrode terminals at the same time when forming a stacked block of semiconductor elements, as shown in the same figure. Connection is made using the end cross section portion 102 of the electrode metal formed by the layer.

以上述べた如く積層した場合、熱放散が問題となる。こ
の問題を解決するために積層構造の中間に放熱板を挿入
する構造を第19図に示した。
When laminated as described above, heat dissipation becomes a problem. In order to solve this problem, a structure in which a heat sink is inserted between the laminated structures is shown in FIG.

本例第19図は消費電力の大きい半導体素子を積層形成
して構成する半導体素子群の放熱性の向上を図った構造
である。
This example, shown in FIG. 19, is a structure in which the heat dissipation of a semiconductor element group constituted by stacking semiconductor elements with large power consumption is improved.

即ち半導体素子を積層形成するに当り、第19図の斜視
図の如く、数層間隔で半導体素子の裏面部位に金属薄板
或は熱伝導性の良好な材料からなる放熱薄板103を同
時に積層した構造であり、同放熱用薄板は第19図の様
にその一方が積層ブロックの外部まで延長しており、同
延長部位に放熱効果を有した構造のものである。
That is, when forming semiconductor elements in a layered manner, as shown in the perspective view of FIG. 19, a structure in which heat dissipating thin plates 103 made of thin metal plates or materials with good thermal conductivity are simultaneously laminated on the back side of the semiconductor element at several layer intervals. As shown in FIG. 19, one side of the heat dissipation thin plate extends to the outside of the laminated block, and the extended portion has a heat dissipation effect.

次に本発明の製造方法例について述べる。Next, an example of the manufacturing method of the present invention will be described.

く製造方法例 1〉 第20図は概略を示す断面図であるが、必要な場合、同
様の方法により四面同時に行なうこともできる。
Manufacturing method example 1> FIG. 20 is a schematic cross-sectional view, but if necessary, the same method can be used for all four sides at the same time.

重さね合わせた半導体素子30の電極端子31とフレキ
シブルフ・イルム33の電極領域34を位置合せし、四
端面よシ38の方向に加熱加圧する。
The electrode terminals 31 of the stacked semiconductor elements 30 and the electrode regions 34 of the flexible film 33 are aligned, and heated and pressed in the direction of the four end faces 38.

これにより、半導体素子3oの電極材料である低融点金
属は溶解し、機械的及び電気的に接続が完了する。この
場合、外部基板と接するだめの外部端子は予かしめ前記
フレキシブルフィルムの面に半田バンプ又はピン(第3
図35)を設けておいても良いし、前記半導体素子の四
端面の電極端子とフレキシブルフィルムとの接続が終了
した時点で形成しても良い。更に又、第21図の様に相
互配線が終了したものを枠体36に挿入し、フレキシブ
ルフィルム33の底面に設けた電極領域39゜枠体36
の底面の電極領域40を加熱し、結合させてもよい。枠
体36には外部基板と接続させるだめのピン35が形成
されている。この様な構成であれば機械的に安定な半導
体装置ができ、取扱いが容易である。
As a result, the low melting point metal that is the electrode material of the semiconductor element 3o is melted, and mechanical and electrical connection is completed. In this case, the external terminals that come into contact with the external board are pre-swaged with solder bumps or pins (third
35) may be provided in advance, or may be formed at the time when the connection between the electrode terminals on the four end faces of the semiconductor element and the flexible film is completed. Furthermore, as shown in FIG. 21, the mutual wiring completed is inserted into the frame 36, and the electrode area 39 provided on the bottom surface of the flexible film 33 is inserted into the frame 36.
The electrode area 40 on the bottom surface of may be heated to bond. A pin 35 for connection to an external board is formed on the frame body 36. With such a configuration, a mechanically stable semiconductor device can be obtained and is easy to handle.

〈製造方法例 2〉 第22図に示す如く、枠体36に前記フレキシブルフィ
ルム33を挿入し、次いで重さね合わせた半導体素子を
挿入しく第22図b)、枠体36全体を加熱すれば、半
導体素子の電極端子とフレキシブルフィルム上の電極領
域の低融点金属は溶融し7、半導体素子端面に形成した
電極端子30とフレキ/プルフィルム3.3の電極領域
31とが接続される。この様な製造方法においては枠体
36ヲ用いて枠体36の中にフレキシブルフィルム33
と重さね合わせた半導体素子30とを挿入し、一度に熱
処理するために、工程が簡単で個々の電極同志の位置合
せが容易となる。
<Manufacturing method example 2> As shown in FIG. 22, the flexible film 33 is inserted into the frame 36, and then the stacked semiconductor elements are inserted (FIG. 22b), and the entire frame 36 is heated. The low melting point metal of the electrode terminal of the semiconductor element and the electrode area on the flexible film is melted 7, and the electrode terminal 30 formed on the end face of the semiconductor element and the electrode area 31 of the flexible/pull film 3.3 are connected. In such a manufacturing method, the frame 36 is used and the flexible film 33 is placed inside the frame 36.
Since the stacked semiconductor elements 30 and 30 are inserted and heat-treated all at once, the process is simple and alignment of the individual electrodes becomes easy.

く製造方法例 3〉 第23図に示した様に、重さね合わせた半導体素子の電
極端子間を接続するため、相互配線体を多層配線基板4
1(例えば、エポキシ、ガラス。
Manufacturing method example 3> As shown in FIG.
1 (e.g. epoxy, glass.

セラミック等)上に形成したものを用いる。即ち、前記
基板上に予かしめ半導体素子3oの電極端子31間を接
続する電極領域42と電極領域間の相互配線(第23図
では省略)とを形成しておくのである。この多層配線基
板41を積層した半導体素子30の各端面毎に各々位置
合わせを行ない加熱する方法であるにの場合、前記各端
面に取付け゛られだ多層配線基板間の接続は前記多層配
線体の端部に設けた電極領域50を用いて実施する。
(ceramic, etc.). That is, electrode regions 42 connecting the electrode terminals 31 of the caulking semiconductor element 3o and interconnections between the electrode regions (not shown in FIG. 23) are formed on the substrate in advance. In the case of a method in which each end face of the semiconductor element 30 in which the multilayer wiring board 41 is laminated is aligned and heated, the connection between the multilayer wiring boards attached to each end face is made in the multilayer wiring body. This is carried out using the electrode area 50 provided at the end.

く製造方法例 4〉 更に改良された方法として第24図に示す如く多層配線
基板41で予かしめ四角の枠体を形成し、半導体素子端
面の電極端子と接する電極領域が内側になる様にしてお
き(第24図a)、重さね合わせた半導体素子30を挿
入し、加熱すれば半導体素子の電極端子と多層配線基板
電極領域との接続が著しく容易にできるものである。(
第24図b) 発明の効果 本発明の場合、100μmの半導体素子を互いに重さね
合わせ、積層構造にし、前記半導体素子の端面方向に電
極端子を導出するとともに、前記端面領域で前記電極端
子間の相互の配線接続を実施している。
Manufacturing method example 4> As a further improved method, as shown in FIG. 24, a rectangular frame is pre-swaged with the multilayer wiring board 41, and the electrode area in contact with the electrode terminal on the end face of the semiconductor element is on the inside. By placing the stacked semiconductor elements 30 (FIG. 24a) and heating them, the connection between the electrode terminals of the semiconductor elements and the electrode regions of the multilayer wiring board can be made extremely easy. (
Figure 24b) Effects of the Invention In the case of the present invention, semiconductor elements of 100 μm are stacked on top of each other to form a laminated structure, and electrode terminals are led out in the direction of the end face of the semiconductor element, and between the electrode terminals in the end face area. The wiring is connected to each other.

このために■単位体積当りの実装半導体素子が多く、高
密度実装が行なえる構造である。例えば半導体素子の厚
さを100μmとして、20個の半導体素子を積層にし
てもわずか2mmの厚さで各半導体素子の層間の貼りつ
け用樹脂を考慮してもたかだか2.5間の厚さと非常に
薄くかつ、高密度に実装できるものである。
For this reason, (1) there are many semiconductor elements mounted per unit volume, and the structure allows for high-density mounting. For example, assuming that the thickness of a semiconductor element is 100 μm, even if 20 semiconductor elements are stacked, the thickness is only 2 mm, and even considering the adhesive resin between the layers of each semiconductor element, the thickness is at most 2.5 mm. It can be mounted thinly and with high density.

■壕だ、゛各半導体素子の電極端子が端面方向に導出さ
れ、端面領域内で相互に接続されるから、配線長が著し
く短かい。例えば前述した例の如く20個の半導体素子
を積層にした場合でもわずか2゜5mmの配線長で処理
できるため配線抵抗が小さく、メモリーIC+あるいは
高周波IC等の高速化をさまたげる事がない。
■The wiring length is extremely short because the electrode terminals of each semiconductor element are led out in the direction of the end face and connected to each other within the end face area. For example, even when 20 semiconductor elements are stacked as in the above-mentioned example, it can be processed with a wiring length of only 2.5 mm, so the wiring resistance is low, and there is no problem with increasing the speed of memory IC+ or high frequency IC.

■本発明の場合、半導体素子からの電極端子が端面方向
に導出されこれを重さね合わせた構造であるから、不必
要な支持体等が全くない。このだめ半導体装置全体を軽
くする事ができる。
(2) In the case of the present invention, since the structure is such that the electrode terminals from the semiconductor element are led out in the direction of the end face and are stacked on top of each other, there is no need for any unnecessary supports. This makes it possible to reduce the weight of the entire semiconductor device.

■又、本発明は半導体素子を重さね合わせ積層する構造
であるから、従来の如く平面に並べる方式に比べ、著し
く小面積である。
(2) Also, since the present invention has a structure in which semiconductor elements are stacked one on top of the other, the area is significantly smaller than in the conventional method of arranging them on a plane.

■すでに述べた如く、半導体素子の電極端子を形成する
段階において例えばフィルムキャリヤのリード端子に半
導体素子をインナーリード接続ししかるのちフィルム上
でファンアウトしたリード端子の部分で電気的にあらか
じめ、測定検査することができる。したがって前記半導
体素子を積層する段階においては、完全に検査された良
品のみを用いることができ、従来の如く単にウェハーの
段階で検査を施した半導体素子に比べ半導体装置として
の歩留りが著しく高いも・のである。
■As already mentioned, in the stage of forming the electrode terminals of a semiconductor element, for example, the semiconductor element is connected to the lead terminals of the film carrier through the inner leads, and then electrical measurement and inspection are carried out in advance on the fanned-out part of the lead terminals on the film. can do. Therefore, in the stage of stacking the semiconductor elements, only completely inspected non-defective products can be used, and the yield as a semiconductor device is significantly higher than that of conventional semiconductor elements that are simply inspected at the wafer stage. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

芯 第1.第2図は半導体素子を搭載した基板を重さね合わ
せた従来の構造断面図、第3図は本発明の一実施例の半
導体装置の概略構造図、第4図ば;フレキシブ、ηイ/
l/A、!:枠体の概略図、鎖管^2本発明の製造法例
を示す図である。 30・・・・・・半導体素子、31・・・・・・電極端
子、33・・・・・・フレキシブルフィルム、35・・
・・・ピン、36・・・・・・枠体、41・・・・・・
多層基板、42・・・・・・電極、60・・・・・・耐
熱性樹脂、61・・・・・・電極端子、62・・・・・
・半導体素子、63・・・・・・突起電極、66・・・
・・接着剤、91・・・・・・半導体素子、92・・・
・・・耐熱性樹脂、93・・・・・・電極端子、94・
・・・・・スペーサー、96・川・・絶縁性樹脂材料、
96・・・・・・基板、9B・・・・・・端面の電極、
99・・・・・・相互接続配線、100・・・・・・金
属細線、103・・・・・・放熱板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第6
図 X2 第7図 0 第8図 第9図 4− 第10図 乙5 第11図 第13図 第14図 7 6 第15図 第16図 第19図 第20図 第23図 第24図
Core number 1. FIG. 2 is a cross-sectional view of a conventional structure in which substrates on which semiconductor elements are mounted are stacked together, FIG. 3 is a schematic structural view of a semiconductor device according to an embodiment of the present invention, and FIG. 4 is a flexible, η/
l/A,! : Schematic diagram of a frame body, chain pipe^2 A diagram showing an example of the manufacturing method of the present invention. 30... Semiconductor element, 31... Electrode terminal, 33... Flexible film, 35...
...Pin, 36...Frame, 41...
Multilayer board, 42... Electrode, 60... Heat resistant resin, 61... Electrode terminal, 62...
・Semiconductor element, 63... Projection electrode, 66...
...Adhesive, 91...Semiconductor element, 92...
...Heat-resistant resin, 93... Electrode terminal, 94.
... Spacer, 96 River... Insulating resin material,
96... Substrate, 9B... End surface electrode,
99...Interconnection wiring, 100...Metal thin wire, 103...Radiation plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 6
Figure X2 Figure 7 0 Figure 8 Figure 9 Figure 4- Figure 10 Figure 5

Claims (1)

【特許請求の範囲】 (1)端面に電極端子の形成された半導体素子が複数個
積層され、かつ前記素子の端面領域で前記電極端子間の
接続配線を形成したことを特徴とする半導体装置。 (2)  積層された半導体素子群の端面の電極端子間
が金属細線で接続されたことを特徴とする特許請求の範
囲第1項記載の半導体装置。 (3)積層された半導体素子群の端面の電極端子間が蒸
着配線で接続されてなる特許請求の範囲第1項記載の半
導体装置。 (4)少なくとも表面が絶縁物質よりなる枠体の一主面
上で電極端子の一端が前記枠体の内方向に突出し、かつ
前記突出した電極端子と半導体素子上の電極が接合され
、かつ前記電極端子の他端が前記枠体の周縁を越えて前
記枠体の側壁に接着固定された構造体を積層してなる特
許請求の範囲第1項記載の半導体装置。 (6)半導体素子上の電極にその一端が接合されている
電極端子ル他端が、前記半導体素子の周縁を越えて側面
に折り曲げられ、前記側面部で接着・固定された構造体
を積層してなる特許請求の範囲第1項記載の半導体装置
。 (6)端面に電極端子の形成された半導体素子が複数個
積層され、かつ前記半導体素子群の端面電極端子と一致
した電極部分を有する導体配線の形成された配線基板に
よシ前記半導体素子の所定の端面電極端子が相互配線さ
れたことを特徴とする半導体装置。 (7)配線基板が多層の絶縁性基板であることを特徴と
する特許請求の範囲第6項記載の半導体装置。 (8)配線基板がフレキシブルフィルムであることを特
徴とする特許請求の範囲第6項記載の半導体装置。
Claims: (1) A semiconductor device characterized in that a plurality of semiconductor elements each having an electrode terminal formed on its end face are stacked, and a connection wiring between the electrode terminals is formed in the end face region of the element. (2) The semiconductor device according to claim 1, wherein the electrode terminals on the end faces of the stacked semiconductor element group are connected by thin metal wires. (3) The semiconductor device according to claim 1, wherein the electrode terminals on the end faces of the stacked semiconductor element group are connected by vapor-deposited wiring. (4) One end of an electrode terminal protrudes inward of the frame on one main surface of the frame whose surface is at least made of an insulating material, and the protruding electrode terminal and the electrode on the semiconductor element are joined, and 2. The semiconductor device according to claim 1, comprising a stack of structures in which the other end of the electrode terminal is adhesively fixed to the side wall of the frame body beyond the periphery of the frame body. (6) Laminating structures in which the other end of the electrode terminal, one end of which is joined to the electrode on the semiconductor element, is bent to the side beyond the periphery of the semiconductor element, and is bonded and fixed at the side surface. A semiconductor device according to claim 1, comprising: (6) A plurality of semiconductor elements each having an electrode terminal formed on the end face thereof are laminated, and a wiring board having a conductor wiring formed thereon having an electrode portion corresponding to the end face electrode terminal of the semiconductor element group is used to form the semiconductor element. A semiconductor device characterized in that predetermined end face electrode terminals are interconnected. (7) The semiconductor device according to claim 6, wherein the wiring board is a multilayer insulating board. (8) The semiconductor device according to claim 6, wherein the wiring board is a flexible film.
JP58068716A 1983-04-18 1983-04-18 Semiconductor device Pending JPS59194460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068716A JPS59194460A (en) 1983-04-18 1983-04-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068716A JPS59194460A (en) 1983-04-18 1983-04-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59194460A true JPS59194460A (en) 1984-11-05

Family

ID=13381788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068716A Pending JPS59194460A (en) 1983-04-18 1983-04-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59194460A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299256A (en) * 1987-05-29 1988-12-06 Toshiba Corp Electric component
EP0593666A1 (en) * 1991-06-24 1994-04-27 Irvine Sensors Corporation Fabricating electronic circuitry unit containing stacked ic layers having lead rerouting
US5790380A (en) * 1995-12-15 1998-08-04 International Business Machines Corporation Method for fabricating a multiple chip module using orthogonal reorientation of connection planes
US6573461B2 (en) 2001-09-20 2003-06-03 Dpac Technologies Corp Retaining ring interconnect used for 3-D stacking
US6573460B2 (en) 2001-09-20 2003-06-03 Dpac Technologies Corp Post in ring interconnect using for 3-D stacking
US6856010B2 (en) 2002-12-05 2005-02-15 Staktek Group L.P. Thin scale outline package
JP2012069554A (en) * 2010-09-21 2012-04-05 Disco Abrasive Syst Ltd Manufacturing method of stack device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299256A (en) * 1987-05-29 1988-12-06 Toshiba Corp Electric component
EP0593666A1 (en) * 1991-06-24 1994-04-27 Irvine Sensors Corporation Fabricating electronic circuitry unit containing stacked ic layers having lead rerouting
EP0593666A4 (en) * 1991-06-24 1994-07-27 Irvine Sensors Corp Fabricating electronic circuitry unit containing stacked ic layers having lead rerouting
US5790380A (en) * 1995-12-15 1998-08-04 International Business Machines Corporation Method for fabricating a multiple chip module using orthogonal reorientation of connection planes
US6573461B2 (en) 2001-09-20 2003-06-03 Dpac Technologies Corp Retaining ring interconnect used for 3-D stacking
US6573460B2 (en) 2001-09-20 2003-06-03 Dpac Technologies Corp Post in ring interconnect using for 3-D stacking
US6856010B2 (en) 2002-12-05 2005-02-15 Staktek Group L.P. Thin scale outline package
JP2012069554A (en) * 2010-09-21 2012-04-05 Disco Abrasive Syst Ltd Manufacturing method of stack device

Similar Documents

Publication Publication Date Title
JP3544974B2 (en) Integrated laminate
JP2909704B2 (en) Vertical IC chip stack with discrete chip carriers formed from dielectric tape
JPS5839048A (en) Flexible region adhesive tape
JPH04233264A (en) Compact high-density connection structure
CA1037615A (en) Functional package for complex electronic systems and method of fabrication
JPS629642A (en) Manufacture of semiconductor device
JP2002543618A (en) Stackable flex circuit IC package and method of manufacturing the same
JPS6355213B2 (en)
JPH0661606A (en) Circuit package structure
JPH07240496A (en) Semiconductor device, its manufacture method and board for testing semiconductor and manufacture of test board
JPH10242210A (en) Mounting structure for integrated circuit and manufacturing method thereof
JPH09199635A (en) Multilayer film for forming circuit substrate, multilayer circuit substrate using it, and package for semiconductor device
US4731700A (en) Semiconductor connection and crossover apparatus
JPS59194460A (en) Semiconductor device
JPS59205747A (en) Manufacture of semiconductor device
JP3656861B2 (en) Semiconductor integrated circuit device and method for manufacturing semiconductor integrated circuit device
EP0511218A4 (en) Fabricating eletronic circuitry unit containing stacked ic layers having lead rerouting
JPH02343A (en) Substrate for mounting electronic parts
JP2665914B2 (en) Semiconductor device and manufacturing method thereof
JPH0787220B2 (en) Method for manufacturing PGA substrate
JPH0567878A (en) Hybrid circuit board and manufacture thereof
JPS59201452A (en) Device sealing for high density tape bonding
JPS58134450A (en) Semiconductor device and manufacture thereof
JPH02222598A (en) Semiconductor device module
JPH0922960A (en) Multichip module device and its manufacture